Напомню первая статья об лазерной связи в космосе написана год назад Прочитав комменты от предыдущей записи про слова Илона Маска о будущем суперскоростном канале Лондон Сидней. Инженеры NASA испытали первую систему лазерной связи, работающую на межпланетных расстояниях.
Российские разработчики представили проект лазерной связи в космосе
Оксфордский университет совместно с компанией Airbus Group Innovations испытали лазерную систему связи для беспилотных летательных аппаратов, сообщает Aviation Week. В NASA сообщили, что 8 апреля провели очередное испытание дальней космической связи по оптическому каналу. SpaceLink планирует провести демонстрацию ретрансляции данных в 2024 году после тестирования на орбите своих спутников связи.
Британцы испытали лазерную связь для беспилотников
Это лучше всяких слов доказало, что концепция дальней космической оптической связи по сути верна и успешно реализуется. По крайней мере, в экспериментальных установках. На более близких дистанциях скорость оптической связи ощутимо выше. Например, первый сеанс оптической связи с «Психеей» состоялся, когда она улетела от Земли на 31 млн км. Подобные скорости в оптике будут на один—два порядка выше, чем в радиочастотном диапазоне.
На борту аппарата был установлен опытный образец оптического приемопередатчика, сигнал которого 14 ноября принял телескоп Паломарской обсерватории в Калифорнии. Тогда свет прошел расстояние почти в 16 млн км. Затем «Психее» был отправлен обратный сигнал.
Теперь аппарат отдалился от дома еще больше, и скорость передачи данных упала.
Кроме того, часть системы, устанавливаемая на беспилотники, имеет небольшое энергопотребление. Как ожидается, Hyperion будет использоваться на беспилотниках для передачи информации в режиме реального времени.
Кроме того, в Airbus полагают, что система может стать частью долголетающих беспилотников. Ранее стало известно , что министерство обороны Великобритании объявило о намерении приобрести два беспилотника Zephyr 8, способных находиться в воздухе до трех месяцев.
Передатчик, обычный полупроводниковый лазер, преобразует электрические сигналы в модулированное оптическое излучение мощность не более 40 мВт в инфракрасном диапазоне 0,82 мкм. Распространяясь в атмосфере максимальная дальность связи 1,2 км , лазерный луч достигает приемника, представляющего собой фотодиод чувствительность в среднем около 1 мкВт.
Приемник производит обратное преобразование, и на выходе получается исходный электрический сигнал. Где же могут быть использованы лазерные системы связи? Диапазон их применения широк: для организации выноса абонентской емкости и соединения "последней мили"; в качестве соединительной линии между двух УАТС; для соединения мультиплексоров, объединения сегментов ЛВС и подключения ЛВС к магистральной сети. Этот перечень можно продолжить, поскольку существующие в настоящее время лазерные системы имеют большой набор устройств сопряжения с разнообразным сетевым оборудованием табл.
Системы лазерной связи строятся по модульному принципу, поэтому их возможности могут легко расширяться путем установки дополнительных модулей. Важно отметить и тот факт, что лазерные системы не представляют опасности для здоровья человека, поскольку имеют низкую мощность излучения. Использование же стандартного многомодового ВОК для подключения сетевого оборудования к лазерному передатчику гарантирует передачу данных без радиочастотного и электромагнитного излучений. Лазерные системы развиваются в направлении повышения скорости обмена и дальности связи.
Их использование будет особенно привлекательным для объединения сегментов ЛВС, в том числе построенных по высокоскоростным технологиям гигабитная Ethernet и ATM. Способы монтажа лазерного оборудования Существует несколько способов монтажа лазерного оборудования, их формально можно разделить на наружные на стене или на крыше и внутренние за окном. На рис. Чтобы облегчить установку оборудования, фирмы-производители предлагают специальные металлические конструкции.
Тип лазерной системы выбирается в зависимости от вида интерфейсов УАТС и или сетевого оборудования см. Информация ЛВС доставляется к лазерному приемопередатчику от сетевого оборудования, имеющего соответствующий электрический или оптический интерфейс. В этом случае УАТС подключается непосредственно к лазерному оборудованию пример такого подключения показан на рис. Если УАТС не имеет таких интерфейсов, то для ее подключения используют различные аналоговые линии, а передаваемый по ним сигнал оцифровывается с помощью внешнего мультиплексора.
Кроме моделей лазерного оборудования, перечисленных в табл. Как показано на рис. Выполнение этого требования обязательно, иначе связь невозможна. Помимо этого, имеется ряд других требований, выполнение которых необходимо для устойчивой работы оборудования, поэтому для выбора и монтажа системы лучше обратиться к специалистам.
Приемопередатчик лазерных систем связи выполняется в защищенном и обогреваемом корпусе. При разработке лазерных приемопередатчиков были приняты специальные меры для обеспечения их устойчивой работы во всем диапазоне погодных условий. Например, для защиты от прямых встречных лучей солнца объектив приемника закрыт блендой, а для защиты от гидрометеоритов снега и дождя и птиц диаметр луча сделан большим около 2 м в области приемника. Следует отметить, что туман оказывает гораздо большее влияние на качество передачи, чем снег и дождь.
Это связано с тем, что на капельках тумана, представляющих собой мелкодисперсионную пыль, луч рассеивается сильнее, чем на капельках дождя или частицах снега. Подобной неприятности можно избежать, выбрав оборудование, обеспечивающее запас по дальности связи т.
Луч на Землю: В NASA сообщили о получении лазерного сигнала из космоса
Российский космический эксперимент «Система лазерной связи» (КЭ «СЛС») | Сеанс связи с зондом состоялся, когда тот был на удалении 226 млн км от Земли, что в полтора раза больше, чем расстояние между Солнцем и Землёй. |
НАСА тестирует двустороннюю высокоскоростную лазерную систему космической связи | Новые лазерные системы связи могут обеспечить быструю передачу огромных объемов данных с Луны. |
NASA установило новый рекорд лазерной связи в космосе - 226 млн км | Как заявил глава «Роскосмоса» Рогозин, в рамках проекта «Сфера» госкорпорация будет заниматься лазерной связью. |
NASA впервые протестирует лазерную связь в космосе » Актуальные новости | Специалисты создали самую стабильную систему связи со спутником с помощью лазерного луча. |
Что за эксперимент с космической лазерной связью задумали в России?
NASA установило новый рекорд лазерной связи в космосе - 226 млн км | С точки зрения эффективности лазерная связь позволяет добиться роста скорости передачи данных в 10—100 раз, если сравнивать с применяемой сейчас. |
Система «Сфера» получит лазерную связь | «Московские новости» продолжают серию материалов о цифровом бессмертии — о том, как технологии позволяют имитировать личность человека и создавать цифровых двойников. |
Установлен мировой рекорд дальности передачи лазерного сигнала | «Роскосмос» планирует заняться лазерной связью на околоземной орбите. |
Земля впервые получила лазерный сигнал с расстояния 16 миллионов километров | Смотрите онлайн видео «Лазерная связь заменит радио. |
CubeSat продемонстрирует самую быструю лазерную связь NASA из космоса
В августе 2021 года президент американской компании SpaceX Гвинн Шотвелл заявила , что все новые спутники глобальной системы Starlink получат лазерные терминалы.
Transcelestial также разрабатывает созвездие малых спутников на низкой околоземной орбите с целью обеспечения сверхскоростного подключения к магистральной сети. Д-р Льюис Пино, партнер по Азиатско-Тихоокеанскому региону в Токио, добавил: «В качестве нашей первой инвестиции в Сингапур мы рады, что такая влиятельная компания, как Transcelestial, поможет нам расширить свое присутствие в регионе, и мы с нетерпением ждем открытия нашего Новые офисы в Сингапуре в тесном партнерстве с выдающимися соинвесторами привлекли Transcelestial. QR cсылка.
Лазерные системы развиваются в направлении повышения скорости обмена и дальности связи. Их использование будет особенно привлекательным для объединения сегментов ЛВС, в том числе построенных по высокоскоростным технологиям гигабитная Ethernet и ATM. Способы монтажа лазерного оборудования Существует несколько способов монтажа лазерного оборудования, их формально можно разделить на наружные на стене или на крыше и внутренние за окном.
На рис. Чтобы облегчить установку оборудования, фирмы-производители предлагают специальные металлические конструкции. Тип лазерной системы выбирается в зависимости от вида интерфейсов УАТС и или сетевого оборудования см. Информация ЛВС доставляется к лазерному приемопередатчику от сетевого оборудования, имеющего соответствующий электрический или оптический интерфейс. В этом случае УАТС подключается непосредственно к лазерному оборудованию пример такого подключения показан на рис. Если УАТС не имеет таких интерфейсов, то для ее подключения используют различные аналоговые линии, а передаваемый по ним сигнал оцифровывается с помощью внешнего мультиплексора. Кроме моделей лазерного оборудования, перечисленных в табл.
Как показано на рис. Выполнение этого требования обязательно, иначе связь невозможна. Помимо этого, имеется ряд других требований, выполнение которых необходимо для устойчивой работы оборудования, поэтому для выбора и монтажа системы лучше обратиться к специалистам. Приемопередатчик лазерных систем связи выполняется в защищенном и обогреваемом корпусе. При разработке лазерных приемопередатчиков были приняты специальные меры для обеспечения их устойчивой работы во всем диапазоне погодных условий. Например, для защиты от прямых встречных лучей солнца объектив приемника закрыт блендой, а для защиты от гидрометеоритов снега и дождя и птиц диаметр луча сделан большим около 2 м в области приемника. Следует отметить, что туман оказывает гораздо большее влияние на качество передачи, чем снег и дождь.
Это связано с тем, что на капельках тумана, представляющих собой мелкодисперсионную пыль, луч рассеивается сильнее, чем на капельках дождя или частицах снега. Подобной неприятности можно избежать, выбрав оборудование, обеспечивающее запас по дальности связи т. Время развертывания свертывания лазерного оборудования составляет несколько часов, что удобно при необходимости быстрого подключения какого-либо оборудования в случае отсутствия канала связи или его аварии, а также при переезде фирмы. При этом вам не придется делать выбор: оставлять или нет проложенные коммуникации? Вы сэкономите свои силы и избежите ненужных и обременительных затрат. Как указывалось ранее, лазерные приемопередатчики можно устанавливать как снаружи, так и внутри здания. Чтобы предотвратить рассеивание луча на каплях дождя, стекающих по внешней стороне стекла, оборудование рекомендуется устанавливать вблизи верхней части стекол.
Выводы и выгоды Лазерная связь является альтернативой радио-, кабельной и волоконно-оптической связи. В отличие от беспроводных радиосистем лазерные системы связи обеспечивают высокие помехозащищенность и секретность передачи, так как получить несанкционированный доступ к информации можно только непосредственно от приемопередатчика. Компания, которая воспользуется лазерной связью для создания основного резервного канала ближней связи, избавится не только от необходимости прокладывать новые проводные коммуникации, но также и от необходимости получать разрешение на право пользования радиочастотой. Кроме того, невысокий уровень затрат на организацию высокопроизводительного канала связи, а также небольшое время его ввода в эксплуатацию обеспечат быструю окупаемость вложенных средств.
Хотя это были не научные данные миссии Psyche, как планировалось, это все равно был большой успех. В течение короткого времени с помощью лазеров можно было передавать, принимать и декодировать только некоторые данные. Цель эксперимента DSOC — продемонстрировать, что скорость передачи «лазерных данных» в 10-100 раз выше, чем у современных радиочастотных систем, используемых сегодня на космических аппаратах.
Как в радиосвязи, так и в лазерной связи ближнего инфракрасного диапазона для передачи данных используются электромагнитные волны, но в ближнем инфракрасном свете они заключены в значительно более узкие волны, что позволяет наземным станциям получать больше данных. Перспективная технология После этого первого крупного успеха команда DSOC будет работать над совершенствованием систем, управляющих наведением нисходящего лазера на борту приемопередатчика.
Лазерная связь заработает в России
По крайней мере, в экспериментальных установках. На более близких дистанциях скорость оптической связи ощутимо выше. Например, первый сеанс оптической связи с «Психеей» состоялся, когда она улетела от Земли на 31 млн км. Подобные скорости в оптике будут на один—два порядка выше, чем в радиочастотном диапазоне. Оптика на порядок увеличила бы его пропускную способность.
Затем автоматические системы на приемопередатчике и наземных станциях выполнили точную настройку. Удачный эксперимент Тестовые данные передавались одновременно через восходящий и нисходящий лазеры. Хотя это были не научные данные миссии Psyche, как планировалось, это все равно был большой успех.
В течение короткого времени с помощью лазеров можно было передавать, принимать и декодировать только некоторые данные. Цель эксперимента DSOC — продемонстрировать, что скорость передачи «лазерных данных» в 10-100 раз выше, чем у современных радиочастотных систем, используемых сегодня на космических аппаратах.
Доктор Джейсон Митчелл Jason Mitchell , директор отделения передовых технологий связи и навигации SCaN, выразил свое волнение по поводу этого достижения, заявив: «Лазерная связь не только позволит получать больше данных от научных миссий, но и может стать важнейшим двусторонним каналом связи НАСА, который позволит астронавтам поддерживать связь с Землей во время исследований Луны, Марса и других миров». Эти слова подчеркивают важность лазерной связи для обеспечения бесперебойной связи между астронавтами и диспетчерами во время будущих полетов в дальний космос.
Эта программа призвана продемонстрировать огромный потенциал лазерных коммуникационных технологий для повышения эффективности научных и исследовательских миссий. Поскольку NASA продолжает расширять границы освоения космоса, лазерная связь, несомненно, будет играть жизненно важную роль в обеспечении бесперебойной и эффективной связи между Землей и космосом.
В 1880 году Белл запатентовал фототелефон Фотофон , в котором солнечный луч, отражённый от зеркальца, модулировался голосом, передавался через атмосферное пространство и поступал на твердотельную селеновую ячейку [1]. Принцип работы[ править править код ] В основе беспроводных оптических систем лежат технологии организации высокоскоростных каналов связи посредством инфракрасного излучения, которые делают возможной передачу данных текстовые, звуковые, графические данные между объектами через атмосферное пространство, предоставляя оптическое соединение без использования стекловолокна. Лазерная связь двух объектов осуществляется только посредством соединения типа «точка-точка». Технология основывается на передаче данных модулированным излучением в инфракрасной части спектра через атмосферу. Передатчиком служит мощный полупроводниковый лазерный диод.
Эксперты NASA протестировали новую систему лазерной связи. Не обошлось без котиков
В NASA пояснили, что новая система лазерной связи предназначена для передачи данных из глубокого космоса. Как объяснили ученые, современные системы подводной лазерной связи имеют высокую стоимость и способны поддерживать широкий канал связи только на небольших дистанциях. Специалисты создали самую стабильную систему связи со спутником с помощью лазерного луча. Система лазерной космической связи может быть в 10–100 раз эффективнее существующей радиочастотной технологии.
Российская сеть лазерных станций
Беспроводные терминалы лазерной связи могут обеспечить надежную связь между научными группами, базовыми лагерями и исследовательскими станциями, преодолевая преграды и. Российский спутник «Импульс-1» открывает лазерный канал связи. Опыт по созданию терминалов лазерной связи АО «НПК «СПП» и результаты космического эксперимента «Система лазерной связи» (КЭ СЛС) могут быть использованы для дальнейших. Оксфордский университет совместно с компанией Airbus Group Innovations испытали лазерную систему связи для беспилотных летательных аппаратов, сообщает Aviation Week. Лазерная связь обладает рядом преимуществ, включая высокую скорость и энергоэффективность, но сталкивается с вызовами. Как заявил глава «Роскосмоса» Рогозин, в рамках проекта «Сфера» госкорпорация будет заниматься лазерной связью.
Лазер вместо радиоволн: космическая связь в ИК-диапазоне ускорила передачу данных
Лазерная связь обеспечивает большую гибкость миссии и быстрый способ доступа к данным из космоса. Эксперимент НАСА "Оптическая связь в глубоком космосе" (DSOC) призван проложить путь к использованию лазерной связи для передачи данных из глубокого космоса. При помощи инфракрасной лазерной системы можно реализовать связь с орбитой и космосом нового качественного уровня. Технология оптической связи из далекого космоса прошла очередную проверку в эксперименте NASA.
Лазерной связью в России будет заниматься «Роскосмос»
На этой площадке было установлено специальное зеркало, которое отразило луч и вернуло его обратно к источнику. Эксперимент занял примерно пять минут. Он открывает новые возможности перед наукой. Исследователи пишут, что их работа стала очередным шагом на пути создания эффективных систем передачи лазерных сигналов на большие расстояния. Такие системы в будущем могут использоваться для связи между наземными станциями и спутниками или орбитальными космическими кораблями. Их можно использовать и для подключения атомных часов.
Данные также могут быть отправлены на приемопередатчик, а затем повторно соединены с Землей в ту же ночь. Лазерная технология связи в этом демонстрационном проекте НАСА предназначена для передачи данных со скоростью в 10-100 раз быстрее, чем современные радиочастотные системы, используемые сегодня в космических миссиях.
Теперь, когда зонд находится в семь раз дальше, скорость, с которой он может отправлять и получать данные, уменьшилась, что было ожидаемо. Лазерная передача научных данных из глубокого космоса Во время испытаний 8 апреля команда проекта также дала команду полетному лазерному приемопередатчику на оптическую передачу данных, сгенерированных "Психеей". Кен Эндрюс, руководитель летных операций по проекту в JPL, пояснил: "Это была передача небольшого количества данных за короткий промежуток времени, но тот факт, что мы делаем это сейчас, превзошел все наши ожидания".
Это интересно Космический аппарат NASA Psyche, предназначенный для изучения одноименного металлического астероида Психея , стартовал 13 октября 2023 года. Во время полета он проводит различные эксперименты в космосе. Один из таких экспериментов — передача информации оптическим способом при помощи инфракрасного лазера. Система лазерной космической связи может быть в 10—100 раз эффективнее существующей радиочастотной технологии. В ходе недавнего эксперимента DSOC доказала свою перспективность, так как смогла передать и принять сигнал с расстояния в 16 миллионов километров.
Согласно задумке, данная технология сможет обеспечить высокоскоростную связь за пределами окололунного пространства. Лазерную связь можно сравнить с использованием лазерной указки для отправки сообщений, где каждый вспышка лазера представляет определенную информацию. Надо сказать, что быстрая и стеабильная связь крайне важна для будущего освоения связи. В настоящее время люди не покидают пределы земной орбиты, на которой находится МКС, поэтому радиосвязи пока достаточно для задач, которые стоят перед астронавтами. Беспилотные миссии, разумеется, передают данные с гораздо большего расстояния.
Демонстратор лазерной системы связи планируется подготовить к 2024 году. Полноценные лётные испытания с применением промышленной версии оборудования намечены на следующий год. С 2024 года будет вестись работа по индустриализации прототипа и подготовке интеграции системы лазерной связи в самолёты.
Компания VDL занимается разработкой архитектуры и производством критически важных компонентов. UltraAir позволит воздушным судам обмениваться большими пакетами данных посредством лазерных лучей. Высокостабильная и оптически точная мехатронная система рассчитана на передачу нескольких гигабайт информации в секунду с защитой от помех и отсутствием возможности перехвата сигнала.
Лазерная связь - еще один способ беспроводной связи
Лазерная связь обеспечивает большую гибкость миссии и быстрый способ доступа к данным из космоса. С точки зрения эффективности лазерная связь позволяет добиться роста скорости передачи данных в 10—100 раз, если сравнивать с применяемой сейчас. Лазерная связь может обеспечить высокоскоростную передачу данных с Марса, что очень важно для будущих колонистов. Лазерная связь относится к беспроводным оптическим системам связи и является одним из самых актуальных направлений. Лазерная связь относится к беспроводным оптическим системам связи и является одним из самых актуальных направлений. Сеанс связи с зондом состоялся, когда тот был на удалении 226 млн км.