Новости что такое кубит

Фактически, это и есть принципиальное отличие кубитов от обычных битов, которые могут быть только 1 или 0. «В области производства квантовых компьютеров всё идёт в соответствии с графиком, 20 кубитов нам обещает Росатом показать в конце этого года. — Мы модернизировали систему считывания: раньше могли считывать восемь ионов одновременно, теперь 10, что соответствует 20 кубитам. Кубитам также характерно неприсущее битам явление квантового запутывания: состояние одного такого элемента связано с состоянием другого независимо от расстояния между ними. Среднее время жизни кубита составляет порядка 14 мс, а среднее время одной квантовой операции — всего 50 наносекунд.

Как устроен и зачем нужен квантовый компьютер

Суперпозиция — не единственное свойство, которое отличает кубиты от классических битов. Другим важным свойством является запутанность. Когда кубиты запутаны, они становятся связанными так, что их состояния коррелируют, независимо от расстояния между ними. Это свойство позволяет квантовым компьютерам выполнять операции, которые были бы невозможны с классическими компьютерами. Для создания кубитов квантовые компьютеры используют различные технологии, включая сверхпроводящие схемы, ионные ловушки и фотонику. Одна из самых популярных технологий создания кубитов — сверхпроводящие схемы. Сверхпроводящие схемы состоят из крошечных витков сверхпроводящего провода, охлажденных почти до нуля. Схемы становятся сверхпроводящими при чрезвычайно низких температурах, что подразумевает, что они имеют нулевое электрическое сопротивление.

Это свойство позволяет электронам перемещаться по цепям без потери энергии. Для выполнения операций с кубитами квантовые компьютеры используют серию квантовых вентилей, похожих на логические вентили, используемые в классических вычислениях. Квантовые вентили управляют состояниями кубитов, позволяя квантовым компьютерам выполнять такие операции, как суперпозиция, запутывание и измерение. Поддержание когерентности кубитов является критической и трудной задачей при построении квантового компьютера. Когерентность — это свойство, которое позволяет кубитам сохранять свои свойства суперпозиции и запутанности с течением времени.

Задача, на которой он был продемонстрирован, в реальности бесполезна, а временные рамки обещаний практически значимого квантового вычислителя постоянно сдвигаются [5 ; 6; 7]. В этом, безусловно, есть доля истины. Но настолько ли далека перспектива распространения квантовых вычислителей, чтобы можно было обходить их вниманием? Цель данной статьи — сформировать у читателя понимание возможных сценариев развития квантовых компьютеров, их потенциального места среди других существующих технологий, а также текущего прогресса в борьбе с практическими ограничениями, препятствующими широкому распространению продуктов и сервисов на основе квантовых вычислений уже сегодня.

Парадигма квантовых вычислений Прежде всего определим, какое место квантовые вычислители могут в перспективе занять в устоявшейся индустрии информационных технологий. Как известно, классические компьютеры оперируют битами — единицами информации, которые позволяют различить два состояния системы: 0 и 1. В основе логики квантового компьютера лежит схожее понятие — кубит. Кубит — объём информации, описывающий квантовую систему с двумя состояниями. В отличие от бита, кубит может принимать промежуточные значения, сочетающие вклад состояний 1 и 0 в разных пропорциях. Если кубита два, то возможных вкладов в состояние становится четыре: 00, 01, 10, 11. И так далее в геометрической прогрессии. Если число кубитов приближается к нескольким сотням, то памяти всех классических компьютеров не хватит, чтобы сохранить полный объём информации о состоянии такого регистра. На практике это в совокупности с особенностями обработки и считывания квантовой информации приводит к тому, что отдельные задачи на квантовом вычислителе начинают решаться качественно быстрее, чем на классическом.

Например квантовый алгоритм Шора позволяет разложить число на простые множители с экспоненциальным ускорением [8], а алгоритм Гровера — осуществить поиск по неструктурированной базе данных с квадратичным ускорением [9]. Из первого следует потенциальное разрушение криптографической стойкости шифров с открытым ключом на основе RSA, а из второго — квадратичное ускорение решения любой NP-задачи и соответствующее снижение стойкости симметричных шифров. То есть для обеспечения того же уровня секретности понадобится вдвое более длинный ключ. Математически доказано, что квантовый компьютер способен эффективно моделировать классический [10]. То есть всё, на что способен классический компьютер, квантовый компьютер способен исполнить по крайней мере не хуже. Однако на практике квантовый компьютер сегодня — весьма сложная лабораторная установка, отдельные элементы которой зачастую требуют криогенного охлаждения. Главным ограничением квантового компьютера является ограничение по объёму обрабатываемых данных. В лучшем случае сегодня это несколько сотен кубитов, что никак нельзя сравнить с доступными классическим вычислителям гигабайтами оперативной памяти. Поэтому реальный сценарий использования квантового вычислителя — гибридный.

Вся инфраструктура остаётся классической, и только при необходимости произведения отдельных специфичных расчётов классическая программа удалённо подключается к квантовому вычислителю, передаёт ему данные и считывает результат. Единственная технология, которая остаётся за рамками такой картины — квантовые коммуникации. Квантовая криптография, которая как раз способна обеспечить концептуальную защиту от атаки квантовым вычислителем, требует создания новой инфраструктуры для передачи квантовой информации. Это может быть оптическое волокно или атмосферный лазерный канал. Не исключается использование на оптическом канале дронов и спутников. Также, помимо непосредственно программируемых квантовых компьютеров, возможно использование проблемно-специфичных квантовых устройств. С их помощью, например, на линиях квантовых коммуникаций может осуществляться коррекция ошибки без считывания квантового состояния. Данный тип устройств не предъявляет больших требований по числу кубитов или объёму исполняемой программы и теоретически может быть реализован на имеющейся сегодня технологической базе. Из всего перечисленного выше формируется образ перспективной информационной инфраструктуры.

Квантовые вычислители не повлияют существенным образом на облик имеющихся сегодня сервисов, оставив все конечные пользовательские интерфейсы привычно классическими. Может повыситься скорость обработки данных в отдельных задачах за счёт доступа пользовательских устройств к облачным квантово-вычислительным сервисам. Также появится квантовая информационная инфраструктура, в первую очередь для квантовой криптографии. Это будут стационарные, либо мобильные, но маловероятно, что карманные устройства для квантового распределения ключей. Вполне возможно, что более простые и компактные по сравнению с полноценными компьютерами квантовые вычислительные системы будут использоваться на конечных пользовательских узлах для обработки квантовой информации. Квантовые алгоритмы и возможности квантовых вычислителей Ступень развития, на которой сегодня находятся квантовые вычислители, получила название NISQ — Noisy Intermediate-Scale Quantum — квантовые устройства среднего масштаба без коррекции ошибок. Название отражает две главные проблемы, сдерживающие развитие квантовых компьютеров — сложность создания регистра большого объёма и большая подверженность влиянию внешних шумов. Две этих проблемы неразрывно связаны. То, что под влиянием шума квантовые состояния со временем теряют заложенную в них информацию, влияет на нашу способность контролировать одновременно большое число кубитов.

Экспериментальные реализации квантовых вычислителей только чуть более года назад перешагнули рубеж в 100 кубитов в регистре [11]. Теоретически, этого уже достаточно, для экспериментальной реализации некоторых алгоритмов криптоанализа. Атака полноценного AES-128 может быть выполнена при 384 доступных кубитах [13]. Однако глубина данного алгоритма такова, что к концу его исполнения полезная информация в вычислительном регистре будет почти полностью уничтожена шумами. Справиться с такими нежелательными эффектами призвана технология коррекции ошибок. Вероятность того, что несколько кубитов одновременно потеряют информацию о своём состоянии под действием шумов — ниже, чем для одного. Для коррекции ошибок вводится понятие логического кубита, состояние которого кодируется несколькими физическими кубитами. Если часть физических кубитов, кодирующих один логический, оказалась зашумлена, их состояния могут быть восстановлены с опорой на информацию, сохранённую в остальных кубитах. Таким образом, для повреждения состояния логического кубита необходимо, чтобы к моменту выполнения коррекции большая доля физических кубитов была значительно зашумлена.

Такой подход в теории позволяет бороться с шумами, но кратно увеличивает требования к объёму регистра квантовых вычислителей. Объём регистра, необходимого для выполнения атаки Гровреа на AES с применением коррекции ошибок составляет от нескольких тысяч до десятков тысяч кубитов. Объём регистра, необходимого для атаки шифра RSA алгоритмом Шора преодолевает порог в сто тысяч кубитов. Возможность реализации вычислителя с регистром такого объёма в ближайшие пять лет представляется крайне маловероятной. Однако не исключено, что первые попытки лабораторной реализации подобных алгоритмов или их элементов начнут появляться к концу десятилетия. Рост числа кубитов по годам Другим возможным подходом к борьбе с шумами является не коррекция, а подавление ошибок [14]. Наиболее распространёнными являются подходы с так называемой экстраполяцией к нулевому шуму и с применением в схеме дополнительных параметризованных гейтов, призванных статистически подавлять влияние специфических шумов. Преимуществом подхода является то, что он не требует увеличения числа физических кубитов в алгоритме. Метод экстраполяции к нулевому шуму является наиболее простым методом подавления ошибки, и он отлично подходит для применения в вариационных квантовых алгоритмах.

Производители применяют квантовые вычисления для улучшения своих цепочек поставок, повышения эффективности своих производственных процессов и разработки новых продуктов. Биотехнологические компании изучают способы ускорения открытия новых лекарств. Открытые эксперименты с квантовыми вычислениями Значит ли это, что скоро у вас будет квантовый компьютер? Некоторые ученые изучают возможность моделирования квантовых вычислений на настольном компьютере. Пока вы ждете свой квантовый компьютер, есть несколько возможностей поэкспериментировать с квантовыми устройствами и симуляторами.

Многие крупнейшие мировые технологические компании предлагают квантовые услуги. Эти квантовые сервисы в сочетании с настольными компьютерами и системами создают среду, в которой квантовая обработка используется наряду с настольными компьютерами для решения сложных задач. IBM предлагает среду IBM Q с доступом к нескольким реальным квантовым компьютерам и симуляциям, которые вы можете использовать через облако. Alibaba Cloud предлагает облачную платформу для квантовых вычислений, где вы можете запускать и тестировать пользовательские квантовые коды. Microsoft предлагает набор для квантовой разработки , который включает язык программирования Q , квантовые симуляторы и библиотеки разработки готового к использованию кода.

Rigetti имеет квантовую облачную платформу , которая в настоящее время находится в бета-версии. Будущее квантовых вычислений Мечта состоит в том, чтобы квантовые компьютеры дали нам возможность решать проблемы, которые ранее считались слишком ресурсоемкими и слишком сложными для решения. Мы надеемся, что эта технология поможет нам понять окружающую среду и найти лекарства от неизлечимых болезней. Транзисторные компьютеры слишком медленны для таких сложных вычислений и выполнения такого невероятного объема анализа данных. Квантовые вычисления справляются по крайней мере, теоретические с гигантскими объёмами данных и обрабатывают их за долю времени настольного компьютера.

Для обработки и анализа данных, на которые настольному компьютеру потребуется несколько лет, квантовому компьютеру нужно несколько дней. Квантовые вычисления всё ещё находятся в зачаточном состоянии, но они способны решать самые сложные мировые проблемы со скоростью света.

Но качество операций лучше на ионной платформе». До конца этого года должны успеть 50 сделать. Посмотрим, может быть, получится и больше», — добавил Юнусов. Квантовые компьютеры в будущем будут использоваться для решения задач, с которыми не могут справиться привычные нам электронные вычислительные машины. Это, например, моделирование природных процессов или очень сложные математические расчеты. Перспективным и активно развивающимся также является направление квантового машинного обучения.

Квантовый процессор – это ядро компьютера

  • Квантовые компьютеры: как они работают — и как изменят наш мир
  • Квантовые компьютеры. Почему их еще нет, хотя они уже есть?
  • Онлайн-курсы
  • Количество кубитов в квантовых компьютерах — это обман. Вот почему

Что такое кубит в квантовом компьютере человеческим языком

Если у Алисы есть кубит A, а у Боба есть кубит B оба кубита находятся в запутанности , и Боб улетит за миллиарды световых лет от Алисы, измерение её кубита покажет то же, что и измерение кубита Боба — любые изменения в кубите Алисы с применением квантового вентиля повлияют на состояние кубита Боба. Формирует ли это общение? Никто не знает наверняка, потому что невозможно найти точное вероятностное состояние кубита, так как измерение кубита вынуждает его перейти в одно из двух детерминированных состояний. Этот вопрос всё ещё горячо обсуждается. Почему за кубитами будущее? Кубиты экспоненциально быстрее битов в некоторых вычислительных задачах, таких как поиск по базам данных или разложении чисел на множители что, как мы выясним ниже, может взломать интернет-шифрование. Важно понимать, что кубиты могут содержать значительно больше информации, чем биты.

Один бит содержит такое же количество информации, что и кубит — оба они могут содержать одно значение. Однако четыре бита используются для хранения того же объёма информации, что два кубита. Восемь бит сохраняют информацию, которую можно сохранить в трёх кубитах, так как 3-кубитная система может хранить восемь состояний — 000, 001, 010, 011, 100, 101, 110 и 111. И так далее. График ниже демонстрирует вычислительную мощность кубитов. По оси x отображается количество кубитов, используемых для хранения определённого количества информации.

Значения по оси y голубой линии отображают количество битов, необходимых для хранения того же объёма информации, что и в количестве кубитов по оси x, или 2 в степени x. График построен с помощью Desmos. Представьте себе какие возможности предоставляют квантовые вычисления! Квантовые компьютеры также прекрасно подходят для разложения чисел на множители, что приводит нас к RSA шифрованию. Протокол безопасности, защищающий Medium и, наверняка, любой другой известный вам веб-сайт, известен как RSA шифрование. Он основан на том факте, что потребуется очень-очень много времени при существующих вычислительных ресурсах, чтобы разложить число m длиной больше 30 знаков на произведение двух чисел p и q, которые являются большими простыми числами.

Однако деление m на p или q в вычислительном отношении значительно проще, и, поскольку m, делённое на q возвращает p и наоборот, это обеспечивает систему быстрой проверки ключа. Квантовый алгоритм, известный как алгоритм Шора, показал экспоненциальное ускорение в разложении чисел, что однажды может взломать RSA шифрование. Но не стоит пока увлекаться шумихой. На данный момент наибольшее число, которое удалось разложить квантовому компьютеру — это 21 на 3 и 7.

Считается, что квантовый компьютер, манипулируя отдельными атомами, лучше справится с созданием новых материалов и новых лекарств. Он сможет взломать системы современного шифрования, но в то же время квантовая криптография защитит информацию на фундаментальном уровне.

Ждут появления полноценного квантового компьютера финансисты и климатологи. Первым он крайне необходим для моделирования рынков и финансовых операций, вторым - для составления более точных сценариев климата и прогнозирования погоды. Даже самый мощный суперкомпьютер, по сравнению с квантовым, больше напоминает примитивный калькулятор Но я назвал только то, что мы знаем уже сейчас. Вы удивитесь, но на самом деле мы даже не представляем, на что по большому счету способен квантовый компьютер, в какие сферы он может проникнуть. Так происходит с большинством прорывных технологий. Руслан Юнусов: Да, аналогичная ситуация была когда-то с обычными компьютерами.

Их авторы создавали устройства под вполне конкретные задачи. Они были уверены, что жителям Земли, чтобы решить свои проблемы, достаточно примерно тысячи таких машин. Однако новые задачи стали расти как грибы после дождя. Если бы в 50-е годы создателям компьютеров сказали, что через 70 лет основные мощности компьютерного времени будут потрачены на игры или на майнинг криптовалют, они посмеялись бы над подобной ересью. Не сомневаюсь, что такая же история повторится и с квантовыми компьютерами. Эта техника будет совершенствоваться, начнет проникать в самые разные сферы жизни, кардинально их меняя.

А когда это произойдет, когда квантовый компьютер станет достаточно мощным, те страны, у которых его не будет, окажутся неконкурентоспособными. А это уже вопрос не только технологического суверенитета, но и национальной безопасности. Поэтому ведущие государства активно включились в гонку, вкладывая в разработки миллиарды долларов. Что такое квантовый "рубильник" Итак, квантовый компьютер сулит революцию, какую когда-то совершил в нашей жизни традиционный. Можно на пальцах объяснить его суть? Руслан Юнусов: Чтобы было понятней, начну с классического компьютера.

Сегодня каждый школьник знает, что для кодирования информации применяется двоичная система с "0" и "1". Они реализуются в транзисторе, у которого есть два положения: "включен" и "выключен". В любом смартфоне таких "рубильников" несколько миллиардов. Принципиально важно, что в каждый момент времени каждый из миллиарда "рубильников" может быть только в одном положении. Это наименьшая единица информации - один бит. В квантовом компьютере все иначе.

Квантовый бит кубит может быть одновременно и в состояниях "0" и "1", и во всех их комбинациях. Кубит - это элементарная единица информации в квантовых вычислениях. Конечно, с точки зрения большинства людей, это звучит совершенно невероятно, но квантовая физика открывает такую возможность. Именно она позволяет квантовому компьютеру за счет параллельного выполнения сразу нескольких операций быстро решать задачи, которые не по силам мощному суперкомпьютеру. Самое главное, что квантовый выбирает из множества вариантов решения по-настоящему лучший, а не просто оптимальный. Основа традиционного компьютера - кремниевый транзистор, а на чем строится квантовый?

Руслан Юнусов: Здесь пока ситуация неопределенная.

В роли кубитов могут выступать атомы или электроны — цифровые данные записываются на их спине. Такие кубиты неустойчивы к воздействиям окружающей среды, способной нарушить их корректную работу, а процедура считывания и записи информации на них крайне сложна. В начале 2000-х годов ученые создали «искусственные атомы», которые ведут себя в соответствии с законами квантовой физики, но проще в использовании.

Одни из таких объектов — джозефсоновские контакты — состоят из двух сверхпроводников, разделенных тонким слоем диэлектрика.

В суперпозиции квантовые частицы представляют собой комбинацию всех возможных состояний, пока не произойдет их наблюдение и измерение. Запутанные кубиты образуют единую систему и влияют друг на друга. Измерив состояние одного кубита, возможно сделать вывод об остальных. С увеличением числа запутанных кубитов экспоненциально растет способность квантовых компьютеров обрабатывать информацию. Биты и кубиты Фото: Журнал Яндекс Практикума Базовым элементом, выполняющим логические операции в классическом компьютере, является вентиль. Для работы квантового компьютера используются квантовые вентили, собранные из кубитов. Они бывают однокубитные и двухкубитные. Также существуют универсальные наборы вентилей, с помощью которых можно выполнить любое квантовое вычисление Кроме того, квантовые компьютеры не могут работать со стандартным софтом вроде Windows.

Для них требуется своя операционная система и приложения. Некоторые технологические гиганты уже предлагают организациям опцию квантовых вычислений в облаке. Облачные квантовые вычисления обеспечивают прямой доступ к эмуляторам, симуляторам и квантовым процессорам. Квантовые вычисления в облаке Фото: Medium Поставщики также предоставляют платформы разработки и документацию для языков и инструментов вычислений. IBM уже представила программную платформу для квантовых вычислений с открытым исходным кодом под названием Qiskit. А Microsoft выпустила инструмент бесплатного разработчика вычислительной техники на языке Q и симулятор квантовых вычислений. Платформа Orquestra от Zapata предлагает набор вычислительных методов для квантовых компьютеров Для работы квантовых компьютеров требуются квантовые алгоритмы. Из наиболее известных квантовых алгоритмов можно выделить три: Шора разложения числа на простые множители Гровера решение задачи перебора, быстрый поиск в неупорядоченной базе данных Дойча-Йожи ответ на вопрос, постоянная или сбалансированная функция Квантовый компьютер работает на вероятностном принципе. Его результатом работы является распределение вероятностей возможных ответов, наиболее вероятный ответ обычно является лучшим решением.

Квантовые кубиты в физической реализации бывают нескольких типов: сверхпроводниковые, зарядовые, ионные ловушки, квантовые точки и другие. Настоящий уровень развития технологий позволяет создать большое количество кубитов, сложность возникает с устойчивостью такой системы.

Кудиты лучше кубитов? Российские учёные доказали превосходство отечественной технологии

Для выполнения операций с кубитами квантовые компьютеры используют серию квантовых вентилей, похожих на логические вентили, используемые в классических вычислениях. Квантовые вентили управляют состояниями кубитов, позволяя квантовым компьютерам выполнять такие операции, как суперпозиция, запутывание и измерение. Поддержание когерентности кубитов является критической и трудной задачей при построении квантового компьютера. Когерентность — это свойство, которое позволяет кубитам сохранять свои свойства суперпозиции и запутанности с течением времени.

Любые помехи, такие как шум окружающей среды или нежелательные взаимодействия с другими кубитами, могут привести к потере когерентности кубитов и сделать вычисления ненадежными. Чтобы преодолеть эту проблему, квантовые компьютеры используют коды исправления ошибок, которые могут обнаруживать и исправлять ошибки в вычислениях. Насколько публикация полезна?

Нажмите на звезду, чтобы оценить! Отправить оценку Средняя оценка 1. Количество оценок: 2 Оценок пока нет.

Поставьте оценку первым. Предыдущая запись.

Кубиты — это квантовые объекты, которые могут находиться в суперпозиции двух состояний, то есть кодировать одновременно и логическую единицу, и ноль. Это открывает новые возможности для обработки информации: компьютер из нескольких тысяч кубитов может производить вычисления со скоростью, недоступной современным суперкомпьютерам. В роли кубитов могут выступать атомы или электроны — цифровые данные записываются на их спине. Такие кубиты неустойчивы к воздействиям окружающей среды, способной нарушить их корректную работу, а процедура считывания и записи информации на них крайне сложна.

С одной стороны, сложность заключается в получении специальных наноразмерных перекрытий джозефсоновских переходов , туннелируя через которые, электронные пары в сверхпроводнике и создают квантовое состояние.

В массиве кубитов геометрические размеры таких переходов должны быть максимально идентичны для совместной работы системы в противном случае связать отдельные кубиты друг с другом будет проблематично. Еще более глубокая проблема кроется в несовершенстве нанесенных металлических пленок, которые на наномасштабе состоят из отдельных гранул, далеко не идеально прилегающих друг к другу, что служит еще одним источником шумов. С другой стороны, при увеличении количества кубитов на чипе пропорционально возрастают и ее размеры, а также сложность микроволновых линий, используемых для управления кубитами. Это ведет как к большей вероятности возникновения дефектов из-за несовершенства техпроцессов изготовления элементов сверхпроводящих схем, так и к более фундаментальной проблеме связывания массива кубитов между собой. В отличие от цепочки ионов, связь между которыми реализуется с помощью лазерных импульсов, связать произвольные сверхпроводящие кубиты не так-то просто.

Эта задача решается с помощью линий связи или резонаторов для пары соседних кубитов англ. Казалось бы, возможность оперировать сложным квантовым состоянием из множества связанных кубитов лежит в основе быстродействия квантового компьютера и используется в квантовых алгоритмах. А на практике получается, что такое состояние неустойчиво или вовсе недостижимо уже для пары десятков кубитов. Что же делать в таком случае? Gambetta, Jerry M.

А манипуляции с двумя связанными кубитами ученые уже научились проводить с очень и очень высокой точностью. Разумеется, квантовые алгоритмы, составленные из двухкубитных вентилей, получаются в разы длиннее своих многокубитных версий, однако фундаментальной проблемы в этом нет. Нужно просто иметь квантовые процессоры с достаточно длинным временем когерентности и достаточно быстрыми одно- и двухкубитными гейтами для выполнения сотен-тысяч элементарных квантовых операций за один вычислительный цикл. Пример разложения 3-кубитного гейта на последовательность 2-кубитных операций. Фраза «нужно просто иметь квантовые процессоры с нужными характеристиками» из конца прошлой главы звучит довольно неплохо и, в целом, это выполнимо.

Но есть нюанс. Это значит, что в среднем на сотню правильно выполненных операций будет приходиться одна ошибочная. В полномасштабном квантовом компьютере, выполняющем сложный квантовый алгоритм, такие ошибки будут быстро накапливаться, приводя к выдаче неправильных результатов вычислений. При этом существенно повысить точность двухкубитных квантовых гейтов в многокубитных квантовых процессорах пока не представляется возможным. К счастью, многие недостатки компьютерного «железа» можно зачастую решить программными методами.

Например, физические ошибки, возникающие в классических компьютерах или линиях передачи данных, детектируются и исправляются с помощью действующих в реальном времени алгоритмов коррекции ошибок, разработанных еще в середине 20 века. Похожие алгоритмы были предложены пару десятилетий назад и для квантовых систем. Например, уже упомянутый выше Алексей Китаев в 1998 году предложил так называемый «поверхностный код» англ. Общая идея такого подхода коррекции ошибок довольно проста — соседние физические кубиты объединяются в логические блоки, каждый из которых в дальнейшем используется квантовым алгоритмом в качестве «логического кубита». При этом, если каждый логический блок содержит достаточно большое количество физических кубитов, то, даже несмотря на периодически возникающие в них физические ошибки, уровень ошибок логического кубита можно сделать сколь угодно низким.

Сколько же таких логических, безошибочных кубитов нужно, чтобы запустить какой-нибудь полномасштабный квантовый алгоритм? Возьмем, для наглядности, все тот же нашумевший алгоритм Шора, обещающий взломать интернет. Текущие методы криптографической защиты данных используют ключи шифрования, состоящие из тысячи бит, что потребует несколько тысяч логических кубитов для его эффективной факторизации разложения на множители. Учитывая количество требуемых квантовых операций и желаемый уровень возникновения ошибок, каждый такой логический кубит должен состоять из примерно тысячи физических кубитов. Перемножая эти два числа, мы получаем оценку в миллион физических кубитов, необходимых квантовому компьютеру для выполнения алгоритма Шора.

Миссия выполнима? С учетом того, что самые мощные существующие квантовые процессоры оперируют десятками кубитов, желаемый миллион кубитов выглядит несколько заоблачно. Однако, если посмотреть на историю развития традиционной индустрии полупроводниковой электроники, то можно увидеть пример такого инженерного чуда, позволившего увеличить количество транзисторов на чипах с нескольких сотен в конце 1960-х годов до десятков миллионов в конце 1990-х. Технологический скачок, необходимый для такого масштабирования, по сложности и объему инвестиций можно сравнить разве что с выходом человека в космос или высадкой на Луну.

Это значит, что программист не узнает значение кубита до тех пор, пока его не измерит, а сам факт измерения тоже влияет на значение кубита.

Звучит странно, но это особенность квантовых частиц. Именно благодаря тому, что кубит находится во всех состояниях одновременно до тех пор, пока его не измерили, компьютер мгновенно перебирает все возможные варианты решения, потому что кубиты связаны между собой. Получается, что решение становится известно сразу, как только введены все данные. Суперпозиция и даёт ту параллельность в вычислениях, которая ускоряет работу алгоритмов в разы. Вся сложность в том, что результат работы квантового компьютера — это правильный ответ с какой-то долей вероятности.

И нужно строить алгоритмы таким образом, чтобы максимально приблизить вероятность правильного ответа к единице. Рабочая температура внутри таких компьютеров — минус 273 градуса по Цельсию Как делают кубиты и в чём сложность Максимально упрощённо: чтобы получить рабочий кубит, нужно взять один атом, максимально его зафиксировать, оградить от посторонних излучений и связать с другим атомом специальной квантовой связью. Чем больше таких кубитов связано между собой, тем менее стабильно они работают. Для достижения «квантового превосходства» над обычным компьютером нужно не менее 49 кубитов — а это очень неустойчивая система. Основная сложность — декогеренция.

Это когда много кубитов зависят друг от друга и на них может повлиять всё что угодно: космические лучи, радиация, колебания температуры и все остальные явления окружающего мира. Такой «фазовый шум» — катастрофа для квантового компьютера, потому что он уничтожает суперпозицию и заставляет кубиты принимать ограниченные значения. Квантовый компьютер превращается в обычный — и очень медленный. С декогеренцией можно бороться разными способами.

Почему от квантового компьютера зависит национальная безопасность и когда он появится в России

Во время демонстрации на этом компьютере был запущен алгоритм моделирования молекулы. Впечатляет, конечно. Особенно, когда вы показывали, что вычисления в обычном режиме, на современных суперкомпьютерах занимали бы чуть ли не столетия, а на квантовых результат достигается за часы или дни, — это, конечно, впечатляет», — оценил разработку Владимир Путин. Проект разработки квантового компьютера был запущен в 2019 году, над ним работали учёные из Российского квантового центра и физического института им.

В кристаллах дихалькогенидов из-за симметрии атомы располагаются в форме шестиугольника самые выгодные энергетические состояния для электронов находятся в определенных областях пространства — долинах — вокруг атомов. Более того, электроны способны в них некоторое время сохранять проекцию спина — собственного магнитного момента. Однако такие времена слишком малы для когерентности кубита. По этой причине исследователи заместили атомы теллура на атомы брома, «открыв» для электронов дополнительные уровни вблизи нижнего края запрещенной зоны. В этом случае возникало связанное состояние электронов и долин, и проекция спина на этих уровнях сохранялась в течение нескольких наносекунд, что достаточно для создания кубита. Для изучения столь тонких эффектов ученые использовали несколько высокоточных приборов. Сначала они получили электронную структуру примеси брома с помощью электронного парамагнитного резонанса — расщепления энергетических уровней во внешнем магнитном поле — и оценили по этим данным время когерентности спинового состояния.

Оно составило порядка 5 наносекунд при температурах ниже —258 градусов Цельсия 15 кельвинов. Затем применили сканирующий туннельный микроскоп — устройство, определяющее рельеф поверхности с точностью до атома. На иглу микроскопа подавалось напряжение, и электроны с поверхности туннелировали на иглу, создавая ток. По изменению значения тока физики получали пространственную локализацию электронов и их энергию. Эти измерения подтвердили, что состояния электронов брома локализуются вблизи долин, а их энергия меняется. Именно связь долин и примеси обеспечивала длительное время когерентности. Физики предполагают, что его можно увеличить, если взять однослойный кристалл дихалькогенида. Аналогичные экспериментальным данным исследователи получили с помощью компьютерного моделирования. Таким образом, ученые показали возможность использования реальных атомов в качестве кубитов и теоретически объяснили длительное время когерентности, построив электронную структуру материала. Пока это относительно пионерская работа, где показано принципиально, что у примесных атомов есть признаки долгоживущих локализованных электронных состояний — атом аля-кубит.

Посыл работы в том, что нужно дальше изучать возможность применения реальных атомов в твердотельной матрице для создания кубитов. Мы планируем улучшать методику, моя аспирантка Валерия Шеина, первый автор работы, пытается примесные атомы еще и переводить в возбужденное состояние. Для этого нам нужно в туннельный микроскоп, прямо под иглу, вводить источник высокочастотного излучения, который бы переводил кубит из основного состояния в возбужденное. И это следующий этап. Во многом его успех зависит от выбора материала и примеси. Духова , Института физики металлов им. Михеева Екатеринбург , Института физики ионных пучков и исследования материалов Германия и Университета Аалто Финляндия. Российские ученые повысили производительность квантовых процессоров с помощью кудитов Ученые НИТУ МИСиС и Российского квантового центра предложили подход к реализации квантовых алгоритмов с использованием дополнительных уровней квантовой системы, который позволил на порядок повысить итоговое качество выполнения квантовых алгоритмов. Российские ученые знают, как сделать квантовый процессор мощнее По словам ученых, основной способ повышения производительности квантовых процессоров — увеличение числа их кубитов — наименьшей единицы информации в квантовом компьютере. Однако ионы или атомы, которые часто выступают в роли кубитов, имеют больше двух уровней и могут работать не только как кубиты, но и как кудиты, которые являются расширенной версией кубита и могут находиться в трех кутриты , четырех кукварты , пяти куквинты и более состояниях.

Дополнительные состояния позволяют плотнее кодировать данные в физических носителях, что, в свою очередь, дает возможность реализовывать все более сложные и комплексные квантовые алгоритмы. Таким образом возрастает мощность квантового процессора , и операции могут производиться значительно быстрее, пояснили исследователи. По состоянию на апрель 2023 года, большая часть исследований, посвященных квантовым операциям, сосредоточена на кубитах — все операции, которые применяются к квантовой системе, представляются в виде одно- и двухкубитных квантовых вентилей, преобразующих входные состояния кубитов в выходные по определенному закону. Для работы с кудитами важно найти новые подходы с математической точки зрения. Ученые Университета МИСиС и Российского квантового центра рассмотрели один из способов использования куквинтов — 5-уровневых кудитов — и представили модель декомпозиции обобщенного вентиля Тоффоли.

Кроме вентильных матричных преобразований волновые функции кубитов можно складывать и вычитать, как можно складывать и вычитать обычные волны. В результате сложений волн вероятностей, как и на обычных волнах, возникает интерференция, которая позволяет влиять на состояние кубита, меняя вероятность получения в нём того или другого значения ноля или единицы. После всех вычислений и преобразований результирующая волновая функция вероятности при прочтении кубита превращается в ноль или единицу, и уже не отличается от бита. Применение квантовых вычислений Как видно из предыдущего объяснения, применять квантовый компьютер для обычных вычислений нет никакого смысла. А вот для определённого круга задач, где работа с вероятностями состояний вместо конкретных состояний на порядки повышает производительность, квантовый компьютер практически незаменим. Например, дешифрование на классическом компьютере занимает на порядки больше времени, чем само шифрование. Подчас дешифрование вообще невозможно в разумные сроки. Тогда используются квантовые алгоритмы, которые дают некий наиболее вероятный ключ дешифровки и открывают им дешифрованные данные. Ключ можно быстро проверить повторным шифрованием данных и сравнением результата, и если результат повторной шифровки не совпал с оригиналом, значит ключ оказался ошибочным, и квантовые алгоритмы запускаются заново. Как видите, никто не собирается с помощью квантовых компьютеров управлять ядерными реакторами, это было бы самоубийством. Но моделировать ядерные реакции в научных целях вполне можно.

Физически это контакты транзисторов. Так называемом кубите. Это значит, что он может быть немножечко 0, но в основном единицей. В основном 1 и немножечко 0. Это дает нам большие возможности, мы можем закодировать больше информации в меньшем объеме». В качестве примера можно привести человека. В случае обычного компьютера он может находиться только в одной из двух точек, допустим, это Северный или Южный полюс. В квантовом же мире с некоторой вероятностью человек может находиться в Москве, Владивостоке, на Шри-Ланке или в Дубае. Такими свойствами, расширяющими возможности, могут обладать ионы, фотоны, атомы цезия, лития или рубидия. Алексей Фёдоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра: «Ловим атом, каждый в специальную ловушку. Выстраиваем эти атомы в определённом порядке это может быть такая двумерная решетка И при помощи возбуждения заставляем их взаимодействовать.

Эти несовершенные кубиты

  • Как устроен и зачем нужен квантовый компьютер
  • Квантовые компьютеры | Наука и жизнь
  • Поделись позитивом в своих соцсетях
  • Что такое кубит?

Квантовые компьютеры: как они работают — и как изменят наш мир

Что такое кубит, для чего он нужен и как физически может быть реализован? Рассказываем, как появился первый квантовый компьютер, сколько кубитов в современных процессорах и какие задачи они могут решать. Нестабильность и ошибки — квантовые состояния кубитов очень чувствительны к любым воздействиям извне, что может приводить к потере или изменению информации.

Квантовые вычисления – следующий большой скачок для компьютеров

Фундаментальные принципы кубитов, простое объяснение того, что такое суперпозиция. Возможные значения кубита можно представить как поверхность сферы с единичным радиусом — специалисты называют ее сферой Блоха. Чаще всего в заголовки новостей попадает так называемый «сверхпроводящий» кубит. Но пока до реального взлома всё же невероятно далеко — чтобы взломать код биткоина, нужны десятки миллионов кубитов. Что такое кубит, для чего он нужен и как физически может быть реализован?

Поделись позитивом в своих соцсетях

  • Технологии квантовых компьютеров в 2022: достижения, ограничения
  • Сверхмощный квантовый компьютер
  • Как работают квантовые процессоры. Объяснили простыми словами
  • Как работает квантовый компьютер: простыми словами о будущем - Hitecher
  • Публикации
  • Сердце квантовых компьютеров - как создаются кубиты?

Что такое квантовый компьютер и как он работает

Среднее время жизни кубита составляет порядка 14 мс, а среднее время одной квантовой операции — всего 50 наносекунд. С другой, кубиты откликаются не только на управляющее поле, но и на слабые электрические поля, присутствующие вокруг и создающие шумы. Именно необычное свойство кубита, его способность одновременно становиться и нулём, и единицей, даёт квантовому компьютеру потрясающую вычислительную мощность. Кубит, минимальная единица передаваемой или хранимой квантовой информации, аналогичная биту в классической информации.

Похожие новости:

Оцените статью
Добавить комментарий