Наукастинг в реальной жизни — по крайней мере, в головах менеджеров — выглядит либо как уведомление человеку в виде текста или пуш-нотификации, либо как карта осадков, которая движется со временем.
Новая карта осадков в «Яндекс погоде» — с прогнозом на сутки вперед
Опасные явления — шквалистый ветер, сильные ливневые осадки, град — живут недолго, поэтому о них часто предупреждают лишь за несколько часов до возникновения. Наукастинг точен на 100%. Завтра, 28 декабря, погоду в Приморье определяет гребень антициклона, преимущественно без осадков. Грозовые дожди в Новгородской области. За сегодняшний день в Москве выпадет около 30% месячной нормы осадков.
Больше всего осадков в городе 2024
Кроме того, кучево-дождевая облачность может развиваться весьма стремительно , что делает наблюдения по спутниковым снимкам особенно ценными. Данные радаров Карты радиолокационной отражаемости делают картину ещё более полной, поскольку с их помощью есть возможность оценить некоторые особенности внутренней структуры облачности, скрытые от любых визуальных наблюдений, а именно — интенсивность осадков, связанных с конкретной облачной структурой, и их фазовое состояние. Построение аэрологических диаграмм Для этого необходимо кликнуть ЛК мыши по интересующему Вас региону, после чего аэрологическая диаграмма сгенерируется автоматически. Имеется возможность генерировать аэрологические диаграммы на предстоящие 384 часа их построение основано на данных прогностической модели , а так же просматривать небольшой архив диаграмм за прошедшие 7 суток.
Так выглядит карта ветров в Яндекс. Погоде Так выглядит карта ветров в Яндекс. Погоде В 2018 году мы прошли ещё один важный этап в развитии гиперлокального прогноза: добавили в алгоритм расчёта данные со спутниковых снимков, эта технология получила название спутникового наукастинга. Снимки со спутников позволили повысить точность прогноза в зонах со слабым радарным покрытием и снизили зависимость прогноза от радиолокаторов, которые иногда выходят из строя.
Самым сложным оказалось вывести данные с радаров и спутников на одной карте, ведь нужно было согласовать их по времени и правильно склеить. С этой задачей помогла нейросеть — благодаря хитрой склейке на карте незаметны границы зон действия радаров и нет резких изменений областей осадков на стыках радаров и спутника. Они позволяют строить точные прогнозы, но у каждого из них есть недостаток: станций не так много, у радаров есть погрешности из-за рельефа местности, зданий и птиц, а спутники висят над экватором, поэтому высокие широты, где и находится Россия, на снимках не очень хорошо видны. Выход есть: можно попросить людей рассказывать нам о погоде. Возможно, вы видели в Яндекс. Погоде вопрос типа «На улице дождь? С 2020 года мы используем данные пользователей для построения прогнозов, наравне с данными от метеостанций и локаторов.
Примеров можно привести множество, суть ясна. Точность кратко- и среднесрочных прогнозов выше, чем долгосрочных. Да-да, именно такую! Здесь сейчас полетят яйца и помидоры в сторону гидрометеорологической службы. Начнутся возгласы: всё враньё, постоянно беру зонт, когда по прогнозу дождь, а его нет, а когда не беру, на улице град по макушке бьёт.
И где вообще нынче снег уже, синоптики-недоучки?
Исады — снижение на 2 см. На притоках Костромы уровень воды снижается на 3-17 см. В бассейне Унжи на р.
Унжа у г. Кологрив уровень снизился на 39 см; у г. Макарьев — снижение на 21 см. На притоках Унжи рр.
Нея, Вига и Межа продолжается снижение уровня на спаде половодья на 13-60 см. На Ветлуге у с. Кажирово продолжился рост уровня на 3 см , максимальная отметка на 1 см выше многолетней нормы. Ниже по течению р.
Ветлуга у с. Михайловицы уровень снизился еще на 2 см. Продолжается медленный рост уровня воды на 2 см на р. Ветлуга у г.
Шарья, а на притоках рр. Вохма и Нея — снижение уровня на 7-9 см. Молога у пгт Максатиха д. Фабрика — глубина затопления от 15 см —8 см за сутки ; р.
Макарьев — глубина затопления от 62 см —21 см за сутки ; р. Михайловицы — глубина затопления от 56 см -2 см за сутки ; р. Вохма у с. Тихон — глубина затопления от 2 см -8 см за сутки ; р.
Вохма у д. Гробовщино — глубина затопления от 83 см -7 см за сутки ; р. Нея у пгт Поназырево — глубина затопления от 155 см —9 см за сутки. В ближайшие сутки продолжится снижение уровня на р.
В ближайшие 1-3 суток пик половодья пройдет на р. Кажирово и г.
Синоптики: на Москву за сутки выпадет 30% месячной нормы осадков
Как мы отказались от нейросетей, а затем вернули их в прогноз осадков Яндекс.Погоды / Хабр | Наукастинг (nowcasting) и сверхкраткосрочные прогнозы погоды очень важны. |
Арбат, Москва | 022. Прогноз осадков на два часа — Алексей Преображенский. |
Композитная карта | В задаче наукастинга осадков необходимо минимизировать отклонение спрогнозированных мм от истинного. |
Наукастинг осадков на 2 часа | прогноз осадков на ближайшие 2 часа. На сайте сервиса можно также найти «погодные новости» из разных регионов России и мира, метеорологические карты и графики, статьи на тему погоды и детский раздел с познавательно-развлекательной информацией. |
Композитная карта
Search code, repositories, users, issues, pull requests... | Прогноз осадков на 2 часа (наукастинг). На портале "Метеовести" центра погоды "Фобос" сообщается, что на Москву надвигается новая холодная и дождливая волна. |
Что сейчас на улице | Региональные краткосрочные прогнозы. Прогноз осадков на 2 часа (наукастинг). |
Как узнать, будет ли дождь, гроза? Смотрим карту осадков!
Наукастинг осадков на 2 часа | 022. Прогноз осадков на два часа — Алексей Преображенский. |
Глава Гидрометцентра: Никогда прогноз погоды не будет точным на 100% | Главная» Новости» Больше всего осадков в городе 2024. |
Яндекс научился предсказывать осадки на ближайшие 2 часа
И снова про наукастинг Когда мы говорим о прогнозе погоды, то чаще всего подразумеваем температуру и осадки, например, на завтра или ближайшие выходные. В этом случае хватает традиционных погодных трендов. Но если вы идёте обедать на улицу или на прогулку с ребёнком и при этом не хотите попасть под дождь, то важно знать точный момент начала дождя в течение ближайшего получаса. В таких ситуациях приходит на помощь наша карта осадков aka nowcasting. Рисунок 1. Карта осадков Яндекс. Погоды Nowcasting — это сверхкраткосрочный прогноз погоды до 2—6 часов с шагом в 5—15 минут, предсказывающий поведение погодных явлений с коротким жизненным циклом. Такой прогноз в той или иной степени сводится к задаче экстраполяции наблюдаемых метеорологических явлений, так как настоящие тяжёлые физические модели для него менее приспособлены и не могут оперативно учитывать быстро меняющие условия. Раз мы говорим о карте осадков, нам интересен источник данных об областях скопления влаги в воздухе, обладающий относительно высокой частотой обновления. Лучше всего для этого подходят метеорологические радары, предоставляющие такую информацию напрямую в виде изображений, и геостационарные спутники, снимки с которых надо предварительно обработать. Как решать Если исходить из того, что наукастинг сводится к задаче экстраполяции рисунок 2 , то формальное определение будет выглядеть так: где — количество кадров, на основе которых делается предсказание, — количество предсказываемых кадров.
При этом можно интерпретировать кадр как обычную картинку и свести задачу к работе с видеоизображением. Рисунок 2. Пример изображений с метеорологического радара. Вверху: пример входных кадров для модели. Внизу: ожидаемые кадры во время предсказания.
Здесь наука умеет довольно многое. Мы взяли за основу thin plate spline transform — преобразование картинки, которое представляет ее в виде тонкой резиновой пластины и растягивает некоторые места. Мы параметризуем это преобразование всего несколькими опорными векторами, а все остальные вектора движения внутри картинки восстанавливаем сплайновой интерполяцией. Такая технология используется, например, в восстановлении движения по последнему кадру из видео. Известная научная работа. Вооружившись полученными знаниями, мы начали пытаться строить прогноз. Первое решение, которое пришло в голову, — просто обучить несколько нейросетей так, чтобы первая нейросеть предсказывала ситуацию на радаре через 10 минут, вторая — через 20 минут, третья — через 30. Требование было следующим: предсказывать радарные данные где-то на два часа вперед. Предсказания получались вот такие. Примерно тогда же, когда мы обучили 12 нейросетей, у нас появилась возможность визуализировать данные на карте. Посмотрев на скачущие облака, менеджеры сказали: это мы выпускать точно не будем. Один из них сказал: конечно, я понимаю, что это максимизирует вероятность чего-то там, но пользователю такое не объяснить — в жизни облака так не скачут. Во время следующей итерации мы решили считать только векторное поле и умножать опорные вектора на 2 и 3, чтобы получить перенос не на 10, а на 20 минут и 30 минут соответственно. На ближних горизонтах результаты выглядели довольно прилично, но чем дальше, тем чаще с краю появлялись артефакты. Оказалось, что в векторном поле слишком большие вектора разрывают thin plate spline, и у нас появляется второе зеркальное отражение нашей картинки. Потом отражения сливаются. На ближних горизонтах артефакт не был заметен, но на дальних проявлялся очень сильно. Из ниоткуда возникало облако. Третьим решением стало последовательное применение одного и того же преобразования thin plate spline к одной картинке. С одной стороны, оно способствовало накоплению ошибок. Это было первое реально работающее решение, которое мы показывали при внутреннем бета-тесте. Нейросеть получала на вход шесть радарных снимков за последний час, несколькими свертками приводила их к тензору из 16 векторов 4 x 4. Cплайновое преобразование восстанавливалось по векторам и последовательно применялось к картинке для получения каждого следующего горизонта прогноза. Решение довольно хорошо себя показало, но оставался единственный вопрос: зачем нужна нейросеть? Если красные свертки — единственная часть, которую мы обучаем, почему бы нам не вычислить векторное поле самостоятельно, алгоритмически? Так что четвертое решение, которое заметно улучшило результат, использовало явную минимизацию loss-функции. Мы искали векторное поле, которое бы одинаково хорошо приближало переход на 10 минут в последний час. От —60 минут до —50, потом до —40 и т. Мы применяли это векторное поле к t0, чтобы получить прогноз на 10 минут дальше. Алгоритмически гораздо лучше находить векторное поле с помощью минимизации. Оно быстрее работает, не требует обучения. Самое интересное — оно не требует всех данных. Можно пропустить какие-то данные — а радары довольно часто запаздывают. Мы долго думали, что же оставить — нейронные сети или алгоритмические вычисления векторного поля.
Самым жарким днем станет воскресенье. Ночью 28 апреля ожидается плюс 10-15, преимущественно без осадков. Днем плюс 22-27, на севере местами кратковременные дожди, грозы. Ощутимо похолодает 29 апреля: ночью уже плюс 5-10, днем — не выше 12-17 градусов, в эти сутки кое-где небольшие дожди, на юге — умеренные.
Это 12 кадров плюс ещё несколько про запас на случай перебоя в поставке данных с радара. Чаще всего решение такой задачи сводится либо к применению алгоритмов optical flow 1, 2, 3 , либо к нейросетевым методам 1, 2, 3, 4, 5, 6. Долгое время в продакшене у нас работал алгоритм на основе optical flow, который мы смогли натюнить таким образом, что он побил по метрикам нашу предыдущую нейросетевую архитектуру. Далее расскажем о том, как мы наконец обошли optical flow и сделали более качественный прогноз с использованием нейросетей. Авторы добавили вход для пространственной памяти обозначение в статье и расширили output gate, чтобы научиться её учитывать рисунок 3. Утверждается, что это помогает лучше запоминать пространственные изменения в последовательности кадров видеоряда. Рисунок 3. Только для изображений из будущего, которые мы пока не знаем. В качестве функции потерь использовали ставшую классической сумму кросс-энтропии и dice: где — пример из обучающей выборки, а — предсказанное значение.
ГИДРОМЕТЦЕНТР РОССИИ: О ПОГОДЕ - ИЗ ПЕРВЫХ РУК
Актуальные новости о погоде и окружающей среде. Радарный наукастинг осадков Анимированная карта явлений погоды за последние 3 часа по данным радарных наблюдений (подготовлено Центральной аэрологической обсерваторией). Метеорологическая карта прогноза осадков в Европе.
Яндекс научился предсказывать осадки на ближайшие 2 часа
Прогноз осадков на 2 часа (наукастинг). Прогноз погоды и погодные новости от ФОБОС. В Москве с 17 октября среднесуточная температура воздуха станет устойчиво отрицательной, что характерно для метеорологической зимы. На карте метеорологического радара показывается место выпадения осадков, тип осадков (дождь, снег и изморозь), а также последние перемещения фронта, чтобы вы могли спланировать свой день. Актуальные новости о погоде и окружающей среде. наукастинг, который позволяет выпускать прогноз об опасных явлениях погоды на ближайшие несколько часов.
Онлайн-словарь отраслевых терминов
Чаще всего говорят о наукастинге развития конвективных (кучево-дождевых) облаков и связанных с ними опасных метеорологических явлений (ОЯ) — ливневых осадков, гроз, града, шквалов, смерчей. Наукастинг (nowcasting) и сверхкраткосрочные прогнозы погоды очень важны. Прогноз осадков на 2 часа (наукастинг). последние новости сегодня в Москве. Точнее, ещё точнее: прогноз погоды на 2 часа, наукастинг и карты погоды.
В китайской провинции Гуандун после нескольких дней осадков реки вышли из берегов
Nowcasting Описание задачи В альтернативном Древнем Риме только у императора и его приближённых есть доступ к современным технологиям. Благодаря этому люди считают Сикстиниана Апреля посланником богов, который управляет погодой или как минимум видит будущее. Ежегодно в городе проводится масштабный пленэр в честь Непобедимого Солнца — сотни горожан собираются на стенах Колизея, чтобы запечатлеть закат с помощью холста и красок. Каждое утро в день события Сикстиниан предсказывает, будет ли дождь на закате или нет.
В этот раз успех предсказания под угрозой. Новенький iCeasar, на котором установлена модель, прогнозирующая осадки, завис. На внешнем SSD остался только датасет одного метеорологического радиолокатора, который регистрирует наличие влаги в атмосфере на большой площади.
Чаще всего решение такой задачи сводится либо к применению алгоритмов optical flow 1, 2, 3 , либо к нейросетевым методам 1, 2, 3, 4, 5, 6. Долгое время в продакшене у нас работал алгоритм на основе optical flow, который мы смогли натюнить таким образом, что он побил по метрикам нашу предыдущую нейросетевую архитектуру. Далее расскажем о том, как мы наконец обошли optical flow и сделали более качественный прогноз с использованием нейросетей. Авторы добавили вход для пространственной памяти обозначение в статье и расширили output gate, чтобы научиться её учитывать рисунок 3. Утверждается, что это помогает лучше запоминать пространственные изменения в последовательности кадров видеоряда.
Рисунок 3. Только для изображений из будущего, которые мы пока не знаем. В качестве функции потерь использовали ставшую классической сумму кросс-энтропии и dice: где — пример из обучающей выборки, а — предсказанное значение. Результаты При сравнении новой модели с предыдущей мы смотрели как на стандартные метрики для задач сегментации и классификации F1, IoU , так и специально построили метрики, которые отражают пользовательское ощущение прогноза например, доля идеальных прогнозов.
Вверху: пример входных кадров для модели. Внизу: ожидаемые кадры во время предсказания. Здесь , а Мы предсказываем на два часа вперёд с шагом 10 минут. Это 12 кадров плюс ещё несколько про запас на случай перебоя в поставке данных с радара.
Чаще всего решение такой задачи сводится либо к применению алгоритмов optical flow 1 , 2 , 3 , либо к нейросетевым методам 1 , 2 , 3 , 4 , 5 , 6. Долгое время в продакшене у нас работал алгоритм на основе optical flow, который мы смогли натюнить таким образом, что он побил по метрикам нашу предыдущую нейросетевую архитектуру. Далее расскажем о том, как мы наконец обошли optical flow и сделали более качественный прогноз с использованием нейросетей. Авторы добавили вход для пространственной памяти обозначение в статье и расширили output gate, чтобы научиться её учитывать рисунок 3. Утверждается, что это помогает лучше запоминать пространственные изменения в последовательности кадров видеоряда.
Невозможно спасти имущество, но сохранить человеческую жизнь — да, возможно Средняя заблаговременность прогнозов торнадо в США составляет 19 минут.
Это большой успех, потому что в начале 2000-х годов она составляла шесть минут. Невозможно спасти имущество, но сохранить человеческую жизнь — да, возможно. В атмосфере такие быстро развивающиеся процессы в ряде районов существуют и повторяются часто. К большому счастью, у нас не торнадоопасный регион. Но все-таки смерчи бывают. А шквалы?
Предупреждение об этом позволяет сохранить жизни. В Пекине некоторые расчеты ведутся, в Нью-Йорке. Здесь у нас будет не менее сильная, просто одна из пионерских, работ. Нужно обязательно отметить, что вся эта работа — и по развитию современной наблюдательной сети, и по созданию системы раннего предупреждения, — в изложении кажется стройной легкой, логичной. Мне бы не хотелось, чтобы создавалось такое ощущение. Предстоит очень напряженная работа с появлением вопросов, заранее неочевидных.
Например, на этапе создания градиентных наблюдений могут возникнуть юридические проблемы. Разработка модели высокого разрешения требует наличия очень детального описания городской топографии в цифровом виде и многое другое. Понятно, что при выполнении пионерских работ могут возникать неожиданные преграды. Но эта многоаспектная работа настолько социально значима и настолько профессионально интересна, что она должна быть завершена за два года. Можете рассказать о ней? Каковы распределения температур в глубине?
На одном и том же поле почвы имеют разный состав. Важно понять, насколько эффективны приборы, насколько репрезентативны данные для описания всего поля. Еще целый ряд аспектов возникает: существует спутниковая информация, которая дает полное покрытие по всему Земному шару, а мы используем только станции. Но спутниковая информация имеет погрешности, ошибки. Стоит задача калибровки спутниковой информации по этим натурным данным, чтобы, откалибровав, распространить ее на значительную территорию. Но эта калибровка не может быть выполнена раз и навсегда.
При следующем пролете спутника над этой территорией ее нужно произвести снова. Здесь у нас будет не менее сильная, просто одна из пионерских, работ Кстати говоря, для нашей службы очень важны всевозможные схемы интерпретации спутниковой информации. Можно получить максимально полное представление о том, что происходит на полях: засушлива почва или нет, условия вегетации соответствую норме или не совсем, находится ли растение в подавленном состоянии, ну и т. Эти аспекты очень важны методически и в последующем для оценки урожая. Не везде ведь сейчас хватает метеостанций. Решить эту задачу, например, в рамках Российского метеорологического общества, которое планируется создать?
Для того чтобы вести наблюдения, человеку нужно получить лицензию. И все. На самом деле, я-то позитивно отношусь к людям, волонтерам, которые готовы вести наблюдения и передавать эту информацию. Но объективно для достоверного описания состояния атмосферы есть ряд сложностей. Есть "большие данные", big data.
Новая карта осадков в «Яндекс погоде» — с прогнозом на сутки вперед
есть сайт метеовести это погодного центра фобос, ну и разумеется данные гидрометцентров РФ и РТ, у рф центра есть крутой раздел наукастинг 2 часа, там можно за дождями, снегом следить. Опасные явления BUFR Отражаемость 1км BUFR Прогноз ICON-EU 1ч сумма осадков Высота ВГО BUFR Дифференциальная отражаемость 1км BUFR Дифференциальная отражаемость 2км BUFR Доплер скорость 1км BUFR Доплер скорость 2км BUFR Доплер скорость 3км BUFR. прогноз осадков на ближайшие 2 часа. На сайте сервиса можно также найти «погодные новости» из разных регионов России и мира, метеорологические карты и графики, статьи на тему погоды и детский раздел с познавательно-развлекательной информацией.