Эволюция знает, как порадовать любителей фракталов и симметрии – 88 фотографий Образец, Флора, Композиция, Закономерности В Природе, Настенные Росписи, Макросъемки, Листья. Посмотрите больше идей на темы «фракталы, природа, закономерности в природе».
Фракталы – Красота Повтора
Можно ли прибыльно торговать используя фрактальность? | Посмотрите больше идей на темы «фракталы, природа, эрнст геккель». |
Фракталы в природе презентация - 97 фото | Смотрите 27 онлайн по теме фрактал в природе. |
Феномен жизни во фрактальной Вселенной / Наука / Независимая газета | Автор пина:Katrine. Находите и прикалывайте свои пины в Pinterest! |
Что такое фрактал?: Идеи и вдохновение в журнале Ярмарки Мастеров | О природе ков Виталий7 (Высоцкий В С.). |
Фракталы в природе. Мир вокруг нас. Ч.2
Анимация фракталов, изменение фракталов в пространстве, медитация, фрактальная графика. фракталам. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Роль её печени играют камни и песок, через который фильтруются макро загрязнения, и круговорот воды в природе, который отделяет молекулы воды от микро мусора.
Порядок в хаосе
- Войти на сайт
- Впервые в природе обнаружена микроскопическая фрактальная структура
- Самое популярное
- Случайность как художник: учёные обнаружили первую фрактальную молекулу
Молния фрактал
Я солидарен, далее, с лауреатом Нобелевской премии по физике за 1977 год Филипом Андерсоном, утверждающим, что «на каждом уровне сложности появляются совершенно новые свойства». При этом на разных уровнях организации материи, возникающих один за другим в ходе ее материи самоорганизации, начинают действовать все новые законы — физические, химические, биологические, социальные. Эволюция под давлением взаимодействий протекает тем успешнее, чем то позволяют обстоятельства. Это касается и феномена жизни. Как писал Роберт Чемберс в своей «Естественной истории мироздания» 1844 , жизнь «появлялась всюду и постоянно, когда только возникали благоприятные для того условия». Скажем, из всех планет Солнечной системы жизнь в ее развитых формах возникла только на Земле. На других планетах давление взаимодействий оказалось не столь результативным. Отбор отбору рознь Главным конкурентом автогенетической теории эволюции сегодня продолжает оставаться теория естественного отбора. Отбор в ней — только один из трех компонентов естественного отбора, включающего в себя: 1 возникновение множества наследуемых малых случайных направленных «во все стороны» мутаций; 2 выживание наиболее адаптивных из этих мутаций в результате конкуренции особей и их взаимодействия со средой собственно отбор ; 3 накопление малых мутаций, выживающих на протяжении ряда поколений, в адаптивные признаки. Второй компонент, который часто некорректно отождествляют со всем естественным отбором, вполне реален, тогда как первый и третий реальности не отражают.
Если бы Господь здесь это метафора положился только на естественный отбор, то никакой эволюции не происходило бы. Первый аргумент. Темпы органической эволюции превосходят темпы эволюции неорганической среды, так что сама по себе адаптация к среде не могла бы двигать эволюцию органического мира. Второй аргумент. Появляющиеся в ходе эволюции все более сложные формы зачастую не превосходят по адаптированности старые, скажем, бактерии или лишайники, проявляющие чудеса выживаемости в самых невероятных условиях. Третий аргумент. В ходе эволюционных изменений данный органический вид становится другим видом, репродуктивно обособленным от старого, который после того зачастую гибнет. Объяснить это адаптацией к среде старого вида невозможно. Четвертый аргумент.
Позиции теории естественного отбора подрывает и возникшая в последние десятилетия эволюционная биология развития evo-devo. Получаемые здесь результаты позволяют все увереннее утверждать, что органическая эволюция осуществляется посредством макромутаций, для появления которых оказывается достаточно изменений в нескольких и даже одном-двух генах. В научной литературе обсуждаются и другие аргументы против теории естественного отбора. Я знаю, что ничего не знаю Эти слова, обычно приписываемые Сократу, в полной мере могут быть отнесены к нашим представлениям о Вселенной. После открытия космического расширения стало понятно, что наблюдаемый мир ограничен для нас горизонтом видимости радиусом около 13,8 млрд световых лет. Так как никакой сигнал не может распространяться быстрее света, а расширение началось около 13,8 млрд лет назад, то события, происходящие вне этой сферы, в принципе не могут нами наблюдаться. Весь не ограниченный горизонтом видимости материальный мир называют Вселенной, сферический же ее участок, находящийся в пределах горизонта видимости, то есть наблюдаемый нами мир, — Метагалактикой. Более строго нашей Метагалактикой было бы называть относительно компактную космическую макроструктуру, включающую в себя наблюдаемый нами мир и отделенную от других метагалактик во Вселенной расстояниями, многократно превышающими ее собственные размеры. Ниоткуда не следует, что размеры нашей Метагалактики совпадают с размерами наблюдаемого мира.
Радиус горизонта видимости определяется не законами формирования компактных космических макроструктур, а временем, прошедшим после начала наблюдаемого Большого взрыва. Размеры нашей Метагалактики могут существенно превышать размеры наблюдаемого мира. Из сказанного следует, что у космологии, изучающей Вселенную в целом, начисто отсутствует эмпирическая база. Редчайший или даже единственный случай в естественных науках. Все наши утверждения о Вселенной носят гипотетический характер.
Фрактал — это некая фигура со свойством самоподобия, то есть, сколько бы мы не приближались к такому предмету, мы будем видеть ту же картину, что была изначально. Классические примеры фракталов — это папоротник, капуста брокколи, капуста романеско, горные пейзажи. В природе таких явлений достаточно много. Пока математики всерьез не взялись за такие объекты, не было ясно, как можно с ними взаимодействовать. Например, стоит задача: нарисовать кровеносные сосуды в легких. Это практически невозможно сделать без применения фрактальной геометрии. Мы попросили Давида Каца, аспиранта Института математики и механики К П ФУ, выступить для нас проводником в этот странный мир бесконечного повторения. Брокколи — конечно, полезный, замечательный продукт, но математики обычно с капустой дело не имеют. Самый классический объект: «Множество Кантора» или «Канторова пыль». Мы берем отрезок, делим его на три части и среднюю часть выкидываем. Потом повторяем и повторяем эту процедуру с каждым из оставшихся отрезков. В чем странность этого объекта? Несмотря на то, что мы постоянно что-то выкидываем, у нас остается множество точек, весьма сложно устроенных. Есть еще один более замысловатый пример: «Салфетка Серпинского». Берем равносторонний треугольник, в серединах его сторон отмечаем точки, соединяем. Получаем равносторонний треугольник, который вырезаем. У нас остается три равносторонних треугольника. Дальше, как можно уже понять, мы то же самое делаем с каждым из треугольников до бесконечности. В чем здесь странные свойства?
Прошлое "не предсказывается"? Бред какой-то! Ведь что-то уже произошло. Все известно... Но давайте подумаем. Если бы с реконструкцией прошлого все было так просто, как тогда могло случиться, что для одних Николай II по-прежнему кровавый, а для других святой? И кто все-таки Сталин: гений или злодей? Отвлечемся пока от проблемы, насколько вольны они были принимать те или иные решения, насколько эти решения предопределялись обстоятельствами и каковы могли быть последствия альтернативных решений. Рассмотрим исторический процесс как динамику некоторой гипотетической хаотической системы. Тогда при попытке реконструкции прошлого мы столкнемся с быстро увеличивающимся числом вариантов траекторий , отвечающих нынешнему состоянию системы. Только один из них соответствует реальному течению событий. Если выбрать не его, а какой-то другой, то получится уже искаженная "версия" истории. На основании чего выбирается правильная траектория "версия"? Информация, на которую мы можем опереться, - совокупность имеющихся конкретных фактов. Траектории, несовместимые с ними, отбрасываются. В результате при наличии достаточного количества надежных фактов останется одна траектория, определяющая единственную версию истории. Однако даже для недалекого прошлого траекторий может оказаться значительно больше, чем достоверных сведений, - тогда однозначная трактовка исторического процесса уже не может быть произведена. И все это при добросовестном и уважительном отношении к истории и к фактам. Теперь добавьте сюда пристрастия первичных источников, потерю части информации со временем, манипуляции с фактами на этапе интерпретации замалчивание одних, выпячивание других, фальсификация и др. И что интереснее всего, при необходимости те же самые интерпретаторы через некоторое время могут без труда утверждать противоположное. Знакомая картина? Итак, динамическая природа "непредсказуемости" прошлого сходна с природой непредсказуемости будущего: неустойчивость траекторий динамической системы и быстрое нарастание числа возможных вариантов по мере удаления от точки отсчета. Чтобы реконстру ировать прошлое, кроме самой динамической системы нужна достаточная по количеству и надежная по качеству информация из этого прошлого. Следует отметить, что на разных участках исторического процесса степень его хаотичности различна и может даже падать до нуля ситуация, когда все существенное предопределено. Естественно, что чем менее хаотична система, тем проще реконструируется ее прошлое. Управляем ли хаос? Хаос часто порождает жизнь. Адамс На первый взгляд природа хаоса исключает возможность управлять им. В действительности все наоборот: неустойчивость траекторий хаотических систем делает их чрезвычайно чувствительными к управлению. Пусть, например, требуется перевести систему из одного состояния в другое переместить траекторию из одной точки фазового пространства в другую. Требуемый результат может быть получен в течение заданного времени путем одного или серии малозаметных, незначительных возмущений параметров системы. Каждое из них лишь слегка изменит траекторию, но через некоторое время накопление и экспоненциальное усиление малых возмущений приведут к существенной коррекции движения. При этом траектория останется на том же хаотическом аттракторе. Таким образом, системы с хаосом демонстрируют одновременно и хорошую управляемость , и удивительную пластичность: чутко реагируя на внешние воздействия, они сохраняют тип движения. Как считают многие исследователи, именно комбинация этих двух свойств служит причиной того, что хаотическая динамика характерна для поведения многих систем живых организмов. Например, хаотический характер ритма сердца позволяет ему гибко реагировать на изменение физических и эмоциональных нагрузок, подстраиваясь под них. Известно, что регуляризация сердечного ритма приводит через некоторое время к летальному исходу. Одна из причин заключается в том, что сердцу может не хватить "механической прочности" для того, чтобы скомпенсировать внешние возмущения. На самом деле ситуация более сложная. Упорядочение работы сердца служит индикатором снижения хаотичности и в других, связанных с ним системах. Регулярность свидетель ствует об уменьшении сопротивляемости организма случайным воздействиям внешней среды, когда он уже не способен адекватно отследить изменения и достаточно гибко на них отреагировать. Очевидно, что подобной пластичностью и управляемостью должны обладать любые сложные системы, функционирующие в изменчивой среде. В этом залог их сохранности и успешной эволюции. От хаоса - к упорядоченности Как же обеспечивается целостность и устойчивость живых организмов и других сложных систем, если отдельные их части ведут себя хаотически? Оказывается, кроме хаоса в сложных нелинейных системах возможно и противоположное явление, которое можно было бы назвать антихаосом. В том случае, если хаотические подсистемы связаны друг с другом, может произойти их спонтанное упорядочение "кристаллизация" , в результате чего они обретут черты единого целого. Простейший вариант такого упорядочения - хаотическая синхронизация , когда все связанные друг с другом подсистемы движутся хотя и хаотически, но одинаково, синхронно. Процессы хаотической синхронизации могут происходить не только в организме животных и человека, но и в более крупных структурах - биоценозах, общественных организациях, государствах, транспортных системах и др. Чем определяется возможность синхронизации? Во-первых, поведением каждой отдельной подсистемы: чем она хаотичнее, "самостоятельнее" , тем труднее заставить ее "считаться" с другими элементами ансамбля. Во-вторых, суммарной силой связи между подсистемами: ее увеличение подавляет тенденцию к "самостоятельности" и может, в принципе, привести к упорядочению. При этом важно, чтобы связи были глобальными , то есть существовали не только между соседними, но и между отстоящими далеко друг от друга элементами. В реальных системах, включающих большое число подсистем, связь осуществляется за счет материальных или информационных потоков. Чем они интенсивнее, тем больше шансов, что элементы будут вести себя согласованно, и наоборот. Например, в государстве роль связующих потоков играют транспорт, почта, телефонная связь и др. Поэтому повышение тарифов на эти услуги в том случае, когда оно приводит к уменьшению соответствующих потоков, ослабляет целостность государства и способствует его разрушению. Из теории хаотической синхронизации следует, что согласованную работу отдельных частей сложной системы может обеспечивать один из ее элементов, называемый пейсмейке ром, или "ритмоводителем". Будучи связан односторонним образом со всеми компонентами системы, он "руководит" их движением, навязывая свой ритм. Если при этом сделать так, что отдельные подсистемы не будут связаны друг с другом, а только с пейсмейкером, - получим случай предельно централизованной системы. В государстве, например, роль "ритмоводителя" выполняет центральная власть и... Сегодня это в особенности относится к электронным средствам массовой информации, поскольку по мобильности и общему информационному потоку они значительно превосходят остальные. Интуитивно понимая это, центральная власть старается держать СМИ под контролем, а также ограничивает влияние каждого из них в отдельности. В противном случае управлять государством будет уже не она. Здесь мы коснулись очень важного вопроса. Поскольку средняя сила связей является суммарным параметром, в который входят как материальные связи, так и информационные, то это значит, что ослабление одних из них может быть компенсировано усилением других. Простейший пример - замена реальных товаров на бумажные или даже электронные деньги. В этом случае поставщику, по сути, вместо материального продукта поступает информация об изменении на его счете - и такой обмен его вполне устраивает. Подобным же образом путем биржевых операций ежедневно приобретаются или теряются громадные суммы, которые, в конечном счете, кто-то должен компенсировать реальными продуктами или услугами. Как может происходить разрушение синхронизованного состояния? Об одной возможности мы уже упомянули. Это ослабление связей. Другая причина - неадекватное воздействие "ритмоводителя" на ансамбль. Действительно, если "ритм", диктуемый пейсмейкером, будет слишком противоречить естественному поведению компонент системы, то даже при достаточной силе связи ему не удастся навязать ансамблю свою линию поведения. Однако прежнее поведение также не сохранится. В результате синхронизация будет разрушена. Фрактальность и устойчивость Мы уже убедились, что теорию динамического хаоса можно применить ко многим системам, в том числе к государству и обществу в целом. А какую роль играет при этом фрактальная структура хаоса? Ведь образ хаоса в фазовом пространстве - странный аттрактор - геометрически представляет собой фрактал.
Романессу - особый вид брокколи, крестоцветный и вкусный двоюродный брат капусты - является особенно симметричным фракталом. Папоротник является хорошим примером фрактала среди флоры. Каждое соцветие копируется точно таким же только меньше. Фото сделано снизу, чтобы разглядеть это во всей красе. Брокколи - хоть брокколи не так лихо геометрична, как романессу, но тоже фрактальна. Павлины - всем известны своим красочным оперением, в котором спрятаны сплошные фракталы. Ананас - необычный плод это есть, фактически, фрактал. Хоть он часто связывается с Гавайями, плод - уроженец южной Бразилии.
ГЕОМЕТРИЯ ПРИРОДЫ. ФРАКТАЛЫ.
В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев. Но на молекулярном уровне, в мире белков и атомов, фракталы казались невозможными. До сих пор. Встреча с треугольником Серпинского Цитратсинтаза — фермент, участвующий в жизненно важных процессах обмена веществ у цианобактерий.
Казалось бы, что может быть прозаичнее? Но исследователи из Института Макса Планка и Университета Филиппа в Марбурге обнаружили, что молекулы этого фермента способны на удивительное: они самоорганизуются, образуя узор, известный как треугольник Серпинского. Этот фрактал представляет собой бесконечную последовательность треугольников, вложенных друг в друга, с пустыми пространствами, напоминающими звездное небо.
На рисунках изображена сборка известных белков CS. Комплексы 6mer не давали обзоров сверху. Таким образом, для представления был использован изолированный 6mer из среднего по классу 18mer.
Схемы изображений справа. Данные представлены в виде средних значений трех различных положений сетки, а столбцы погрешности соответствуют s.
Сложнейшее исследование свойств самоподобия произвел Пол Леви, в своих работах он показал, что кривая Коха — это лишь один из множества примеров самоподобных кривых. Вряд ли кто-то в то время подозревал, что появиться ученый, который объединит все труды и внесет величайшее открытие в мире математики. Бенуа Мандельброт стал выдающимся ученым, который неизменно верил в то, что хаотичность имеет определенный порядок. На пути к открытию Мандельброт встретил множество трудностей. После ряда его исследований и предположений многие его друзья-ученые отвернулись, считая, что он занимается не научными, а бесполезными исследованиями.
Однако вскоре, изучая работы французских ученых Жулиа и Фату, Мандельброт и используя компьютеры, Мандельброт открыл множество, которое является самым существенным примером фрактала, — множество Мандельброта [1]. В наши дни данное открытие играет огромную роль, так как позднее появилось такое понятие, как фрактальная геометрия природы. В ней показано, что всё, что кажется нам хаотичным в природе, на самом деле имеет свой определенный порядок, а ярким примером этого является дерево и рост его веток. Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе. Библиографический список Мандельброт Б.
В текстуальных фракталах потенциально бесконечно повторяются элементы текста: неразветвляющееся бесконечное дерево, тождественное само себе с любой итерации «У попа была собака…», «Притча о философе, которому снится, что он бабочка, которой снится, что она философ, которому снится…», «Ложно утверждение, что истинно утверждение, что ложно утверждение…» неразветвляющиеся бесконечные тексты с вариациями «У Пегги был весёлый гусь…» и тексты с наращениями «Дом, который построил Джек».
В структурных фракталах схема текста потенциально фрактальна: венок сонетов 15 стихотворений , венок венков сонетов 211 стихотворений , венок венков венков сонетов 2455 стихотворений «рассказы в рассказе» «Книга тысячи и одной ночи», Я. Потоцкий «Рукопись, найденная в Сарагоссе» предисловия, скрывающие авторство У. Эко «Имя розы» Т.
По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. Фракталы встречаются всюду: в продуктах питания, в бактериях,в растениях, в животных, в горах, в небе и в воде. Посмотрите потрясающие примеры фракталов в природе.
Открытие первой фрактальной молекулы в природе — математическое чудо
В реальных системах, включающих большое число подсистем, связь осуществляется за счет материальных или информационных потоков. Чем они интенсивнее, тем больше шансов, что элементы будут вести себя согласованно, и наоборот. Например, в государстве роль связующих потоков играют транспорт, почта, телефонная связь и др. Поэтому повышение тарифов на эти услуги в том случае, когда оно приводит к уменьшению соответствующих потоков, ослабляет целостность государства и способствует его разрушению. Из теории хаотической синхронизации следует, что согласованную работу отдельных частей сложной системы может обеспечивать один из ее элементов, называемый пейсмейке ром, или "ритмоводителем". Будучи связан односторонним образом со всеми компонентами системы, он "руководит" их движением, навязывая свой ритм. Если при этом сделать так, что отдельные подсистемы не будут связаны друг с другом, а только с пейсмейкером, - получим случай предельно централизованной системы. В государстве, например, роль "ритмоводителя" выполняет центральная власть и... Сегодня это в особенности относится к электронным средствам массовой информации, поскольку по мобильности и общему информационному потоку они значительно превосходят остальные. Интуитивно понимая это, центральная власть старается держать СМИ под контролем, а также ограничивает влияние каждого из них в отдельности.
В противном случае управлять государством будет уже не она. Здесь мы коснулись очень важного вопроса. Поскольку средняя сила связей является суммарным параметром, в который входят как материальные связи, так и информационные, то это значит, что ослабление одних из них может быть компенсировано усилением других. Простейший пример - замена реальных товаров на бумажные или даже электронные деньги. В этом случае поставщику, по сути, вместо материального продукта поступает информация об изменении на его счете - и такой обмен его вполне устраивает. Подобным же образом путем биржевых операций ежедневно приобретаются или теряются громадные суммы, которые, в конечном счете, кто-то должен компенсировать реальными продуктами или услугами. Как может происходить разрушение синхронизованного состояния? Об одной возможности мы уже упомянули. Это ослабление связей.
Другая причина - неадекватное воздействие "ритмоводителя" на ансамбль. Действительно, если "ритм", диктуемый пейсмейкером, будет слишком противоречить естественному поведению компонент системы, то даже при достаточной силе связи ему не удастся навязать ансамблю свою линию поведения. Однако прежнее поведение также не сохранится. В результате синхронизация будет разрушена. Фрактальность и устойчивость Мы уже убедились, что теорию динамического хаоса можно применить ко многим системам, в том числе к государству и обществу в целом. А какую роль играет при этом фрактальная структура хаоса? Ведь образ хаоса в фазовом пространстве - странный аттрактор - геометрически представляет собой фрактал. Несмотря на то, что каждая отдельная хаотическая траектория чрезвычайно чувствительна к малейшим возмущениям, странный аттрактор совокупность всех возможных траекторий является очень устойчивой структурой. Таким образом, динамический хаос подобен двуликому Янусу: с одной стороны, он проявляет себя как модель беспорядка, а с другой - как стабильность и упорядоченность на разных масштабах.
Если задуматься, то легко увидеть, что в обществе, как и в природе, многие системы построены по принципу фракталов: из малых элементов образуются некоторые комплексы, они в свою очередь служат элементами для более крупных комплексов и т. Как, например, организованы жизнеспособные экономические и производственные структуры? Две крайние позиции: крупные транснациональные компании и "мелкий бизнес". Каждая из них в отдельности нежизнеспособна. Большие компании, обладая огромной экономической мощью, малоподвижны и не могут быстро реагировать на изменения в окружающей экономической среде. Где же золотая середина? В средних по размеру предприятиях? Устойчивая экономическая инфраструктура обеспечивается при необходимой подкачке нужных ресурсов совокупностью разномасштабных вот он фрактал! У основания ее находится множество мелких компаний и фирм, выше по пирамиде размер предприятий постепенно увеличивается, а их число, соответственно, сокращается, и, наконец, наверху находятся самые крупные компании.
Такая структура характерна, например, для экономики США. При этом мелкие предприятия наиболее мобильны: они часто рождаются и умирают, являясь основными поставщиками новых идей и технологий. Нововведения, получившие достаточное развитие, позволяют ряду предприятий вырасти до следующего уровня либо передать продать накопленные инновации более крупным компаниям. При достаточной восприимчивости среды такой механизм способен создать новые отрасли промышленности и экономики за несколько лет. Недаром в так называемой "новой экономике" основную массу даже крупных предприятий составляют компании, которые 15-20 лет назад либо вообще не существова ли, либо находились в разряде мелких. Другой пример. Во времена перестройки много писалось и говорилось о "неправильном" устройстве СССР, в котором государство имело сложную иерархическую структуру, организованную по принципу матрешки. Что было предложено взамен? Каждому народу свою туземную армию, свой язык, свою "элиту", своих племенных вождей.
Звучит неплохо. С точки зрения теории устойчивости, идея однородного устройства российского государства - идея двоечника. Принцип матрешки - это, по сути, фрактальный принцип, благодаря которому хаотическая система обретает структуру и устойчивость. СССР и Российская империя были построены по принципу фрактальных систем, и это обеспечивало их стабильность как государств. На разных уровнях в общую систему были вкраплены естественные государственные, этнические, территориальные и другие образования с отлаженными механизмами внутреннего функциониро вания, со своими правами и обязанностями. Хаос порождает информацию Мы уже установили, что поведение хаотических систем не может быть предсказано на большие интервалы времени. По мере удаления от начальных условий положение траектории становится все более и более неопределенн ым. С точки зрения теории информации это означает, что система сама порождает информацию, причем скорость этого процесса тем выше, чем больше степень хаотичности. Отсюда, согласно теории хаотической синхрониза ции, рассмотренной ранее, следует интересный вывод: чем интенсивнее система генерирует информацию, тем труднее ее синхронизировать, заставить вести себя как-то иначе.
Это правило, видимо, справедливо для любых систем, производящих информацию. Например, если некий творческий коллектив генерирует достаточное количество идей и а активно работает над способами их реализации, ему труднее навязать извне какую-то линию поведения, неадекватную его собственным воззрениям. И наоборот, если при наличии тех же материальных потоков и ресурсов коллектив ведет себя пассивно в информационном смысле, не создает идей или не проводит их в жизнь - иными словами, следует принципу "... Хаотические компьютеры Чего нам не хватает в современных компьютерах? Если живой организм для существования в изменчивой среде должен обладать элементами хаотического поведения, то можно предположить, что и искусственные системы, способные адекватно взаимодей ствовать с меняющимся окружением, должны быть в той или иной степени хаотичными. Современные компьютеры таковыми не являются. Они представляют собой замкнутые системы с очень большим, но конечным числом состояний. Возможно, в будущем на основе динамического хаоса создадут компьютеры нового типа - открытые с термодина мической точки зрения системы, способные адаптироваться к условиям внешней среды. Однако уже сегодня хаотические алгоритмы могут успешно применять ся в компьютер ных технологиях для хранения, поиска и защиты информации.
При решении некоторых задач они оказываются более эффективными по сравнению с традиционными методами. Это относится, в частности, к работе с мультимедийными данными. В отличие от текстов и программ мультимедийная информация требует иного способа организации памяти. Голубая мечта пользователей - возможность поиска мелодии, видеосюжета или нужных фотографий не по их атрибутам названию директории и файла, дате создания и т. Оказывается, такой ассоциативный поиск можно осуществить с помощью технологий на основе детерминированного хаоса. Каким образом? Мы уже обсуждали генерацию информации хаотическими системами. Теперь зададимся вопросом: а нельзя ли поставить в соответствие траектории конкретные данные, записанные в виде определенной последовательностей символов? Тогда часть траекторий системы находилась бы во взаимно однозначном соответствии с нашими информаци онными последовательностями.
А поскольку каждая траектория - это решение уравнений движения системы при определенных начальных условиях, то и любую последователь ность символов можно было бы восстановить путем решения этих уравнений, задав в качестве начальных условий небольшой ее фрагмент. Таким образом появилась бы возможность ассоциативного поиска информации, то есть поиска по содержанию. Коллективом сотрудников нашего института были созданы математические модели записи, хранения и поиска информации с помощью траекторий динамических систем с хаосом. Хотя алгоритмы казались очень простыми, их потенциальная информационная емкость значительно превысила объем всей информации, имеющейся в Интернете. Развитие идеи привело к созданию технологии, позволяющей обрабатывать любые типы данных: изображения, текст, цифровую музыку, речь, сигналы и т.
Фракталы, впервые названные математиком Бенуа Мандельбротом в 1975 году, представляют собой специальные математические наборы чисел, которые демонстрируют сходство во всем диапазоне масштабов, то есть они выглядят одинаково независимо от того, насколько они велики или малы. Еще одна характеристика фракталов заключается в том, что они демонстрируют большую сложность, обусловленную простотой - некоторые из самых сложных и красивых фракталов можно создать с помощью уравнения, состоящего всего из нескольких членов. Подробнее об этом позже. В природе Множество Мандельброта Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе.
Это событие стало темой статьи, опубликованной в авторитетном журнале Nature.
Фрактальная природа Находкой ученых стал микробный фермент, известный как цитратсинтаза цианобактерии. Особенностью этого фермента является его способность самопроизвольно собираться в структуру, напоминающую треугольник Серпинского. Этот фрактальный объект представляет собой треугольный узор, в котором каждый треугольник является уменьшенной копией целого.
То есть она составлена из нескольких частей, каждая из которых повторяет всю фигуру целиком.
По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. Фракталы встречаются всюду: в продуктах питания, в бактериях,в растениях, в животных, в горах, в небе и в воде.
Войти на сайт
Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе. 97 фото | Фото и картинки - сборники. Природа создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. неупо-рядоченные системы, для которых самоподобие выполняется только в среднем. Красота фракталов состоит в том, что их "бесконечная" сложность сформирована относительно простыми линиями.
Войти на сайт
Фракталы существуют не только в макро мире, но и на поверхности Земли. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам. Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе.
Фракталы в природе (53 фото)
фракталам. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе. нечто невероятное – Самые лучшие и интересные новости по теме: Геометрия, идеально, красота на развлекательном портале Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Фракталы кажутся нам слишком совершенными, чтобы существовать в реальности, но они не так уж редко встречаются в природе, в частности реализуя себя в виде растений. Фракталы в природе Подготовила Андреева Алина Р-12/9.
Фракталы: бесконечность внутри нас
Переосмысление эволюции: возникновение фрактальной структуры как нейтрального признака ставит под сомнение принцип адаптационизма, согласно которому все биологические структуры должны иметь эволюционное преимущество. Случайность и нейтральные мутации могут быть не менее важными факторами эволюционного процесса. Биомиметика и нанотехнологии: фрактальные структуры обладают уникальными физическими и химическими свойствами, такими как высокая площадь поверхности, фрактальная размерность и самоподобие. Изучение молекулярного фрактала цитратсинтазы может открыть новые пути для создания биомиметических материалов с улучшенными характеристиками, например, для катализа, доставки лекарств или сенсорики. Открытие молекулярного фрактала в цианобактерии — это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе. Этот феномен открывает перед нами новые горизонты исследований и вдохновляет на поиск других "случайных шедевров" в микромире, которые могут изменить наше представление о жизни и её эволюции.
Похожим образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский правда, выросший во Франции математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами от латинского fractus — изломанный.
С береговой линией, а точнее, с попыткой измерить ее длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон Lewis Fry Richardson — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами.
Это событие стало темой статьи, опубликованной в авторитетном журнале Nature. Фрактальная природа Находкой ученых стал микробный фермент, известный как цитратсинтаза цианобактерии. Особенностью этого фермента является его способность самопроизвольно собираться в структуру, напоминающую треугольник Серпинского. Этот фрактальный объект представляет собой треугольный узор, в котором каждый треугольник является уменьшенной копией целого.
Стоит отметить и еще один момент. С эпохи Лейбница и до наших дней для указанного обобщения аппарата математического анализа не было предложено ни удачной символики, ни яркого и компактного термина. В наше время, после открытия фрактальности Вселенной, для соответствующего математического аппарата прямо-таки напрашивается и представляется неизбежным термин «фрактальное исчисление». Он лаконичен, емок, логичен, историчен и физичен. Мне кажется разумным остановиться именно на нем для наименования обобщения дифференциального и интегрального исчисления на дробные включая комплексные порядки производной и кратности интеграла.
В отличие от уже традиционного физического термина «фрактал», соответствующий математический оператор мог бы именоваться, скажем, «фракталл». Для обозначения же фракталла порядка n от функции f z , я рискнул предложить в [ 12 ] новый символ, сочетающий стилизованные элементы знаков и интеграла, и дифференциала: Можно предвидеть, что после осознания фрактальности Вселенной и следующей отсюда вариации картины мира, с выходом «фрактального исчисления» из незаслуженного полузабвения — актуальным окажется и требуемое обобщение дифференциальных и интегральных уравнений 13. Могут быть введены не только «фрактальные уравнения», отличающиеся от дифференциальных и интегральных «лишь» дробностью порядка. Прецеденты этого уже имеются Висе, 1986; Метцлер и др. Фрактальные уравнения могут включать и такие, где, скажем, неизвестной искомой функцией является сам переменный порядок этого уравнения.
Предлагаются и такие обобщения, как введение зависимости п от координат и др. Видимо, концепция фракталов может быть связана с выдвинутой в начале 60-х гг. Гротендиком теорией топосов — пространств с топологией, меняющейся от точки к точке — и со временем?! Не приходится опасаться того, что «фрактальный анализ» и «фрактальные уравнения» останутся невостребованными. Не думаю, чтобы в наше время кто-нибудь повторил ошибку знаменитого астронома и физика Дж.
Джинса, утверждавшего, что есть творения математиков, которые никогда не пригодятся за пределами математики. В качестве очевидного примера он приводил теорию групп, на которую ныне завязана, как утверждают специалисты, добрая половина физики! Напротив, история науки многократно подтверждала правоту замечательного математика Ш. Эрмита: «Я убежден, что самым абстрактным спекуляциям Анализа соответствуют реальные соотношения, существующие вне нас, которые когда-нибудь достигнут нашего сознания». Чуть-чуть фрактальной математики «Главная задача математики наших дней состоит в достижении гармонии между континуальным и дискретным, включении их в единое математическое целое» Ф.
Та же задача, видимо, стоит и перед физикой. И построение исчисления, включившего дискретные целые действительные значения фрактального оператора как частный случай, открывает реальные перспективы серьезного продвижения в решении указанной фундаментальной математической — физической — общенаучной — философской проблемы. Как потом оказалось, выражение это с точностью до тождественных преобразований совпало с оператором, найденным за 96 лет до этого Тарди; а через четыре года после меня эквивалентное повторение результата Тарди было опубликовано А. Светлановым [ 11 ]. Опуская для простоты некоторую «дополнительную функцию», аналог произвольной аддитивной постоянной неопределенного интеграла, имеем: 1 Или максимально компактно: 1а где Г — гамма-функция Эйлера.
Вывод оператора занимал у меня полторы страницы и опирался на пару довольно рискованных шагов. Но результат оказался верен. Как всегда при принципиальном шаге к новой картине мира, на пути встают исторически необходимые! В данном случае возражение их радикально. Начиная с аккуратного сомнения, скептик в данном случае весьма проницательный теоретик заключает: «Фракталы не являются реально существующими объектами» [ 14 ],с.
Реальные системы не являются фракталами в точном смысле этого термина, они могут быть только фракталоподобными». Отсюда и делается приведенный выше, вроде бы убийственный для фракталов вывод. Однако, «в конечном счете ничто так не помогает победе истины, как сопротивление ей» У. Ведь вывод нашего критика напоминает, что по сути ни один объект теоретической науки, ни одна математическая модель природного объекта, процесса и т. Но в том трагедии нет.
Ведь в действительности теоретические «точные науки» называются так. Исторический опыт науки показывает, что внутренне непротиворечивые модели все более адекватно представляют свойства наблюдаемых объектов, что в целом растет предсказательная сила науки. Так и с фракталами. Да, «реальные системы не являются фракталами в точном [математическом] смысле этого термина, они могут быть только фракталоподобными». Аналогично реальная материя не является «строго континуальной», а лишь «континуально-подобной» в определенных пределах, на нескольких маршах бесконечной лестницы масштабов, или «дискретно-подобной» на других ее участках.
Для приближенного описания ряда свойств и закономерностей существующих систем достаточно того, что они в каких-то конечных интервалах масштабов удовлетворительно представляются идеальной моделью фрактальной системы. В этом и состоит соотношение любых теоретических моделей с реальностью. В этом — единственно возможном и обычном во всей науке! Фрактальная Вселенная и А. Вот как об этом пишет, например, Е.
Фейнберг в очерке «Контуры биографии»: «Здесь [на военном заводе в Ульяновске] началась его творческая работа [- выполнены] четыре работы по теоретической физике. Из очерка А. Яглома «Товарищ школьных лет»: «Д. Сахаров, отец Андрея, по приезде сына в Москву передал какую-то его научную рукопись Тамму через математика А. Лопшица, давнего знакомого Игоря Евгеньевича».
А в письме сотрудников отдела теоретической физики им. На оборонном заводе 1942 — начало 1945 г. Случилось так, что я имею информацию об одной из этих работ, непосредственно от И. В начале зимы 1959—1960 г. В заключение беседы, уже провожая меня, И.
На этом мы и распрощались. Пока остается неизвестным, какой именно путь молодой Андрей Сахаров нашел для построения того, что мы в эпоху фракталов вправе назвать фрактальным исчислением. Но то, что Сахаров не только интересовался этим вопросом почти забытым тогда в математике и ставшим актуальным в физике лишь через 30 лет , но и решил его — судя по словам И. Тамма, непреложный факт. Мы можем констатировать, что по меньшей мере одна из остающихся неизвестными его первых работ была посвящена не «теоретической физике небольшого масштаба», а очень нетривиальной математике.
Сахаровым еще полвека назад, подобно тому, как молодые Галуа и Абель создавали теорию групп, в конечном счете, для Реальной Природы, а Н.
Прибыльная торговля с помощью фрактальности существует?
Случайность как художник: учёные обнаружили первую фрактальную молекулу | Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». |
14 Удивительные фракталы, обнаруженные в природе - Окружающая среда 2024 | Для фрактальной бесконечной Вселенной с ее нулевой средней плотностью такой проблемы не существует. |
Фракталы в природе (102 фото)
Фракталы в природе (53 фото) - 53 фото | Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что можно замереть от восхищения. |
Фракталы в природе | Да, в физической Природе не существуют ни идеальный газ, ни континуальная материя, ни фрактальные объекты с «действительно бесконечной» лестницей иерархических этажей. |
Войти на сайт
Понятие ФРАКТАЛЫ (fractus -состоящий из фрагментов) введено в научный обиход Бенуа Мандельбротом. Молекулярным фракталом оказался микробный фермент — цитратсинтазу цианобактерии, которая спонтанно собирается в структуру, известную как треугольник Серпинского. Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе.