В 2022 году был зафиксирован его минимум, а | Вступай в группу Новости РБК в Одноклассниках. Отдельное значение — коэффициент Джини — показывает индекс концентрации доходов. В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel. Отдельное значение — коэффициент Джини — показывает индекс концентрации доходов. 10%, 30% населения, коэффициент Джини для распределения богатства) Россия опережает любую другую крупную страну.
Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини
В минувшем году в России коэффициент Джини, характеризующий степень неравенства в распределении доходов внутри групп населения, вырос. В России по итогам 2023 года вырос показатель доходного неравенства среди граждан, так называемый "коэффициент Джини". Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле.
Кривая Лоренца
Далее включим в анализ еще более богатого индивида С. Отметим полученные результаты на графике: Линия, соединяющая левую нижнюю точку и правую верхнюю точку графика, называется линией равномерного распределения доходов. Это гипотетическая линия, которая показывает, что было бы, если доходы в экономике распределяются равномерно. При неравномерном распределении доходов кривая Лоренца лежит левее этой линии, причем чем больше степень неравенства, тем сильнее изгиб кривой Лоренца. А чем ниже степень неравенства, тем более она приближена к линии абсолютного равенства. В нашем случае кривая Лоренца выглядит как кусочно-линейный график.
Это получилось так, потому что в нашем анализе мы выделили только три группы населения. С ростом числа рассматриваемых групп населения кривая Лоренца будет выглядеть следующим образом: Кривая Лоренца позволяет судить о степени неравенства доходов в экономике о ее изгибу. Для количественного измерения степени неравенства дохода по кривой Лоренца существует специальный коэффициент — коэффициент Джини. Коэффициент Джини равен отношению площади фигуры, ограниченной прямой абсолютного равенства и кривой Лоренца, к площади всего треугольника под кривой Лоренца. Чем ближе коэффициент Джини к нулю, тем меньше изгиб кривой Лоренца, и доходы распределены более равномерно.
Чем ближе коэффициент Джини к единице, тем больше изгиб кривой Лоренца, и доходы распределены менее равномерно. Рассчитаем коэффициент Джини для нашего примера с тремя индивидами. Площадь внутренней фигуры D быстрее всего можно посчитать путем вычитания из площади большого треугольника площади фигур А, В и С. В этом случае коэффициент Джини будет равен: Частный случай кривой Лоренца и коэффициента Джини: попарное сравнение. Материалы данного раздела не публикуются на сайте, а доступны в полной версии данного пособия, которое я использую на занятиях с учениками.
Как известно, любой статистический показатель имеет свои изъяны. Так же как и по показателю ВВП нельзя судить об уровне благосостояния экономики, и коэффициент Джини и другие показатели степени неравенства не могут дать в полной мере объективную картину степени неравенства доходов в экономике. Это происходит по нескольким причинам: Во-первых, уровень дохода индивидов не является постоянным и может резко изменяться с течением времени. Доходы молодых людей, которые только что закончили университет, как правило, являются минимальными, и затем начинают расти по мере того, как человек набирается опыта и наращивает человеческий капитал. Доходы людей, как правило, достигают пика между 40 и 50 годами, и затем резко снижаются, когда человек уходит на пенсию.
Э то явление называется в экономике жизненным циклом. Но человек имеет возможность компенсировать различие в доходах на разных этапах жизненного цикла с помощью финансового рынка — беря кредиты или делая сбережения. Так, молодые люди, находящиеся в самом начале жизненного цикла, охотно берут кредиты на образование или ипотечные кредиты. Люди, которые находятся ближе к окончанию экономического жизненного цикла, активно делают сбережения. Кривая Лоренца и коэффициент Джини не учитывают жизненный цикл, поэтому этот показатель степени неравенства доходов в обществе не является точной оценкой степени неравенства доходов.
Во-вторых, на доходы индивидов влияет экономическая мобильность. Экономика США является примером экономики возможностей, когда индивид из низов может благодаря сочетанию усердия, таланта и удачи, стать очень успешным человеком, и история знает множество подобных примеров. Но также известны случаи потери крупных состояний или даже полных банкротств вполне состоятельных предпринимателей. Как правило, в таких экономиках, как экономика США, отдельное домохозяйство за свою жизнь успевает побывать в нескольких категориях распределения доходов. И связано это с высокой экономической мобильностью.
Так, например, какое-т домохозяйство может в одном году входит в группу с самым низким уровнем дохода, а следующем году уже в группу со средним уровнем доходов. Кривая Лоренца и коэффициент Джини также не учитывают данный эффект.
Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют 5 групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими. В России используется метод деления на 20-процентные группы [2]. В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам.
Но также известны случаи потери крупных состояний или даже полных банкротств вполне состоятельных предпринимателей. Как правило, в таких экономиках, как экономика США, отдельное домохозяйство за свою жизнь успевает побывать в нескольких категориях распределения доходов. И связано это с высокой экономической мобильностью. Так, например, какое-т домохозяйство может в одном году входит в группу с самым низким уровнем дохода, а следующем году уже в группу со средним уровнем доходов. Кривая Лоренца и коэффициент Джини также не учитывают данный эффект.
В-третьих, индивиды могут получать трансферты в натуральной форме, которые не отражаются в кривой Лоренца, хотя при этом влияют на распределение доходов индивидов. Трансферты в натуральной форме могут быть реализованы в виде помощи беднейшим слоям населения продуктами питания, одеждой, но обычно они предоставляются в виде многочисленных льгот бесплатный проезд в общественном транспорте, бесплатные путевки в санатории и так далее. С учетом подобных трансфертов экономическое положение беднейших слоев населения улучшается, но кривая Лоренца и коэффициент Джини этого не учитывают. Не так давно в России многие льготы были монетизированы, и объективные доходы беднейших слоев населения стало считать легче. Следовательно, кривая Лоренца стала лучше отражать реальное распределение доходов в обществе. Данные показатели используются для оценки степени неравенства доходов, и входят в область позитивного экономического анализа. Напомним, что позитивный анализ отличается от нормативного анализа тем, что позитивный анализ анализирует экономику объективно, как есть, а нормативный анализ является попыткой улучшить мир, сделать «как должно быть». Если оценка степени неравенства является позитивным экономическим анализом, то попытки снизить неравенство в распределении доходов принадлежат к области нормативного экономического анализа. Нормативный экономический анализ известен тем, что разные экономисты могут предложить разное, часто диаметральное противоположные рекомендации по решению одной и той же проблемы. Это не означает, что кто-то является более компетентным, а кто менее компетентным.
Это только означает, что экономисты отталкиваются от различных философских взглядов на понятие справедливости, а единства в этом вопросе нет. Сначала мы рассмотрим различные существующие системы ценностей, а затем покажем, каким образом можно обеспечить более справедливое распределение доходов в рамках каждой системы. Государство сейчас выступает не только в качестве устранителя рыночных провалов, о которых мы активно говорили в прошлой главе внешние эффекты и предоставление общественных благ , но и в качестве стимулятора экономики, когда экономика испытывает трудные времена. Налоги являются основным источником доходов государства. Любое государство имеет множество налогов и сборов, построенных по определенным принципам, а также институты контроля по сбору налогов. Все это составляет налоговую систему государства. Для оценки налоговой системы используются принципы эффективности и справедливости. Как мы уже знаем, понятие справедливости не является точно определённым для экономистов. В зависимости от системы моральных ценностей справедливость может быть установлена тем или иным образом. Экономисты гораздо более едины при определении того, что такое эффективность.
Эффективной является та налоговая система, которая менее всего приводит к искажению стимулов у участников рынка, а следовательно, и к возникновению безвозвратных потерь. Покажем, каким образом безвозвратные потери связаны с искажением стимулов у участников рынка. По теме «рыночное равновесие» мы помним, что безвозвратные потери возникали, когда налоги и субсидии изменяли положение кривых спроса и предложения, то есть изменяли экономическое поведение людей. Безвозвратные потери заключались в том, что какие-то покупатели не смогли купить товар, а какие-то производители не могли продать товар по сравнению с ситуацией, когда цены точно отражают предельные издержки. Рассмотрим простой пример: индивид А оценивает удовольствие от потребления мороженого в 60 рублей, индивид В - в 40 рублей. Если цена стаканчика мороженого оставляет 30 рублей, то каждый из них его купит и получит удовольствие. Сумма потребительского излишка будет равна 40 рублей 30 рублей у индивида А и 10 рублей у индивида В. Если мы введем налог на потребление мороженого в размере 20 рублей на один стаканчик, то ситуация на рынке кардинально поменяется: индивид А все еще будет потреблять мороженое, а вот индивид В откажется от его потребления.
Данный показатель считается, как среднее разностей между фактическими и прогнозными значениями и не противоречит логике задачи. Для этого импортируем необходимую библиотеку и вычислим ошибку для модели с дополнительным фактором и без него. По результатам видно, что модель с дополнительным фактором предсказала с меньшей ошибкой. Сравним все полученные результаты метрик. Показатель Модель без доп.
В России зафиксирован рост доходного неравенства
Корреляция между коэффициентами Джини и ВВП на душу населения за три периода времени. Источник: Моатсос и Батен. Недостатки Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от достоверных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, составляет большую часть истинного экономического производства в развивающихся странах и находится на нижнем уровне распределения доходов внутри стран. В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов. Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ. Коэффициент Джини Gini coefficient — метрика качества, которая часто используется при оценке предсказательных моделей в задачах бинарной классификации в условиях сильной несбалансированности классов целевой переменной.
Именно она широко применяется в задачах банковского кредитования, страхования и целевом маркетинге. Для полного понимания этой метрики нам для начала необходимо окунуться в экономику и разобраться, для чего она используется там. Экономика Коэффициент Джини изменяется от 0 до 1. Чем больше его значение отклоняется от нуля и приближается к единице, тем в большей степени доходы сконцентрированы в руках отдельных групп населения и тем выше уровень общественного неравенства в государстве, и наоборот. В экономике существует несколько способов рассчитать этот коэффициент, мы остановимся на формуле Брауна предварительно необходимо создать вариационный ряд — отранжировать население по доходам : где — число жителей, — кумулятивная доля населения, — кумулятивная доля дохода для Давайте разберем вышеописанное на игрушечном примере, чтобы интуитивно понять смысл этой статистики. Предположим, есть три деревни, в каждой из которых проживает 10 жителей. В каждой деревне суммарный годовой доход населения 100 рублей. В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей.
И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов. Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл.
Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2.
Потребление в целом продолжает поддерживаться опережающей динамикой 01 апр 2024 Ульяновская область подготовила первый выпуск народных облигаций 29 марта 2024 года начнется размещение первого выпуска народных облигаций для физических лиц Ульяновской области. Чтобы получить бонус, нужно:Зарегистрироваться на Финуслугах;Выбрать вклад;Ввести промокод 22 марта 2024 Как мы работаем 8 марта В праздничный день, 8 марта, Финуслуги работают в обычном режиме — вы можете выбирать любые продукты, отправлять заявки в банки и страховые компании. А теперь информация отдельно по продуктам:Вклады.
Кандидат экономических наук, доцент кафедры корпоративных финансов и корпоративного управления Финансового университета при Правительстве РФ Ольга Борисова объяснила в беседе с «Новыми Известиями», что у усиления такого неравенства есть несколько причин. Кратковременное сокращение доходов персонала, работающего на начало 2023 г. Значительное их количество закрывало свои точки в России, отправляя персонал в отпуск или переводя на выплаты МРОТ на неопределенный срок, пока не находили фирму-покупателя в стране. Неравномерность роста заработка по отраслям. За счет продолжения в 2023 г.
Он позволяет сравнивать уровень неравенства между разными странами, регионами и временными периодами, что облегчает анализ динамики и международных различий. Широкое применение. Используется в различных областях, включая экономику , социологию, исследования бедности и общественные науки. Устойчивость к масштабу. Коэффициент Джини устойчив к изменениям масштаба, что делает его применимым при сравнении обществ и групп людей различного размера. Помимо преимуществ у этого коэффициента выделяют и ряд недостатков: Ограниченность в оценке социальной защищенности. Коэффициент Джини сконцентрирован на распределении доходов, что делает его менее чувствительным к составляющим социальной защищенности, таким как доступ к образованию и здравоохранению. Интерпретационные ограничения. Трудно однозначно интерпретировать, насколько конкретное значение коэффициента Джини является социально справедливым или несправедливым. Неучет разных источников дохода. Не учитывает различные источники дохода, такие как натуральные выплаты, премии в виде активов, что вносит искажения в оценку неравенства. Чувствительность к выбору категорий. Результаты коэффициента Джини зависят от выбора категорий, на которые разбивается население для анализа, что создает потенциальные искажения. Ограничения в оценке социальной справедливости. Индекс Джини не является индикатором справедливости распределения богатства. Равномерное распределение не всегда означает справедливость, особенно в условиях рыночной экономики. Влияние нерыночных экономик. Могут возникнуть искажения в оценке неравенства в странах с нерыночной экономикой, где государство играет ключевую роль в распределении ресурсов. В заключение подчеркнем, коэффициент Джини является показательным инструментом для анализа неравенства, но для полного понимания социально-экономической динамики рекомендуется использовать его в сочетании с другими показателями.
Коэффициент Джини. Формула. Что показывает
Коэффициент Джини может принимать значения от 0 до 1. Чем ближе коэффициент Джини к нулю, тем меньше изгиб кривой Лоренца, и доходы распределены более равномерно. В России по итогам 2023 года вырос показатель доходного неравенства среди граждан, так называемый "коэффициент Джини". Коэффициент Джини (Gini coefficient) – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини (1884-1965 г.г.). вы делаете те новости, которые происходят вокруг нас. Коэффициент Джини (Gini coefficient) – количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини.
Индекс Джини
Коэффициент Джини показывает степень неравенства в распределении доходов/богатства внутри страны или группы. Есть ещё коэффициент/индекс Джини (Gini impurity), который используется в решающих деревьях при выборе расщепления. Для исчисления коэффициента Джини необходимо рассчитать величины pi и qi. В 2022 году был зафиксирован его минимум, а | Вступай в группу Новости РБК в Одноклассниках.
Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства
Нет необходимости знать, кто имеет какие доходы персонально. В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 18 апреля 2012. Недостатки коэффициента Джини Довольно часто коэффициент Джини приводится без описания группировки совокупности, то есть часто отсутствует информация о том, на какие же именно квантили поделена совокупность.
Доступ к официальной статистической информации, включенной в состав статистических ресурсов, входящих в межведомственную систему, осуществляется на безвозмездной и недискриминационной основе.
Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель. Чем меньше значение этого показателя, тем лучше работает прогнозная модель. Коэффициент используется в скоринговых моделях и машинном обучении в таких секторах, как банковское кредитование, страхование, маркетинг. Коэффициент Джини — статистический показатель меры расслоения доходов или богатства общества.
Рассмотрим, например, вторую группу зеленый четырехугольник. Тогда сумма всех фигур под кривой Лоренца будет равна Эту сумму, как вы помните, нужно вычесть из 0,5, чтобы получить площадь фигуры над кривой И наконец, разделив все это на площадь диагонального треугольника то есть опять же на 0,5 , получим формулу коэффициента Джини: Есть и другие формулы, расчет по одной из них приведен, например, вот тут. Мне кажется, что в ней проще запутаться, а получается ровно то же самое. Чтобы проверить себя, решите задачу. Ответ и решение под спойлерами: Задача Предположим, что в некоторой стране N проживают три группы населения: бедные, средний класс и богатые. Группы равны по численности жителей, но различаются по уровню дохода: средний класс зарабатывает в два раза больше, чем бедные, а богатые зарабатывают в два раза больше, чем средний класс.