Новости наукастинг осадков на 2 часа

Прогноз осадков на ближайшие 2-6 часов / скриншот с сайта Гидрометцентра России. есть сайт метеовести это погодного центра фобос, ну и разумеется данные гидрометцентров РФ и РТ, у рф центра есть крутой раздел наукастинг 2 часа, там можно за дождями, снегом следить.

рПЗПДБ Ч НЙТЕ

Наукастинг — это сверхкраткосрочный прогноз, на 2–5 часов вперёд. Прогноз осадков на 2 часа (наукастинг). последние новости сегодня в Москве. Это стало возможным благодаря технологии наукастинга — краткосрочного гиперлокального прогноза осадков. Главная» Новости» Гидрометцентр наукастинг. Прогноз осадков на 2 часа (наукастинг).

Классификация современных прогнозов погоды

Прогноз осадков на 2 часа (наукастинг). За сутки выпадет около 20,7 мл осадков. Наукастинг осадков на 2 часа. Радар осадков и гроз. Прогноз осадков на ближайшие 2-6 часов / скриншот с сайта Гидрометцентра России. Ключевые слова: наукастинг, поля осадков, нейронные сети, прогнозирование ошибок, многослойный персептрон. Решение задачи наукастинга осадков, как правило, сводится к прогнозированию следующе-го кадра видеопоследовательности, а входными данными становится серия из более чем двух последовательных изображений, что позволяет более точно моделировать нелинейные.

ГИДРОМЕТЦЕНТР РОССИИ: О ПОГОДЕ - ИЗ ПЕРВЫХ РУК

В отдельных районах менее чем за час выпало свыше 70% месячной нормы осадков. Прогноз осадков на 2 часа (наукастинг). последние новости сегодня в Москве. Решение задачи наукастинга осадков, как правило, сводится к прогнозированию следующе-го кадра видеопоследовательности, а входными данными становится серия из более чем двух последовательных изображений, что позволяет более точно моделировать нелинейные. Нейросетевые методы наукастинга осадков: обзор и апробация существующих решений.

Что сейчас на улице

По прогнозу ведущего научного сотрудника центра погоды «Фобос» Михаила Леуса, в российской столице в четверг, 17 августа, ожидается переменная облачность, без осадков, воздух прогреется до + 29 °C, передаёт РИА Новости. Во-первых, наукастинг осадков оказался полезным на интервале одного-полутора часов как в точках выделенной сетки, так и по областям сильных осадков. Доля точно предсказанных случаев начала дождя — это отношение количества правильно предсказанных случаев начала первого дождя на рассматриваемом окне в два часа ко всем случаям начала первого дождя на двухчасовых окнах. Новости. Телеграм-канал @news_1tv. Фото: Владимир Астапкович / РИА Новости.

Онлайн-словарь отраслевых терминов

есть сайт метеовести это погодного центра фобос, ну и разумеется данные гидрометцентров РФ и РТ, у рф центра есть крутой раздел наукастинг 2 часа, там можно за дождями, снегом следить. точный и подробный прогноз погоды в любом уголке мира на сегодня, завтра и неделю. Наукастинг. Прогноз текущей погоды – детализированный прогноз погоды на ближайшие часы (до 2-6 часов).Продолжительность жизненного цикла некоторых погодных явлений (например, шквалов, ливней и т.д.) варьирует от минут до десятков минут. Решение задачи наукастинга осадков, как правило, сводится к прогнозированию следующе-го кадра видеопоследовательности, а входными данными становится серия из более чем двух последовательных изображений, что позволяет более точно моделировать нелинейные. Прогноз осадков на 2 часа (наукастинг). По моим данным, он циклон балканского происхождения по имени «Бенедикт».

Больше всего осадков в городе 2024

Такая технология используется, например, в восстановлении движения по последнему кадру из видео. Известная научная работа. Вооружившись полученными знаниями, мы начали пытаться строить прогноз. Первое решение, которое пришло в голову, — просто обучить несколько нейросетей так, чтобы первая нейросеть предсказывала ситуацию на радаре через 10 минут, вторая — через 20 минут, третья — через 30. Требование было следующим: предсказывать радарные данные где-то на два часа вперед. Предсказания получались вот такие. Примерно тогда же, когда мы обучили 12 нейросетей, у нас появилась возможность визуализировать данные на карте. Посмотрев на скачущие облака, менеджеры сказали: это мы выпускать точно не будем. Один из них сказал: конечно, я понимаю, что это максимизирует вероятность чего-то там, но пользователю такое не объяснить — в жизни облака так не скачут.

Во время следующей итерации мы решили считать только векторное поле и умножать опорные вектора на 2 и 3, чтобы получить перенос не на 10, а на 20 минут и 30 минут соответственно. На ближних горизонтах результаты выглядели довольно прилично, но чем дальше, тем чаще с краю появлялись артефакты. Оказалось, что в векторном поле слишком большие вектора разрывают thin plate spline, и у нас появляется второе зеркальное отражение нашей картинки. Потом отражения сливаются. На ближних горизонтах артефакт не был заметен, но на дальних проявлялся очень сильно. Из ниоткуда возникало облако. Третьим решением стало последовательное применение одного и того же преобразования thin plate spline к одной картинке. С одной стороны, оно способствовало накоплению ошибок.

Это было первое реально работающее решение, которое мы показывали при внутреннем бета-тесте. Нейросеть получала на вход шесть радарных снимков за последний час, несколькими свертками приводила их к тензору из 16 векторов 4 x 4. Cплайновое преобразование восстанавливалось по векторам и последовательно применялось к картинке для получения каждого следующего горизонта прогноза. Решение довольно хорошо себя показало, но оставался единственный вопрос: зачем нужна нейросеть? Если красные свертки — единственная часть, которую мы обучаем, почему бы нам не вычислить векторное поле самостоятельно, алгоритмически? Так что четвертое решение, которое заметно улучшило результат, использовало явную минимизацию loss-функции. Мы искали векторное поле, которое бы одинаково хорошо приближало переход на 10 минут в последний час. От —60 минут до —50, потом до —40 и т.

Мы применяли это векторное поле к t0, чтобы получить прогноз на 10 минут дальше. Алгоритмически гораздо лучше находить векторное поле с помощью минимизации. Оно быстрее работает, не требует обучения. Самое интересное — оно не требует всех данных. Можно пропустить какие-то данные — а радары довольно часто запаздывают. Мы долго думали, что же оставить — нейронные сети или алгоритмические вычисления векторного поля. Но всё победил тот самый лазерный меч в Иваново. Когда он висит над вами как дамоклов меч и зануляет вокруг себя все вектора, то облака не могут ни пересечь его, ни двигаться в одном районе с ним.

Даже какого-то физического движения на картинке не происходит.

Высота осадков составила 20 мм. По данным столичного Департамента транспорта, до конца дня в городе будет дождь с грозой и сильный ветер.

В вечерний разъезд локальные затруднения ожидаются по направлению в область на шоссе Энтузиастов и на Ленинградском шоссе. Автомобилистам рекомендовали избегать резких маневров, соблюдать дистанцию и скоростной режим.

Оказалось, что в векторном поле слишком большие вектора разрывают thin plate spline, и у нас появляется второе зеркальное отражение нашей картинки. Потом отражения сливаются. На ближних горизонтах артефакт не был заметен, но на дальних проявлялся очень сильно. Из ниоткуда возникало облако. Третьим решением стало последовательное применение одного и того же преобразования thin plate spline к одной картинке. С одной стороны, оно способствовало накоплению ошибок.

Это было первое реально работающее решение, которое мы показывали при внутреннем бета-тесте. Нейросеть получала на вход шесть радарных снимков за последний час, несколькими свертками приводила их к тензору из 16 векторов 4 x 4. Cплайновое преобразование восстанавливалось по векторам и последовательно применялось к картинке для получения каждого следующего горизонта прогноза. Решение довольно хорошо себя показало, но оставался единственный вопрос: зачем нужна нейросеть? Если красные свертки — единственная часть, которую мы обучаем, почему бы нам не вычислить векторное поле самостоятельно, алгоритмически? Так что четвертое решение, которое заметно улучшило результат, использовало явную минимизацию loss-функции. Мы искали векторное поле, которое бы одинаково хорошо приближало переход на 10 минут в последний час. От —60 минут до —50, потом до —40 и т.

Мы применяли это векторное поле к t0, чтобы получить прогноз на 10 минут дальше. Алгоритмически гораздо лучше находить векторное поле с помощью минимизации. Оно быстрее работает, не требует обучения. Самое интересное — оно не требует всех данных. Можно пропустить какие-то данные — а радары довольно часто запаздывают. Мы долго думали, что же оставить — нейронные сети или алгоритмические вычисления векторного поля. Но всё победил тот самый лазерный меч в Иваново. Когда он висит над вами как дамоклов меч и зануляет вокруг себя все вектора, то облака не могут ни пересечь его, ни двигаться в одном районе с ним.

Даже какого-то физического движения на картинке не происходит. Поэтому в конечном итоге мы пришли к нейронной сети. Сейчас нейронная сеть работает и выдает предсказания, схематически ее архитектура изображена здесь. Она составлена из 12 примерно одинаковых блоков. Каждый блок последовательно строит прогноз по своему горизонту, получая на вход некоторый тензор состояния и последний радарный снимок, последнее предсказание с предыдущего горизонта. Тензор состояния имеет довольно маленькую размерность, всего 32 x 32 на 30 каналов, но сверткой к инволюции мы получаем из него векторное поле, опорные вектора для преобразования thin plate spline. И, наоборот, сверткой к деконволюции мы получаем места, где выпадают осадки. Такая архитектура нейросети учитывает, что в каких-то местах осадки выпадают традиционно.

Например, туча, налетевшая на город, прольется с большей вероятностью, чем над лесом, потому что над городом другая атмосфера, микроклимат. Там, например, попросту теплее. От горизонта к горизонту, от блока к блоку мы передаем состояние, о котором идет речь, и попутно немного меняем его с помощью residual network. Residual — это когда мы сам тензор меняем совсем немного, прибавляя к нему измерения.

Рисунок 2. Архитектура нейронной сети.

График функции обучения и валидации изображен на рисунке 3. Рисунок 3. Значения функций обучения и валидации. Из графика на Рисунке 3 видно, что переобучение наступает примерно после 75 эпохи. Значение функции валидации, которого удалось достигнуть — 0,0123 Распределение ошибок в изначальных данных является следующим: минимальная ошибка — 0; средняя величина ошибки — 0,065. Заключение В результате, был описан метод, который позволит увеличить точность прогноза либо путем автоматической коррекции прогнозируемых значений, либо путем ручного контроля за слишком большими возникающими ошибками.

Так же была приведена тестовая архитектура нейронной сети, которая способна решать данную задачу и приведены результаты ее работы. Муравьев А. Сравнительная верификация усовершенствованной системы радарного наукастинга осадков с учетом пропусков и при различных методах формирования выборок по результатам испытаний в теплый период года май-сентябрь 2017 и 2020 гг.

Как менялась Яндекс.Погода: от виджета до погодных карт

Фиксированные буи измеряют температуру воды на глубине до 3 метров. Для измерения параметров атмосферы непосредственно в ее «толще» в воздух запускаются метеозонды. Они измеряют параметры атмосферы и по радио передают данные обратно на аэрологические станции наблюдений. Во всем мире действует порядка 870 станций метеорологического зондирования, из них 115 — на территории нашей страны. Вот только с 2015 года Росгидромет стал запускать метеозонды для изучения атмосферы в два раза реже. Вместо ежедневного двухразового зондирования российские метеорологи перешли на одноразовое. Отразилось это на качестве прогнозов погоды не только в нашей стране, но и, например, в соседнем Китае, прогнозы в котором во многом зависят от данных российских метеостанций. Выше метеозондов наблюдают за погодой метеоспутники. Но и здесь все не так просто.

Россия имеет четыре метеоспутника. Находясь постоянно в одной точке над Землей, он снимает целиком все Восточное полушарие планеты. Космический аппарат этой серии с высоты 35 786 км способен проводить многоспектральную съемку в видимом и инфракрасном диапазонах с разрешением 1 км и 4 км соответственно. Снимки делаются каждые полчаса. Низкоорбитальные спутники «Метеор-1» и «Метеор-2» имеют более низкую орбиту — 825 километров, это позволяет получать более детальную информацию, чем при использовании расположенных на гораздо более высокой орбите геостационарных спутников. Оба космических аппарата выведены на солнечно-синхронную орбиту. Вот только «Метеор-1» тоже не функционирует, на орбите он еще находится, но картинку уже не дает. Таким образом, у нашей страны на сегодняшний день только два действующих метеоспутника.

Для сравнения, у США на орбите постоянно работают пять метеоспутников и еще один аппарат находится в резерве. Однако стоить сказать, что еще восемь лет назад российских метеорологических спутников в космосе не было совсем. Даже особо точные военные карты с грифом «совершенно секретно» составлялись на основе данных с американских спутников. Благодаря именно спутниковым наблюдениям удается существенно повысить точность прогнозов погоды. Прибор позволяет создавать трехмерные карты температуры воздуха и поверхности, водяного пара и свойств облаков. Имея 2378 спектральных каналов, AIRS дает разрешение более чем в 100 раз больше, чем предыдущие инфракрасные зонды, и обеспечивает более точную информацию о вертикальных профилях атмосферной температуры и влажности. AIRS также может измерять следовые парниковые газы, такие как озон, угарный газ, двуокись углерода и метан. Если вы слышите о том, что озоновый слой над Антарктидой начал восстанавливаться , то это благодаря AIRS, который и это замечает.

Есть и другие способы наблюдения за погодой из космоса. Метод скаттерометрии позволяет дистанционно определять скорость и направление ветра в океанах. Скаттерометр — это микроволновой радар, сканирующий поверхность океана и позволяющий измерять удельную эффективную площадь рассеяния, что дает возможность восстанавливать параметры приводного ветра. Радар «видит» волны и определяет куда и с какой скоростью дует ветер. Первый такой прибор был установлен на борту американского космического аппарата SeaSat в 1978 году и впервые доказал возможность точного измерения скорости ветра с орбиты. На орбите уже работало большое количество спутников-скатеррометров. Подобный инструмент RapidScat был установлен на Международной космической станции и действовал с сентября 2014 года по август 2016 года. Создание полномасштабной группировки спутников-скатеррометров позволит более эффективно осуществлять прогнозирование морских штормов, изучать океаническую циркуляцию, взаимодействие атмосферы и океана и их влияние на погоду и глобальный климат.

Суперпомощники «Прогноз погоды — это решение сложной математической задачи. В рамках системы уравнений описываются законы атмосферной циркуляции, притока тепла, вертикальных движений.

На карте анимации ветра вы наглядно увидите движение атмосферного воздуха, на ней также хорошо видны атмосферные вихри, такие как циклоны, тайфуны и ураганы. На карте температуры вы увидите прогнозируемое распределение тепла и холода в приземном слое атмосферы. Карта атмосферного давления считается одной из главных в метеорологии, на ней хорошо видны циклоны, антициклоны, барические гребни, ложбины и малоградиентные поля. На карте качества воздуха вы увидите области как с чистым воздухом, так и области загрязнения воздуха различными примесями по европейскому стандарту CAQI: 0 - воздух абсолютно чистый, 100 - воздух крайне загрязнен.

Если нам нужны более детальные снимки — мониторинг лесов, полей, сельхозугодий, то мы обращаемся к программе Landsat. Это американская миссия, которая была изначально коммерческой, но в 2008 году ее сделали бесплатной и отдали все данные в распоряжение научного сообщества. С помощью информации из разных источников мы получаем довольно детальную картину того, что происходило с ландшафтами и лесами за последние 38 лет. Это дает огромный простор для научных исследований, которые раньше просто невозможно было проводить из-за недостатка таких данных. Кроме того, наиболее продвинутые мировые лаборатории, особенно те, кто сотрудничает с какими-то IT-гигантами, могут позволить себе автоматизированно обрабатывать этот огромный массив данных, сотни снимков на каждую точку Земли за последние 38 лет. На их основе можно создавать очень интересные продукты. Позже этот продукт может быть ценен не только сам по себе, но и как источник данных о чем-то еще. Именно так мы сделали в исследовании смерчей и ветровалов. Начали систематически работать над проектом после того, как одна лаборатория Мэрилендского университета совместно с компанией Google опубликовала данные о повреждениях лесов на земле в глобальном масштабе за последние 30 лет. Они просто опубликовали данные, но не определили связь с явлениями для каждого объекта.

Тут открылся огромный простор для исследователей по всему миру. Мы, например, стали проводить исследования не на базе самих снимков, а на базе уже готовых обработанных результатов. Возможно ли прогнозировать с помощью метода космического мониторинга? Будет ли это эффективно? Есть такое понятие как наукастинг — текущий прогноз погоды на срок до трех часов. Это те самые штормовые предупреждения, которые должны доводиться до людей. В принципе они базируются на метеорологических радарах, однако большая часть территории Пермского края не покрыта радарами. Конечно, можно использовать снимки спутников для такого рода прогнозов, но они будут гораздо менее точными, чем прогнозы на основе радарных данных. Вторая история связана с тем, что на метеорологических спутниках есть не только обычные сенсоры, которые позволяют получать снимки, но и множество разных приборов, передающих информацию о распределении в толще атмосферы температуры, влажности, скорости ветра. Эта именно информация, она не является сама по себе прогнозом, но содержит ценнейшие данные для математических моделей атмосферы, которые как раз используются для получения прогнозов погоды на срок до двух недель.

Мы все привыкли иметь дело как раз с такими прогнозами. Это делают все мировые прогностические центры, в том числе и наш Гидрометцентр России. Наиболее часто для прогнозов погоды используется метод математического моделирования. Его суть состоит в том, что модель усваивает все данные, поступающие с различных источников: метеостанций, радиозондов, спутников. Дальше решается серьезная система уравнений, которая требует огромного объема вычислений. Общеизвестный факт, что все самые мощные суперкомпьютеры — это компьютеры метеорологических центров. То есть космический мониторинг не является методом прогнозирования. Возможно только узкое применение для очень краткосрочного прогноза, если у вас нет радаров. У этого метода достаточно ограниченные возможности, поэтому он не используется и для прогнозов — это метод сбора объективной информации о состоянии поверхности земли, океана, облачности и так далее.

В нескольких регионах, в том числе на Южном Урале, 27 апреля прогнозируют дожди, подверженные влиянию пыли из пустыни Сахара. В некоторых регионах России уже прошли оранжевые дожди. Например, вчера такие осадки выпали в Белгороде и Крыму, автомобили покрылись желтой пылью.

Фото группы ГИДРОМЕТЦЕНТР РОССИИ: О ПОГОДЕ - ИЗ ПЕРВЫХ РУК

  • Как мы отказались от нейросетей, а затем вернули их в прогноз осадков Яндекс.Погоды
  • Как решать
  • Цветные осадки: дождь с песком придет на Южный Урал
  • АИИС «МетеоТрасса» для автодорог — IRAM Dev

А можно поточнее? Как делается прогноз погоды и можно ли его улучшить?

Синоптики: на Москву за сутки выпадет 30% месячной нормы осадков Актуальные новости о погоде и окружающей среде.
Классификация современных прогнозов погоды ⇒ METEOPROG Фото: Владимир Астапкович / РИА Новости.
Кабинет синоптика | это.> Анимация текущих данных радарных наблюдений.

Похожие новости:

Оцените статью
Добавить комментарий