Новости почему поверхностное натяжение зависит от рода жидкости

Почему поверхностное натяжение воды зависит от рода жидкости. #ФизикаЖидкостиKhanAcademyВ этом видео мы поговорим о том, почему иголка может свободно плавать на поверхности воды, но тут же утонет, если на неё надавать.

Поверхностное натяжение

Иными словами, в зависимости от силы взаимодействия молекул жидкостного раствора зависит значение сила натяжения поверхности. Знание о зависимости поверхностного натяжения от рода жидкости является важным для множества процессов и приложений. Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит. Чем обусловлено это удивительное явление и почему величина поверхностного натяжения так сильно зависит от природы жидкости? Таким образом, рода жидкости влияют на поверхностное натяжение различными способами, причем эффект температуры может варьироваться для каждого рода жидкости.

Почему поверхностное натяжение зависит от рода жидкости?

По причине воздействия сил поверхностного натяжения на капли жидкости и их действия внутри мыльных пузырей появляется некоторое избыточное давление. Поверхностное натяжение это физическая величина, равная отношению силы поверхностного натяжения F, приложенной к границе поверхностного слоя жидкости и направленной по касательной к поверхности, к длине L этой границы. Значение коэффициента поверхностного натяжения зависит от вида жидкости и ее температуры, то есть с увеличением температуры жидкости коэффициент его поверхностного натяжения уменьшается и при критической температуре равен нулю. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости).

Поверхностные явления

Поверхностно-инактивными веществами по отношению к воде являются неорганические электролиты — кислоты, щелочи, соли. Они взаимодействуют с водой сильнее, чем молекулы воды между собой. Явление изменения концентрации вещества в поверхностном слое жидкости в результате его самопроизвольного перехода из объема фазы называется адсорбцией. Адсорбционное равновесие определяется двумя процессами: притяжением молекул к поверхности под действием межмолекулярных сил и тепловым движением, стремящимся восстановить равенство концентраций в поверхностном слое и объеме фазы. Адсорбцию растворенного вещества на границе раствор — воздух целесообразно рассматривать с термодинамических позиций и связывать ее с изменением энергии поверхности или ее поверхностного натяжения. Гиббс установил зависимость между избытком адсорбированного вещества в поверхностном слое Г, активностью растворенного вещества в растворе a и поверхностным натяжением s на границе жидкость — газ: 3. Из уравнения Гиббса 3. Зависимость поверхностного натяжения от концентрации для ПАВ достаточно точно подчиняется эмпирическому уравнению, выведенному Б. Шишковским: , 3. Дифференцируя 3.

Согласно Ленгмюру в условиях предельной адсорбции на границе раздела жидкость — газ образуется слой поверхностно-активного вещества толщиной в 1 молекулу мономолекулярный слой , в котором адсорбированные молекулы ориентируются вертикально, занимая на поверхности минимальную площадь.

Для чистых жидкостей не смесей. При увеличении температуры коэффициент поверхностного натяжения уменьшается, причем вдали от критической точки практически прямо пропорционально увеличению температуры коэфф поверх. Вплоть до нуля 1. Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии.

В то же время к жидкости в капилляре со стороны капли приложены силы поверхностного натяжения, направленные вниз. Что называется силой поверхностного натяжения? Силой поверхностного натяжения называют силу, которая действует вдоль поверхности жидкости перпендикулярно к линии, ограничивающей эту поверхность, и стремится сократить ее до минимума. Поверхностное натяжение имеет двойной физический смысл — энергетический термодинамический и силовой механический. Куда направлены силы поверхностного натяжения? Какую величину называют коэффициентом поверхностного натяжения в каких единицах его измеряют? Другими словами, коэффициентом поверхностного натяжения называется сила, приложенная к единице длины отрезка контура на поверхности жидкости и направленная по касательной к этой поверхности перпендикулярно к данному отрезку. Что такое поверхностный слой жидкости? Поверхностный слой, тонкий слой вещества близ поверхности соприкосновения двух фаз тел, сред , отличающийся по свойствам от веществ в объёме фаз. Почему у всех веществ поверхностное натяжение уменьшается с ростом температуры? Поверхностное натя- Page 7 7 жение с повышением температуры уменьшается, так как увеличива- ются средние расстояния между молекулами жидкости. Как зависит поверхностное натяжение от природы вещества образующего поверхность? Поверхностное натяжение зависит от природы жидкости, т. В чем состоит физический смысл поверхностного натяжения? Каков физический смысл поверхностного натяжения жидкости?

Поверхностное натяжение Свойства поверхностного слоя жидкости. Поверхностное натяжение. Физическая химия.

Как можно объяснить поверхностное натяжение жидкостей?

Их молекулы действуют как посредники и уменьшают краевой угол. Они проникают в любую щель между жиром и тарелкой, облегчая попадание туда воды. Вообразим себя в роли физиков-судомоек, которые приходят к группе химиков и говорят: «Пожалуйста, разработайте и пустите в производство вещество, которое было бы пригодно в качестве моющего средства. Производство этого средства должно быть недорогим».

Современные химики-органики ответят: «Это легко сделать». Чтобы прицепиться к воску или к жиру, молекулы должны иметь длинную углеводородную цепь, подобную следующей[77]»: но не слишком длинную, иначе она не будет растворяться в воде. Воски и жиры имеют аналогичную цепную структуру, и они должны притягивать такие цепи.

Затем это вещество на одном из концов должно иметь нечто обладающее сродством к воде, например атом натрия. Такого рода молекулы были сконструированы и изготовлены, и сейчас мы покупаем их в больших количествах в хозяйственных магазинах. Ниже приведены примеры обычного мыла и синтетического стирального порошка подобной структуры[78].

К числу таких веществ относится также применяемый в фотографии и исследовательской работе аэрозоль. На покрытое воском стекло наносят каплю чистой воды фиг. Концом спички добавляют раствор моющего средства и следят за изменением краевого угла.

Действие смачивающего агента. Длинные молекулы показаны линией с точкой, которая обозначает группу, имеющую сродство к воде. Молекулы смачивающего агента аэрозоля показаны не в масштабе, а увеличены во много раз.

Опыт 14. Новое посудное полотенце с воскообразной поверхностью разрезают на два куска и растягивают на наклонном столе. На один кусок выливают крепкий раствор красителя.

Краситель впитывается с трудом, большая его часть стекает. Затем на другой кусок выливают остаток красителя, к которому добавлено небольшое количество моющего средства. Действие мыла и моющих средств.

Когда раствор моющего средства попадает на покрытую воском поверхность, его молекулы скапливаются вокруг воска, причем их «жирные» концы направлены в сторону воска, а «водяные» — наружу. Эти внешние концы создают оболочку, которая притягивает воду, и этим облегчают смачивание. Аэрозоль, молекула которого имеет удвоенную длину, прикрепляется к воску, жиру или целлюлозе обоими концами и поднимает имеющую сродство к воде середину, подобно выгнувшей спину гусенице; выпяченные «спины» создают притягивающую воду оболочку.

Мытье посуды. Молекулы большинства моющих средств и мыла имеют на одном конце группу, обладающую сродством к воде. Действие этих веществ при мытье посуды схематически изображено на фиг.

Действие моющего вещества натурального или синтетического. Мыльные пузыри на вид достаточно прочны; если их ударить, они подскакивают и, если испарения нет, сохраняются довольно долго. Происходит это по следующим причинам: 1 Молекулы мыла собираются с обеих сторон пленки, причем их концы, имеющие сродство к воде, направлены внутрь, а инертные — наружу, создавая нейтральную поверхностную оболочку[79] которая ни к чему не прилипает.

В то же время чистая жидкость редко образует устойчивые пузырьки или пену, поэтому остерегайтесь пить воду из прудов, на поверхности которых бывает пена. Чтобы плащ не пропускал воду, поверхностное натяжение не должно позволять воде проникать в поры. Для этого поры не закрывают, а покрывают волокна воском, чтобы создать большой краевой угол при контакте с водой.

Тогда, если поры малы, вода в них не проникает, а задерживается выпяченной поверхностной пленкой. Опыт 15. Схему можно показать через проекционный фонарь; тот же эффект можно продемонстрировать на небольшом решете с металлической сеткой.

Если проволочки решета покрыть парафином, чтобы они сделались несмачиваемыми, решето будет удерживать осторожно налитую на него воду. Но стоит снизу к решету прикоснуться влажным пальцем, как оболочка воды разрушится и начнется дождь. Таким же образом палатка начинает протекать, если кто-нибудь из любопытства прикоснется изнутри к полотнищу мокрой головой.

Водонепроницаемость и смачивание. В сильно увеличенном виде показаны в разрезе волокна ткани для зонтов или брезента для палаток с налитой на них водой. Поры не закрыты, но когда на волокна нанесено покрытие, создающее большой краевой угол между водой и покрытием , вода выпячивается между волокнами и удерживается поверхностным натяжением.

Химия поверхностных явлений и чудеса в горном деле Химия веществ, изменяющих краевой угол, творит поистине чудеса в технике и в быту. Моющие средства помогают прачкам, протирщикам окон и мойщикам овец. Ничтожные добавки к каплям от насморка позволят им проникнуть в носу пациента сквозь барьер, созданный волосками слизистой.

Водоотталкивающие вещества делают непромокаемыми плащи и промышленные фильтры. Наконец, избирательные смачивающие вещества отделяют ценные минералы от бесполезной породы. Для этого породу, содержащую металлическую руду, размалывают, а затем полученную пыль размешивают в чане с водой.

В воду добавляют соответствующее вещество, которое покрывает частички руды, делает их несмачиваемыми и позволяет им легко «плавать»[80], тогда как бесполезный песок намокает и опускается на дно в виде грязи, которую затем удаляют. Поверхность соприкосновения воды с открытым воздухом слишком мала, чтобы на ней могли собраться все несмачиваемые водой частицы руды, поэтому через взвесь продувают пузырьки воздуха, которые создают пену и поднимают руду кверху, где ее и собирают. Такая схема «пенной флотации» отнюдь не бесполезная игрушка.

Этот процесс успешно применяется в горной промышленности, и с его помощью разделяют миллионы тонн руды в день. Подбор веществ, которые будут охватывать руду защитной оболочкой и не будут защищать песок, требует от химиков большого искусства. Более того, некоторые вещества даже отделяют в смешанных рудах один металл от другого; для этого требуется еще более тонкая химия.

Сейчас пенная флотация находит много новых применений, например отделение грибка спорыньи от спелого зерна, сортировка гороха для консервирования, улавливание потерянных частичек каучука, но основное ее применение — это разделение свинца, цинка, серебра и т. Амебы и поверхностное натяжение Каким образом мелкие простейшие организмы, живущие в воде, передвигаются и находят пищу? Некоторое представление об этом можно получить с помощью грубых химических моделей, вроде движущейся зигзагами «лодки» из камфары или искусственной ртутной «амебы» фиг.

На небольшую лужицу ртути на часовом стекле в блюдце наливают разбавленную азотную кислоту. Около ртути помещают кристалл бихромата калия. Ртуть начинает двигаться подобно амебе; ее перемещения вызваны изменениями поверхностного натяжения вследствие химических или электрических эффектов.

Настоящая амеба тоже образует такие неправильные выступы и впадины, возможно также используя изменения поверхностного натяжения. Здесь приведены некоторые красивые опыты, демонстрирующие изменения поверхностного натяжения. Опыт 16.

Швейную иглу или тонкий листочек металла можно заставить плавать в блюдце с водой. Если поверхностное натяжение уменьшить, предмет потонет. Попробуйте добавить к воде спирт или мыло.

Опыт 17. Посыпьте поверхность чистой воды несмачиваемым порошком сажей, тальком или ликоподием. По движению порошка можно обнаружить ослабление поверхностного натяжения.

Если на поверхность нанести капли спирта, порошок разбежится в стороны фиг. Капли спирта падают на воду, которая посыпана порошком. Обычное объяснение таково: спирт образует слабую оболочку, и порошок растаскивается в стороны прочной оболочкой чистой воды.

Но иногда предпочитают говорить, что молекулы спирта, растекаясь, создают «поверхностное давление» и расталкивают порошок. Хотя эти взгляды различны, любой из них полезен для объяснения опытов. Опыт 18.

На посыпанную порошком чистую поверхность воды нанесите оливковое масло. Его требуется так мало, что достаточно погрузить в масло спичку и затем вытереть ее насухо. Даже палец, потертый о волосы, соберет достаточное количество природного жира.

В предыдущем опыте после действии спирта поверхность восстанавливается, но влияние жира остается, поэтому этот опыт требует очень чистых, свободных от жира приспособлений. Мыло и слюна действуют подобно спирту. Личинки москитов живут в прудах и просовывают наружу расположенные в хвосте дыхательные трубки.

Масло, нанесенное на поверхность, проникает в эти трубки и убивает личинку. Прежнее объяснение, согласно которому масло настолько ослабляет поверхностную пленку, что личинки не могут висеть на ней и дышать, следует отбросить. Опыт 19.

Небольшая капля масла, помещенная в большое блюдо со слегка припудренной чистой водой, очень быстро растекается в большое круглое пятно, которое потом сохраняет свои размеры. Так ведут себя растительные масла; они являются «жирными кислотами», и у них один конец, кислотный, имеет сродство к воде: Молекулы минерального масла, у которых инертны оба конца, видимому, располагаются по поверхности воды и движутся подобно двумерному газу, растекаясь случайным образом. Кажется, что пленка масла сверху «давит» на поверхность раздела.

Такое объяснение представляется более правильным, чем «ослабление поверхностного натяжения воды». Сейчас это внешнее давление измеряют с помощью точных весов, которые взвешивают давление пленки масла на подвижную перекладину. Применение длинных молекул масла Смазывание.

При смазывании высокоскоростных подшипников молекулы растительного масла присоединяются к металлу металл вытесняет водород из кислотного конца молекулы масла , и масло образует мономолекулярные бархатистые «ковры», инертные внешние слои которых удобно скользят друг по другу. К смазке добавляют также минеральные масла, чтобы между этими «коврами» получить инертные масляные «ролики». При крайне небрежном обращении с металла сдираются даже бархатистые монослои; тогда движущиеся металлические детали с большой силой прилипают друг к другу «схватываются» , и это чревато неприятными последствиями.

Ланолиновый жир пристает к коже и проникает в нее, перенося с собой необходимые медикаменты, тогда как инертные минеральные масла беспорядочно распределяются на коже в виде жирных комков; поэтому избегайте мазей, изготовленных не на ланолине, а на минеральных маслах. К коже пристают и молекулы хорошей ваксы, а парафин разновидность минерального масла с более длинной цепью образует беспорядочные пятна[81]. Полировка обуви щеткой облегчает прилипание и распределяет молекулы по поверхности более равномерно.

Укрощение штормов в море. Укрощение бурных морей с помощью масла — отнюдь не сказка. Достаточно вылить за борт совсем немного подходящего масла, чтобы оно распространилось по большой поверхности.

Ветер пытается создать большие волны, раскачивая небольшую рябь, масло сдувается в лужи неправильной формы, и различие поверхностного натяжения помешает действию ветра, создав своего рода поверхностное трение. Поэтому в таком месте образуется меньше больших волн. А волны, приходящие издалека, не смогут по крайней мере создать разрушительных гребней.

Поверхностное натяжение играет важную роль при образовании вспененных гребней, и масло может помешать их образованию. Как изменится поверхностное натяжение при повышении температуры? Попробуйте нагреть припудренную поверхность воды, поднося к ней раскаленную докрасна кочергу.

Опыт 21. Распылите по чистой воде камфару. Каждая частица совершает беспорядочные движения.

Это происходит потому, что камфара медленно растворяется в воде, ослабляя поверхностную оболочку. Каждую частицу вперед тянет чистая вода, а назад — слабее вода с камфарой, поэтому частица плывет вперед, подобно лодке, крутясь и поворачиваясь из-за своей неправильной формы. Попробуйте добавить еще немного масла.

Движение камфары сразу прекратится. Не правда ли, это красивый несложный опыт, немного похожий на детскую забаву? Однако эта забава играет важную роль в одном из великих экспериментов атомной физики — в измерении размеров молекулы.

Размер молекулы Шестьдесят лет назад лорд Рэлей наблюдал за растеканием масла по воде. В то время, когда ученые строили различные предположения о размерах молекул, он догадался, что самый тонкий слой масла, который может полностью покрыть водную поверхность, будет иметь толщину как раз в одну молекулу, и решил определить эту толщину. Рэлей представил себе растекание капли масла как хаотическое движение молекул, карабкающихся друг на друга и сваливающихся назад, пока каждая не достигнет поверхности воды и не сможет прицепиться к воде эти масла состоят из молекул с длинной цепью, на одном конце которых находится химическая группа, имеющая сродство к воде.

Как только все молекулы масла расположатся таким способом, они будут держаться в виде мономолекулярного покрова и перестанут стремиться к дальнейшему растеканию фиг. Масло на воде. Капля масла, нанесенная на чистую поверхность воды, растекается и покрывает ее слоем толщиной в одну молекулу.

Молекулы масла, вероятно, стоят «дыбом» подобно ворсу на ковре. Если масла как раз достаточно для данной поверхности воды, слой будет иметь толщину в одну молекулу, и все молекулы будут плотно упакованы по вертикали, подобно ворсинкам бархата. При меньшем количестве масла останутся участки открытой воды.

Если масла будет …??? Лорд Рэлей вымыл и заполнил водой круглый большой таз, имевший 82 см в поперечнике. На поверхность воды он поместил взвешенную каплю масла и наблюдал, как оно растекается и закрывает всю поверхность.

Затем он опять взял чистую воду и каплю меньшего размера, затем еще меньшую, пока не дошел до такой капли, которая уже не могла полностью закрыть всю поверхность. Как же он обнаружил, что закрыта не вся поверхность? Если перед опытом распылить на поверхности порошок, можно изменить свойства поверхности.

Поскольку поверхностное натяжение определяется на молекулярном уровне, любое изменение компонентов жидкости, поверхностно-активных веществ, топлива или соединений в жидкости может привести к изменению поверхностного натяжения. Если известно поверхностное натяжение совершенно чистого состава, любое отклонение от этого выявит некоторый уровень загрязнения. Это может показаться абстрактным приложением поверхностного натяжения, но оно показывает, как даже самые простые вещи могут оказать наибольшее влияние в науке. Интересно, что влияние примесей на поверхностное натяжение было впервые обнаружено Агнес Поккельс - женщиной, увлеченной физикой, но лишенной доступа к образованию. Как упоминалось ранее, поверхностное натяжение важно для водомерок, одного из немногих существ, которые могут перемещаться по поверхности воды, не падая внутрь. Это явление происходит потому, что ноги водомерки «не смачиваются», то есть ноги водомерки отталкивают воду и захватывать воздух, позволяя им существенно вдавливать поверхность воды, не нарушая ее. Волосы также увеличивают площадь поверхности водяных струй, что означает, что на поверхность воды воздействует меньшее усилие. Это ошеломляющее сочетание тонкой силы и идеальной адаптации.

Чтобы переместить молекулу M3, расположенную непосредственно под поверхностным слоем, на поверхность, необходимо совершить работу против сил молекулярного давления. Следовательно, молекулы поверхностного слоя жидкости обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эту энергию называют поверхностной энергией. Очевидно, что величина поверхностной энергии тем больше, чем больше площадь свободной поверхности. Коэффициент поверхностного натяжения — величина, численно равная работе, совершенной молекулярными силами при изменении площади свободной поверхности жидкости на 1 м2 при постоянной температуре. Так как любая система, предоставленная сама себе, стремится занять такое положение, в котором ее потенциальная энергия наименьшая, то жидкость обнаруживает стремление к сокращению свободной поверхности. Поверхностный слой жидкости ведет себя подобно растянутой резиновой пленке, то есть все время стремится сократить площадь своей поверхности до минимальных размеров, возможных при данном объеме. Например, капля жидкости в состоянии невесомости имеет сферическую форму. Поверхностное натяжение Свойство поверхности жидкости сокращаться можно истолковать как существование сил, стремящихся сократить эту поверхность. Молекула M1 рис. В целом она действует так, что стремится сократить поверхность жидкости. После извлечения рамки из раствора мыльной пленки подвижная часть перемещается из положения 1 в положение 2. Коэффициент поверхностного натяжения зависит от природы жидкости, от температуры и от наличия примесей. При увеличении температуры он уменьшается. Примеси в основном уменьшают некоторые увеличивают коэффициент поверхностного натяжения.

На поверхности остается такое число молекул, при котором площадь поверхности оказывается минимальной в каждом конкретном случае — при заданном объеме жидкости, силах, действующих на жидкость. Для перенесения молекул из глубины объема жидкости в ее поверхностный слой необходимо совершить работу по преодолению равнодействующей сил притяжения, действующих на молекулу в поверхностном слое. Поверхностное натяжение зависит от рода жидкости и от ее температуры : с повышением температуры оно уменьшается. Так называемые поверхностно-активные вещества мыло, жирные кислоты также уменьшают поверхностное натяжение. Для экспериментального определения значения поверхностного натяжения жидкости можно использовать процесс образования и отрыва капель, вытекающих из капельницы. Пока капля мала, она не отрывается, ее удерживают силы поверхностного натяжения.

ПОЧЕМУ ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЗАВИСИТ ОТ РОДА ЖИДКОСТИ

Различные роды жидкостей обладают различными значениями сил притяжения между частицами. Например, вода имеет относительно высокое поверхностное натяжение из-за сильных водородных связей между молекулами. Это делает воду такой «липкой» и способной образовывать капли на поверхности. С другой стороны, некоторые жидкости, такие как спирты, имеют более низкое поверхностное натяжение из-за отсутствия или слабости водородных связей. Это позволяет им распространяться по поверхностям и проникать в более тонкие межмолекулярные промежутки. Также некоторые жидкости, например, масла, обладают очень низким поверхностным натяжением, что делает их еще более распространенными и гладкими по поверхности. Это связано с отсутствием водородных связей и большей подвижностью молекул.

Температура также оказывает влияние на поверхностное натяжение. В общем случае, с повышением температуры поверхностное натяжение жидкости уменьшается. Это связано с возрастающей кинетической энергией молекул, что позволяет им преодолевать силы притяжения и более легко отделяться от поверхности.

Из жидкости, образующей пену, легко можно получить и отдельную пленку. Эти пленки очень интересны. Они могут быть чрезвычайно тонки: в наиболее тонких частях их толщина не превосходит стотысячной доли миллиметра.

Несмотря на свою тонкость, они иногда очень устойчивы. Мыльную пленку можно растягивать и деформировать, сквозь мыльную пленку может протекать струя воды, не разрушая ее. Чем же объяснить устойчивость пленок? Непременным условием образования пленки является прибавление к чистой жидкости растворяющихся в ней веществ, притом таких, которые сильно понижают поверхностное натяжение В природе и технике мы обычно встречаемся не с отдельными пленками, а с собранием пленок — пеной. Часто можно видеть в ручьях, там, где небольшие струйки падают в спокойную воду, обильное образование пены. В этом случае способность воды пениться связана с наличием в воде особого органического вещества, выделяющегося из корней растений. В строительной технике используют материалы, имеющие ячеистую структуру, вроде пены.

Такие материалы дешевы, легки, плохо проводят теплоту и звуки и достаточно прочны. Для их изготовления добавляют в растворы, из которых образуются стройматериалы, вещества, способствующие пенообразованию. Смачивание Небольшие капельки ртути, помещенные на стеклянную пластинку, принимают шарообразную форму. Это является результатом действия молекулярных сил, стремящихся уменьшить поверхность жидкости. Ртуть, помещенная на поверхность твердого тела, не всегда образует круглые капли. Она растекается по цинковой пластинке, причем общая поверхность капельки, несомненно, увеличится. Капля анилина имеет шарообразную форму тоже только тогда, когда она не касается стенки стеклянного сосуда.

Стоит ей коснуться стенки, как она тотчас прилипает к стеклу, растягиваясь по нему и приобретая большую общую поверхность. Это объясняется тем, что в случае соприкосновения с твердым телом силы сцепления молекул жидкости с молекулами твердого тела начинают играть существенную роль. Поведение жидкости будет зависеть от того, что больше: сцепление между молекулами жидкости или сцепление молекулы жидкости с молекулой твердого тела. В случае ртути и стекла силы сцепления между молекулами ртути и стекла малы по сравнению с силами сцепления между молекулами ртути, и ртуть собирается в каплю. Такая жидкость называется не смачивающей твердое тело. В случае же ртути и цинка силы сцепления между молекулами жидкости и твердого тела превосходят силы сцепления, действующие между молекулами жидкости, и жидкость растекается по твердому телу. В этом случае жидкость называется смачивающей твердое тело.

Отсюда следует, что, говоря о поверхности жидкости, надо иметь в виду не только поверхность, где жидкость граничит с воздухом, но также и поверхность, граничащую с другими жидкостями и ли с твердым телом. В зависимости от того, смачивает ли жидкость стенки сосуда или не смачивает, форма поверхности жидкости у места соприкосновения с твердой стенкой и газом имеет тот или иной вид. В случае несмачивания форма поверхности жидкости у края круглая, выпуклая. В случае смачивания жидкость у края принимает вогнутую форму. Капиллярные явления. В жизни мы часто имеем дело с телами, пронизанными множеством мелких каналов бумага, пряжа, кожа, различные строительные материалы, почва, дерево. Приходя в соприкосновение с водой или другими жидкостями, такие тела часто впитывают их в себя.

На этом основано действие полотенца при вытирании рук, действие фитиля в керосиновой лампе и т. Подобные явления можно также наблюдать в узких стеклянных трубочках. Узкие трубочки называются капиллярными или волосными. При погружении такой трубочки одним концом в широкий сосуд в широкий сосуд происходит следующее: если жидкость смачивает стенки трубки, то она поднимется над уровнем жидкости в сосуде и притом тем выше, чем уже трубка; если жидкость не смачивает стенки, то наоборот уровень жидкости в трубке устанавливается ниже, чем в широком сосуде. Изменение высоты уровня жидкости в узких трубках или зазорах получило название капиллярности. В широком смысле под капиллярными явлениями понимают все явления, обусловленные существованием поверхностного натяжения. Высота поднятия жидкости в капиллярных трубках зависит от радиуса канала в трубке, поверхностного натяжения и плотности жидкости.

Между жидкостью в капилляре и в широком сосуде устанавливается такая разность уровней h, чтобы гидростатическое давление rgh уравновешивало капиллярное давление: где s - поверхностное натяжение жидкости R — радиус капилляра. Высота поднятия жидкости в капилляре пропорциональна ее поверхностному натяжению и обратно пропорциональна радиусу канала капилляра и плотности жидкости закон Жюрена Почему мыльные пузыри круглые, а водомерки не тонут? Все это следствия одного и того же физического явления, без которого вода не была бы водой. Как будто жидкость заключена в упругую пленку, которая стремится сжать свое содержимое. Это позволяет веществу сохранять объем но не форму , и этот объем ограничивается поверхностью жидкости. Эти вторые значительно меньше первых, поэтому равнодействующая сила притяжения направлена внутрь жидкости, что способствует удержанию молекулы на поверхности. Поверхностное натяжение — это величина, которая показывает стремление жидкости сократить свою свободную поверхность, то есть уменьшить избыток своей потенциальной энергии на границе раздела с газообразной фазой.

Чем больше площадь поверхности жидкости, тем больше молекул, которые обладают избыточной потенциальной энергией, и тем больше поверхностная энергия. Коэффициент поверхностного натяжения — это физическая величина, которая характеризует данную жидкость и численно равна отношению поверхностной энергии к площади свободной поверхности жидкости. Коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости, хотя может быть рассчитан с ее помощью. Если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать форму сферы, как капля воды или мыльный пузырь.

Водородные связи, дисперсионные силы и диполь-дипольные взаимодействия являются примерами таких сил. В зависимости от химического состава и структуры молекул, эти силы могут быть различными для разных жидкостей. Межмолекулярные силы определяют, насколько сильно молекулы притягиваются друг к другу и как они упорядочены на поверхности жидкости.

Однако если позаботиться о тщательном удалении растворенного воздуха, жидкость можно заставить выдержать растяжение и вести себя необычным образом. Например, вода или ртуть держатся в верхней части барометра намного выше «высоты атмосферного столба», а сифон может работать в вакууме! Жидкости оказываются «слабыми, как вода» только в результате вредного влияния маленьких пузырьков воздуха. Молекулярное объяснение поверхностного натяжения. Итак, тот факт, что жидкости сохраняют свой объем, мы «объяснили» наличием дальнодействующих сил притяжения. Посмотрим, не смогут ли эти силы объяснить существование поверхностного натяжения. Представим себе состояние молекулы А в середине сосуда с водой фиг. Со всех сторон ее толкают другие молекулы.

Кроме того, со всех сторон ее притягивают ближайшие соседи — и равнодействующая сила притяжения равна нулю. Силы, действующие на молекулы, в жидкости. Теперь рассмотрим другую молекулу В, находящуюся на поверхности воды. Ее тоже толкают, но не со всех сторон, и тоже притягивают, но не во всех направлениях. В области действия сил притяжения у нее есть соседи снизу и с каждой стороны, но нет соседей сверху. Равнодействующая сил притяжения направлена внутрь жидкости и уравновешивается действием столкновений снизу. Таким образом, молекула В испытывает притяжение вниз, наподобие дополнительного веса. Во внутренних областях большой круглой капли молекулы будут, подобно молекуле А, испытывать равномерное притяжение со всех сторон.

Молекулы на поверхности, подобно молекуле В, будут втягиваться внутрь. Так как такие молекулы В будут пытаться приблизиться к центру капли, поверхность будет стремиться сжаться; по существу создается впечатление, что капля имеет сжимающуюся оболочку. Очевидно, если на поверхности образуется гребень, молекулярное притяжение распрямит его, несмотря на мешающие возмущения небольшое углубление на поверхности также исчезнет, хотя это менее очевидно ; в результате притяжения молекул все неровности на поверхности будут сглаживаться фиг. Поверхностные силы в небольшой капле жидкости. Действующее на молекулы типа В притяжение соседей стремится придать массе жидкости сферическую форму. Заметьте, что сфера имеет минимальную поверхность при заданном объеме. Если на поверхности появляются небольшие неправильности, поверхностные силы стремятся устранить их. Чтобы представить себе общую картину, сравните заполненную молекулами каплю с толпой людей, привлеченных уличной дракой.

Прибывает все больше и больше заинтересованных зевак. Опоздавшие плохо видят, что происходит, они напирают на впереди стоящих — их притягивает любопытство, но они напирали бы так же, если бы их притягивали просто стоящие впереди соседи. Как влияет это притяжение к центру на толпу в целом? Подвижная толпа стягивается в круг с минимальным внешним периметром. Круг имеет меньшую протяженность периметра, нежели любая другая фигура с той же общей площадью. Человек А, находящийся в глубине толпы, оказывается сжатым, и если ему позволяет рост, то видит, что его неприятные ощущения вызваны напирающими на него людьми, нажимающими внутрь. Он будет страдать точно тай же, если накинуть на толпу огромный пояс и затягивать его. Натянутый пояс будет влиять на внешнюю форму толпы и на тесноту внутри нее точно так же, как и стремление людей, находящихся снаружи, пробиться к середине.

Поможет ли эта аналогия[72] понять, каким образом молекулярное притяжение оказывает то же действие, что и эластичная оболочка, растянутая по всей поверхности жидкости? С молекулярной точки зрения на поверхности жидкостей существует не реальная «шкурка», как у кролика, а особый слой внешних молекул. Соотношение между поверхностными и объемными эффектами. Насекомые и поверхностное натяжение Почему эта «оболочка» превращает маленькие капли в совершенные по форме шарики вопреки действию силы тяжести и не может сделать этого с более крупными лужами? С молекулярной точки зрения согласно нашей теории, если вам угодно это обусловлено особым поведением молекул, расположенных на поверхности. Эти силы действуют на поверхности и не связаны с основной массой жидкости. Но сила тяжести действует на всю жидкость, равным образом на ее внешние и внутренние слои. Поверхностное натяжение — это «поверхностный эффект», а вес — «объемный эффект», и их относительная важность будет изменяться в зависимости от реального размера капли или лужи.

Представим себе, что поверхностные силы возрастают прямо пропорционально величине поверхности[73], тогда как вес, конечно, возрастает пропорционально объему. Рассмотрим превращение небольшой капли в каплю, в 10 раз большую. Для простоты представим, что капли имеют вид кубиков[74]: маленького С1 фиг. Как соотносятся их поверхности? Кубические «капли». Сравнение поверхности и объема. Каждый куб имеет шесть граней. Куб с десятикратными линейными размерами имеет в 102, или в 100 раз, большую поверхность.

Как соотносятся объемы этих кубов? Они соответственно равны а3 и 10а 3, т. Объем одного куба превышает объем другого в 103, или в 1000 раз, и, следовательно, вес воды в нем будет в 1000 раз больше. При переходе от малого кубика к большому поверхностные эффекты возрастут только в 100 раз, но действие силы тяжести возрастет в 1000 раз; таким образом, ее относительное значение увеличится в 10 раз. На самом же деле силы поверхностного натяжения растягивают каждую границу, или край, поверхности. Поэтому они возрастают пропорционально линейным размерам, т. Для очень больших объемов сила тяжести во много раз превосходит влияние поверхностного натяжения; поэтому поверхность прудов плоская, а пролитое на пол ведро воды растекается под действием силы тяжести. На форму маленьких капель сильно влияет поверхностное натяжение, для очень маленьких капель это влияние становится определяющим.

Для ныряющего в воду человека главную опасность представляет давление на него воды. Для крошечного клопа, ползущего по капле дождя, непреодолимы силы поверхностного натяжения. Теперь понятно, почему маленькие водяные насекомые могут бегать по поверхности пруда не проваливаясь? Они ничем не рискуют: большинство из них водой не смачивается и провалиться не может. Даже если их насильно затолкнуть под воду, они немедленно выскочат наружу, причем помогает им поверхностный слой. Для крошечных насекомых, тело которых имеет способность намокать, капля воды оказывается тюрьмой. Частично смачиваемые водой насекомые могут держаться на ее поверхности, если они достаточно малы, но, погрузившись однажды в воду, случайно проскочив через упругую поверхность, они уже не смогут выбраться наружу. В жизни еще более мелких существ, например микробов, все определяется поверхностными силами; вес едва ли имеет для них какое-либо значение.

Весь контакт с внешним миром они осуществляют через свою поверхность; через нее поступает пища, и, если они хотят двигаться, им надо изменять-форму своей поверхности. Не удивительно поэтому, что такие существа можно уничтожать с помощью ядов, которые покрывают их поверхность, подобно тому как краска наносится на волокна одежды. Размышления завели нас далеко от экспериментальных фактов. Некоторые из развитых идей подтверждаются последующими опытами, другие стоят лишь немногим более простой игры воображения, и их следует использовать только в той мере, в какой они приводят к плодотворным предположениям. Краевой угол с молекулярной точки зрения Все же мы можем развить дальше молекулярную картину и обсудить, как жидкости соприкасаются с твердыми телами, т. Возвращаясь к небольшим лужицам на столе и к классификации по краевым углам, нарисуем каплю, поверхность которой принимает выпуклую форму под влиянием поверхностных сил, действующих на молекулы фиг. Поверхностное натяжение и краевой угол с молекулярной точки зрения. В том месте, где лужица соприкасается со столом, угловые молекулы должны также притягиваться столом.

Совместное притяжение стола и жидкости и определяет краевой угол. Складывая силы притяжения как векторы, получаем равнодействующую R сил притяжения со стороны соседних молекул как жидкости, так и стола. Для поверхности жидкости эта равнодействующая играет роль «вертикали», и поверхность расположится перпендикулярно к ней, точно так же, как поверхность большой лужи принимает горизонтальное положение, перпендикулярно силе тяжести. Итак, краевой угол определяется направлением равнодействующей сил притяжения R; прежде чем продолжить обсуждение, рассмотрим подробнее силы, которые определяют форму поверхности. Молекулярные силы и поверхность жидкости Чтобы понять, почему поверхность жидкости располагается перпендикулярно равнодействующей сил притяжения R, вернемся к обсуждению сил, действующих на молекулу. На молекулы действуют: дальнодействующие силы: б притяжение соседей только в пределах нескольких диаметров молекул ; короткодействующие силы: в сильное отталкивание во время столкновений с соседями на расстоянии долей диаметра молекулы. Для описания поведения молекул вряд ли стоит применять термин «равновесие», но все же можно сказать, что в покоящейся жидкости каждая молекула в среднем находится в равновесии. Коротко- и дальнодействующие силы.

На любую молекулу на поверхности жидкости короткодействующие силы действуют со всех сторон и снизу, поэтому равнодействующая будут перпендикулярна поверхности. Равнодействующая дальнодействующих сил, которая уравновешивает эти короткодействующие силы, должна иметь противоположное направление, а следовательно, она также будет перпендикулярна поверхности. Из последнего утверждения следует и обратное — поверхность должна быть перпендикулярна равнодействующей сил притяжения, в противном случае все силы перемещали бы поверхность, пока она не приняла бы этого положения. Конечно, в молекулярном масштабе сама поверхность исчезает в хаосе беспорядочных движений, подобно границе толпы. Она представляется гладкой, только когда ее рассматривают издалека. Две из названных сил действуют на поверхность и меняют свое направление, когда поверхность изгибается. Это — короткодействующее отталкивание и дальнодействующее притяжение соседей. Третья сила — земное притяжение — всегда направлена вертикально вниз.

В большом пруду основное направление задается силой тяжести, которая превращает всю поверхность в горизонтальную плоскость; поэтому две другие силы также вертикальны. На молекулы же, расположенные вблизи твердой стенки или на поверхности небольшой искривленной капли, притяжение соседей влияет намного больше, чем сила тяжести. Поэтому для объяснения искривленного мениска или краевого угла силой тяжести можно пренебречь. Просто говорят: «Поверхность располагается перпендикулярно равнодействующей сил притяжения, которые действуют на молекулу, находящуюся на поверхности». Краевой угол и молекулярные силы Чтобы объяснить природу краевого угла с точки зрения молекулярных сил, рассмотрим силы притяжения, действующие на молекулу С, которая находится в том месте, где лужица жидкости соприкасается с твердым столом фиг. Силы, действующие на молекулу, находящуюся на краю небольшой лужицы жидкости. Лужица находится на столе, который сильно притягивает молекулы жидкости. Во-первых, на нее действует притяжение соседей, находящихся внутри слоя жидкости; равнодействующая этих сил равна F1 и направлена по биссектрисе угла клина направление подсказано симметрией.

Во-вторых, ее притягивают молекулы твердого стола с равнодействующей F2, которая перпендикулярна столу снова по соображениям симметрии. Векторное сложение сил F1 и F2 и дает их равнодействующую R; поверхность жидкости должна расположиться перпендикулярно R. Это схематически изображено на фиг. В таком случае краевой угол невелик и жидкость смачивает стол. Можно сказать, что сильно притягивающий стол побуждает жидкость растекаться. Таким образом, смачивание зависит от относительной силы молекулярного притяжения. Если молекулы жидкости притягиваются молекулами твердого тела сильнее, чем соседними молекулами самой жидкости, жидкость будет смачивать стол и растекаться. С другой стороны, если молекула жидкости предпочитает своих собратьев молекулам стола, силу F1 следует нарисовать больше F2 и картина примет такой вид, как на фиг.

Для «водоотталкивания», по-видимому, требуется, чтобы молекулы жидкости испытывали со стороны соседних молекул стола меньшее притяжение, чем со стороны соседних молекул жидкости. Лужица находится на столе, который слабо притягивает молекулы жидкости. Водоотталкивание и смачивание Таково молекулярное объяснение смачивания и краевого угла. Разве это не просто волшебная сказка, выдуманная для того, чтобы свести концы с концами? Нет, это объяснение совсем не так плохо, поскольку оно основано на молекулярных представлениях, которые используются в других областях физики и химии. Кроме того, оно позволяет сделать полезные рекомендации: 1 Для улучшения смачивания мечта прачек надо сделать F2 больше, чем F1, т. Это можно осуществить, применяя молекулы-посредники, которыми на практике являются молекулы мыла. Таким образом, мы раскрыли секрет мыла и указали путь к созданию новых синтетических моющих средств.

На вопрос: «Какой толщины должно быть покрытие? На вопрос: «Какова толщина молекулы? Это особенно заметно, когда жидкости поднимаются в очень узких трубках; «капиллярность» — полезное свойство жидкостей, и мы сейчас его разберем. Нагрейте кусок стеклянной трубки, растяните его в очень тонкую трубку и опустите один ее конец в чернила фиг. Окрашенная вода поднимается вверх вопреки силе тяжести, опровергая правило: «вода в сообщающихся сосудах устанавливается на одном уровне». Однако в U-образной трубке с колонами разного сечения жидкость все же устанавливается на одном уровне фиг. Если вспомнить обсуждение относительной роли поверхностных и объемных эффектов, можно догадаться, что влияние поверхностного натяжения будет более заметно в приборах малых размеров; например, в небольшой U-образной трубке фиг. Конечно, это то же самое, что мы уже видели при погружении тонкой трубки в чернила.

Наброски, представленные на фиг. Если жидкость поднимается в тонких трубках, то в еще более тонких она должна подняться еще выше. Проверьте это см. Капиллярные явления. Поскольку это следствие поверхностного натяжения проявляется в трубках, «тонких, как волос», оно получило название от латинского слова «волос» — capilla. Таким образом, капиллярность — это старое название поверхностного натяжения, которое еще применяется, чтобы охарактеризовать поведение жидкостей в тонких трубках. Это красивое название, но оно не объясняет подъема жидкости. Сказать, что вода поднимается по тонкой трубке вследствие капиллярности, по существу то же, что сказать «вследствие поведения тонких трубок».

Рассматривая через увеличительное стекло мениск поверхность жидкости в тонкой трубке, мы увидим, что он висит, как прикрепленный к стеклу изогнутый мешок, весьма похожий на одеяло пожарников, которые ловят выбрасывающегося из окна горящего дома тяжелого мужчину фиг. Снова возникает мысль о резиновой оболочке.

Почему поверхностное натяжение зависит от вида жидкости

Поверхностное натяжение зависит: а от рода жидкости, б от объема сосуда, в от давления. Подъем или опускание жидкости в трубках малого диаметра называется: а капиллярными явлениями, б смачиванием, в диффузией. Какую форму принимает жидкость в условиях невесомости? Почему капля воды имеет форму шара?

Почему вещества с высоким поверхностным натяжением также имеют высокую вязкость? Жидкости с более сильными межмолекулярными силами притяжения удерживают молекулы ближе друг к другу. Почему вода прилипает к поверхностям? Вода очень клейкая; он хорошо прилипает к различным веществам. Вода прилипает к другим вещам по той же причине, по которой она прилипает к самой себе — поскольку он полярен, он притягивается к веществам, имеющим заряд. Какой из следующих эффектов может возникнуть из-за высокого поверхностного натяжения воды? Высокое поверхностное натяжение жидкой воды держит лед наверху. Частичный отрицательный заряд на одном конце молекулы воды притягивается к частичному положительному заряду другой молекулы воды. Что произойдет, если у воды слабое поверхностное натяжение? Как вы думаете, что произойдет, если вода будет иметь слабое поверхностное натяжение? Насекомые не смогут приземляться или ходить по воде. Почему вода имеет более высокую температуру кипения? Вода имеет необычно высокая температура кипения для жидкости. Эти сильные межмолекулярные силы заставляют молекулы воды «прилипать» друг к другу и препятствовать переходу в газообразную фазу. Почему вода имеет высокую температуру кипения и плавления? Высокая температура кипения и низкая температура плавления. Вода имеет прочные водородные связи между молекулами. Эти связи требуют много энергии, прежде чем они разорвутся. Это приводит к тому, что вода имеет более высокую температуру кипения, чем если бы были только более слабые диполь-дипольные силы. Что вызывает высокое поверхностное натяжение, низкое давление пара и высокую температуру кипения воды quizlet? Водородная связь создает слегка положительная сторона и слегка отрицательная сторона, которая позволяет воде легко слипаться. Это то, что создает воду с высокой температурой кипения, низким давлением пара и высоким поверхностным натяжением. Почему вода имеет более высокое поверхностное натяжение, чем этанол? Вода имеет большую степень водородных связей в объеме жидкости. Следовательно, поскольку молекулы воды на поверхности жидкости труднее протолкнуть вниз, поверхностное натяжение воды выше, чем у этилового спирта.

Во время столкновений молекулы должны отталкиваться, в остальное время их действие друг на друга пренебрежимо мало. При растяжении твердого тела отталкивание уменьшается больше, чем притяжение, и снова возникает напряжение, сопротивляющееся нашим усилиям. Опыты показывают, что притяжение действует не на очень больших расстояниях, а лишь на расстоянии одного или двух диаметров молекул. Тут как будто возникает противоречие. Жидкости должны были бы хоть немного растягиваться при растяжении, на самом же деле при попытке растяжения они распадаются на части и в них образуются пузырьки пара. Однако если позаботиться о тщательном удалении растворенного воздуха, жидкость можно заставить выдержать растяжение и вести себя необычным образом. Например, вода или ртуть держатся в верхней части барометра намного выше «высоты атмосферного столба», а сифон может работать в вакууме! Жидкости оказываются «слабыми, как вода» только в результате вредного влияния маленьких пузырьков воздуха. Молекулярное объяснение поверхностного натяжения. Итак, тот факт, что жидкости сохраняют свой объем, мы «объяснили» наличием дальнодействующих сил притяжения. Посмотрим, не смогут ли эти силы объяснить существование поверхностного натяжения. Представим себе состояние молекулы А в середине сосуда с водой фиг. Со всех сторон ее толкают другие молекулы. Кроме того, со всех сторон ее притягивают ближайшие соседи — и равнодействующая сила притяжения равна нулю. Силы, действующие на молекулы, в жидкости. Теперь рассмотрим другую молекулу В, находящуюся на поверхности воды. Ее тоже толкают, но не со всех сторон, и тоже притягивают, но не во всех направлениях. В области действия сил притяжения у нее есть соседи снизу и с каждой стороны, но нет соседей сверху. Равнодействующая сил притяжения направлена внутрь жидкости и уравновешивается действием столкновений снизу. Таким образом, молекула В испытывает притяжение вниз, наподобие дополнительного веса. Во внутренних областях большой круглой капли молекулы будут, подобно молекуле А, испытывать равномерное притяжение со всех сторон. Молекулы на поверхности, подобно молекуле В, будут втягиваться внутрь. Так как такие молекулы В будут пытаться приблизиться к центру капли, поверхность будет стремиться сжаться; по существу создается впечатление, что капля имеет сжимающуюся оболочку. Очевидно, если на поверхности образуется гребень, молекулярное притяжение распрямит его, несмотря на мешающие возмущения небольшое углубление на поверхности также исчезнет, хотя это менее очевидно ; в результате притяжения молекул все неровности на поверхности будут сглаживаться фиг. Поверхностные силы в небольшой капле жидкости. Действующее на молекулы типа В притяжение соседей стремится придать массе жидкости сферическую форму. Заметьте, что сфера имеет минимальную поверхность при заданном объеме. Если на поверхности появляются небольшие неправильности, поверхностные силы стремятся устранить их. Чтобы представить себе общую картину, сравните заполненную молекулами каплю с толпой людей, привлеченных уличной дракой. Прибывает все больше и больше заинтересованных зевак. Опоздавшие плохо видят, что происходит, они напирают на впереди стоящих — их притягивает любопытство, но они напирали бы так же, если бы их притягивали просто стоящие впереди соседи. Как влияет это притяжение к центру на толпу в целом? Подвижная толпа стягивается в круг с минимальным внешним периметром. Круг имеет меньшую протяженность периметра, нежели любая другая фигура с той же общей площадью. Человек А, находящийся в глубине толпы, оказывается сжатым, и если ему позволяет рост, то видит, что его неприятные ощущения вызваны напирающими на него людьми, нажимающими внутрь. Он будет страдать точно тай же, если накинуть на толпу огромный пояс и затягивать его. Натянутый пояс будет влиять на внешнюю форму толпы и на тесноту внутри нее точно так же, как и стремление людей, находящихся снаружи, пробиться к середине. Поможет ли эта аналогия[72] понять, каким образом молекулярное притяжение оказывает то же действие, что и эластичная оболочка, растянутая по всей поверхности жидкости? С молекулярной точки зрения на поверхности жидкостей существует не реальная «шкурка», как у кролика, а особый слой внешних молекул. Соотношение между поверхностными и объемными эффектами. Насекомые и поверхностное натяжение Почему эта «оболочка» превращает маленькие капли в совершенные по форме шарики вопреки действию силы тяжести и не может сделать этого с более крупными лужами? С молекулярной точки зрения согласно нашей теории, если вам угодно это обусловлено особым поведением молекул, расположенных на поверхности. Эти силы действуют на поверхности и не связаны с основной массой жидкости. Но сила тяжести действует на всю жидкость, равным образом на ее внешние и внутренние слои. Поверхностное натяжение — это «поверхностный эффект», а вес — «объемный эффект», и их относительная важность будет изменяться в зависимости от реального размера капли или лужи. Представим себе, что поверхностные силы возрастают прямо пропорционально величине поверхности[73], тогда как вес, конечно, возрастает пропорционально объему. Рассмотрим превращение небольшой капли в каплю, в 10 раз большую. Для простоты представим, что капли имеют вид кубиков[74]: маленького С1 фиг. Как соотносятся их поверхности? Кубические «капли». Сравнение поверхности и объема. Каждый куб имеет шесть граней. Куб с десятикратными линейными размерами имеет в 102, или в 100 раз, большую поверхность. Как соотносятся объемы этих кубов? Они соответственно равны а3 и 10а 3, т. Объем одного куба превышает объем другого в 103, или в 1000 раз, и, следовательно, вес воды в нем будет в 1000 раз больше. При переходе от малого кубика к большому поверхностные эффекты возрастут только в 100 раз, но действие силы тяжести возрастет в 1000 раз; таким образом, ее относительное значение увеличится в 10 раз. На самом же деле силы поверхностного натяжения растягивают каждую границу, или край, поверхности. Поэтому они возрастают пропорционально линейным размерам, т. Для очень больших объемов сила тяжести во много раз превосходит влияние поверхностного натяжения; поэтому поверхность прудов плоская, а пролитое на пол ведро воды растекается под действием силы тяжести. На форму маленьких капель сильно влияет поверхностное натяжение, для очень маленьких капель это влияние становится определяющим. Для ныряющего в воду человека главную опасность представляет давление на него воды. Для крошечного клопа, ползущего по капле дождя, непреодолимы силы поверхностного натяжения. Теперь понятно, почему маленькие водяные насекомые могут бегать по поверхности пруда не проваливаясь? Они ничем не рискуют: большинство из них водой не смачивается и провалиться не может. Даже если их насильно затолкнуть под воду, они немедленно выскочат наружу, причем помогает им поверхностный слой. Для крошечных насекомых, тело которых имеет способность намокать, капля воды оказывается тюрьмой. Частично смачиваемые водой насекомые могут держаться на ее поверхности, если они достаточно малы, но, погрузившись однажды в воду, случайно проскочив через упругую поверхность, они уже не смогут выбраться наружу. В жизни еще более мелких существ, например микробов, все определяется поверхностными силами; вес едва ли имеет для них какое-либо значение. Весь контакт с внешним миром они осуществляют через свою поверхность; через нее поступает пища, и, если они хотят двигаться, им надо изменять-форму своей поверхности. Не удивительно поэтому, что такие существа можно уничтожать с помощью ядов, которые покрывают их поверхность, подобно тому как краска наносится на волокна одежды. Размышления завели нас далеко от экспериментальных фактов. Некоторые из развитых идей подтверждаются последующими опытами, другие стоят лишь немногим более простой игры воображения, и их следует использовать только в той мере, в какой они приводят к плодотворным предположениям. Краевой угол с молекулярной точки зрения Все же мы можем развить дальше молекулярную картину и обсудить, как жидкости соприкасаются с твердыми телами, т. Возвращаясь к небольшим лужицам на столе и к классификации по краевым углам, нарисуем каплю, поверхность которой принимает выпуклую форму под влиянием поверхностных сил, действующих на молекулы фиг. Поверхностное натяжение и краевой угол с молекулярной точки зрения. В том месте, где лужица соприкасается со столом, угловые молекулы должны также притягиваться столом. Совместное притяжение стола и жидкости и определяет краевой угол. Складывая силы притяжения как векторы, получаем равнодействующую R сил притяжения со стороны соседних молекул как жидкости, так и стола. Для поверхности жидкости эта равнодействующая играет роль «вертикали», и поверхность расположится перпендикулярно к ней, точно так же, как поверхность большой лужи принимает горизонтальное положение, перпендикулярно силе тяжести. Итак, краевой угол определяется направлением равнодействующей сил притяжения R; прежде чем продолжить обсуждение, рассмотрим подробнее силы, которые определяют форму поверхности. Молекулярные силы и поверхность жидкости Чтобы понять, почему поверхность жидкости располагается перпендикулярно равнодействующей сил притяжения R, вернемся к обсуждению сил, действующих на молекулу. На молекулы действуют: дальнодействующие силы: б притяжение соседей только в пределах нескольких диаметров молекул ; короткодействующие силы: в сильное отталкивание во время столкновений с соседями на расстоянии долей диаметра молекулы. Для описания поведения молекул вряд ли стоит применять термин «равновесие», но все же можно сказать, что в покоящейся жидкости каждая молекула в среднем находится в равновесии. Коротко- и дальнодействующие силы. На любую молекулу на поверхности жидкости короткодействующие силы действуют со всех сторон и снизу, поэтому равнодействующая будут перпендикулярна поверхности. Равнодействующая дальнодействующих сил, которая уравновешивает эти короткодействующие силы, должна иметь противоположное направление, а следовательно, она также будет перпендикулярна поверхности. Из последнего утверждения следует и обратное — поверхность должна быть перпендикулярна равнодействующей сил притяжения, в противном случае все силы перемещали бы поверхность, пока она не приняла бы этого положения. Конечно, в молекулярном масштабе сама поверхность исчезает в хаосе беспорядочных движений, подобно границе толпы. Она представляется гладкой, только когда ее рассматривают издалека. Две из названных сил действуют на поверхность и меняют свое направление, когда поверхность изгибается. Это — короткодействующее отталкивание и дальнодействующее притяжение соседей. Третья сила — земное притяжение — всегда направлена вертикально вниз. В большом пруду основное направление задается силой тяжести, которая превращает всю поверхность в горизонтальную плоскость; поэтому две другие силы также вертикальны. На молекулы же, расположенные вблизи твердой стенки или на поверхности небольшой искривленной капли, притяжение соседей влияет намного больше, чем сила тяжести. Поэтому для объяснения искривленного мениска или краевого угла силой тяжести можно пренебречь. Просто говорят: «Поверхность располагается перпендикулярно равнодействующей сил притяжения, которые действуют на молекулу, находящуюся на поверхности». Краевой угол и молекулярные силы Чтобы объяснить природу краевого угла с точки зрения молекулярных сил, рассмотрим силы притяжения, действующие на молекулу С, которая находится в том месте, где лужица жидкости соприкасается с твердым столом фиг. Силы, действующие на молекулу, находящуюся на краю небольшой лужицы жидкости. Лужица находится на столе, который сильно притягивает молекулы жидкости. Во-первых, на нее действует притяжение соседей, находящихся внутри слоя жидкости; равнодействующая этих сил равна F1 и направлена по биссектрисе угла клина направление подсказано симметрией. Во-вторых, ее притягивают молекулы твердого стола с равнодействующей F2, которая перпендикулярна столу снова по соображениям симметрии. Векторное сложение сил F1 и F2 и дает их равнодействующую R; поверхность жидкости должна расположиться перпендикулярно R. Это схематически изображено на фиг. В таком случае краевой угол невелик и жидкость смачивает стол. Можно сказать, что сильно притягивающий стол побуждает жидкость растекаться. Таким образом, смачивание зависит от относительной силы молекулярного притяжения. Если молекулы жидкости притягиваются молекулами твердого тела сильнее, чем соседними молекулами самой жидкости, жидкость будет смачивать стол и растекаться. С другой стороны, если молекула жидкости предпочитает своих собратьев молекулам стола, силу F1 следует нарисовать больше F2 и картина примет такой вид, как на фиг. Для «водоотталкивания», по-видимому, требуется, чтобы молекулы жидкости испытывали со стороны соседних молекул стола меньшее притяжение, чем со стороны соседних молекул жидкости. Лужица находится на столе, который слабо притягивает молекулы жидкости. Водоотталкивание и смачивание Таково молекулярное объяснение смачивания и краевого угла. Разве это не просто волшебная сказка, выдуманная для того, чтобы свести концы с концами? Нет, это объяснение совсем не так плохо, поскольку оно основано на молекулярных представлениях, которые используются в других областях физики и химии. Кроме того, оно позволяет сделать полезные рекомендации: 1 Для улучшения смачивания мечта прачек надо сделать F2 больше, чем F1, т. Это можно осуществить, применяя молекулы-посредники, которыми на практике являются молекулы мыла. Таким образом, мы раскрыли секрет мыла и указали путь к созданию новых синтетических моющих средств. На вопрос: «Какой толщины должно быть покрытие? На вопрос: «Какова толщина молекулы? Это особенно заметно, когда жидкости поднимаются в очень узких трубках; «капиллярность» — полезное свойство жидкостей, и мы сейчас его разберем. Нагрейте кусок стеклянной трубки, растяните его в очень тонкую трубку и опустите один ее конец в чернила фиг. Окрашенная вода поднимается вверх вопреки силе тяжести, опровергая правило: «вода в сообщающихся сосудах устанавливается на одном уровне». Однако в U-образной трубке с колонами разного сечения жидкость все же устанавливается на одном уровне фиг. Если вспомнить обсуждение относительной роли поверхностных и объемных эффектов, можно догадаться, что влияние поверхностного натяжения будет более заметно в приборах малых размеров; например, в небольшой U-образной трубке фиг. Конечно, это то же самое, что мы уже видели при погружении тонкой трубки в чернила. Наброски, представленные на фиг. Если жидкость поднимается в тонких трубках, то в еще более тонких она должна подняться еще выше. Проверьте это см. Капиллярные явления. Поскольку это следствие поверхностного натяжения проявляется в трубках, «тонких, как волос», оно получило название от латинского слова «волос» — capilla.

Это связано с увеличением средней кинетической энергии молекул и усилением их движения. Более активные молекулы могут преодолеть силы межмолекулярного взаимодействия и слабее притягиваться друг к другу. В результате, сила на единицу длины на поверхности жидкости уменьшается, что приводит к снижению коэффициента поверхностного натяжения. Выводы Коэффициент поверхностного натяжения зависит от ряда факторов, включая род жидкости, наличие примесей и температуру. Знание этих зависимостей позволяет не только более глубоко понять поведение жидкостей на границе раздела фаз, но и применять их в реальной жизни. Например, понимание влияния наличия примесей на коэффициент поверхностного натяжения является основой для разработки эффективных моющих средств, а понимание зависимости от температуры помогает в контроле процессов на различных стадиях промышленного производства.

Поверхностное натяжение воды. НПК.

Температурная зависимость поверхностного натяжения между жидкой и паровой фазами чистой воды Температурная зависимость поверхностного натяжения бензола Поверхностное натяжение зависит от температуры. Поверхностное натяжение жидкости является причиной появления капиллярного эффекта. Поскольку поверхностное натяжение определяется на молекулярном уровне, любое изменение компонентов жидкости, поверхностно-активных веществ, топлива или соединений в жидкости может привести к изменению поверхностного натяжения.

Похожие новости:

Оцените статью
Добавить комментарий