18 ноября 1962 года скончался датский физик-теоретик Нильс Бор, один из создателей современной физики.
ФутБОРный клуб. Как великие ученые оставили след в спорте
После возвращения в Копенгаген в 1912 году преподавал в университете и разрабатывал квантовую теорию строения атома. В 1916 году возглавил кафедру теоретической физики в Копенгагенском университете и добился открытия Института теоретической физики. В 1922 году он получил Нобелевскую премию по физике «за заслуги в изучении строения атома». В дальнейшем Бор посвятил себя изучению квантовой механики, а в 1930-м году увлекся ядерной физикой. В 1934 году получил от советского руководства приглашение приехать в Советский Союз.
Лекции Бора по квантовой физике в университетах каждый раз собирали аншлаги, что сильно впечатлило ученого. В сороковые годы занимался помощью ученым-эмигрантам, бежавшим в Данию от преследования нацистов, вместе с братом создал Комитет помощи ученым-беженцам.
На это раз студент предложил подняться с барометром на крышу, сбросить его вниз, замерять время падения и, воспользовавшись специальной формулой, выяснить высоту. Этот ответ удовлетворил преподавателя, однако он с Резерфордом не могли отказать себе в удовольствии прослушать остальные версии студента. Следующий способ был основан на измерении высоты тени барометра и высоты тени здания, с последующим решением пропорции. Это вариант понравился Резерфорду, и он с энтузиазмом попросил студента осветить оставшиеся способы. Тогда студент предложил ему самый простой вариант. Нужно было просто прикладывать барометр к стене здания и делать отметки, а затем сосчитать количество отметок и умножить их на длину барометра. Студент считал, что столь очевидный ответ точно нельзя упускать из виду. Дабы не прослыть в глазах ученых шутником, студент предложил и самый изощренный вариант.
Привязав к барометру шнурок — рассказывал он, — нужно раскачать его у основания здания и на его крыше, замерев величину гравитации. Из разницы между полученными данными, при желании можно узнать высоту. Кроме того, раскачивая маятник на шнурке с крыши здания, можно определить высоту по периоду прецессии. Наконец, студент предложил найти управляющего здания и взамен на замечательный барометр выведать у него высоту. Резерфорд спросил, неужели студент и впрямь не знает общепринятого решения задачи. Он не стал скрывать, что знает, но признался, что сыт по горло навязыванием учителями своего образа мышления подопечным, в школе и колледже, и отверганием ими нестандартных решений. Как вы наверняка догадались, этим студентом был Нильс Бор. Переезд в Англию Проработав в университете три года, Бор переехал в Англию. Лаборатория Резерфорда на тот момент считалась наиболее выдающейся. Последнее время в ней проходили эксперименты, породившие открытие планетарной модели атома.
Точнее, модель тогда пребывала еще на стадии становления. Опыты по прохождению альфа-частиц через фольгу позволили Резерфорду осознать, что в центре атома располагается небольшое заряженное ядро, на которое приходится едва ли вся масса атома, а вокруг него располагаются легкие электроны. Так как атом электронейтрален, сумма зарядов электронов должна равняться модулю заряда ядра. Заключение о том, что заряд ядра кратен заряду электрона было центральным в этом исследовании, но пока что оставалось неясным. Зато были выявлены изотопы — вещества, имеющие одинаковые химические свойства, но различную атомную массу. Атомный номер элементов. Закон смещения Работая в лаборатории Резерфорда, Бор понял, что химические свойства зависят от числа электронов в атоме, то есть от его заряда, а не массы, что и объясняет существования изотопов. Это стало первым важным достижением Бора в этой лаборатории. Так был сформирован «закон радиоактивных смещений». Далее датский физик сделал ряд более важных открытий, которые касались самой модели атома.
Модель Резерфорда-Бора Эту модель также называют планетарной, ведь в ней электроны вращаются вокруг ядра подобно тому, как планеты вокруг Солнца. Такая модель имела ряд проблем. Дело в том, что атом в ней был катастрофически неустойчив, и терял энергию за стомиллионную долю секунды.
После определенного количества разных по свойствам элементов свойства начинают повторяться. Так, калий похож на натрий, фтор — на хлор, а золото схоже с серебром и медью. Появление новых элементов в таблице Менделеева Пользуясь периодической системой, Менделеев также предсказал открытие нескольких новых химических элементов и описал их химические и физические свойства. В дальнейшем расчеты ученого полностью подтвердились: галлий открыт в 1875 году , скандий открыт в 1879 году и германий открыт в 1885 году поразительно точно соответствовали тем свойствам, которые описал Менделеев. Затем прогнозы гениального химика продолжили реализовываться и были открыты еще восемь новых элементов, среди которых: полоний 1898 год , рений 1925 год , технеций 1937 год , франций 1939 год и астат 1942—1943 годы. Кстати, в 1900 году Дмитрий Менделеев и шотландский химик Уильям Рамзай пришли к мнению, что в таблицу должны быть включены и элементы нулевой группы — до 1962 года они назывались инертными, а после — благородными газами. На сегодняшний день в Периодической системе химических элементов — 118 элементов. Последний, самый тяжелый из известных, — оганесон Og , названный так в честь своего первооткрывателя Юрия Цолаковича Оганесяна. Научный руководитель лаборатории ядерных реакций имени Г. Флерова Объединенного института ядерных исследований в Дубне стал четвертым в истории ученым, при жизни которого его именем был назван химический элемент. Менделеева расположены по рядам в соответствии с возрастанием их массы, а длина рядов подобрана так, чтобы находящиеся в них элементы имели схожие свойства. Например, благородные газы, такие как радон, ксенон, криптон, аргон, неон и гелий, с трудом вступают в реакции с другими элементами, а также имеют низкую химическую активность, из-за чего расположены в крайнем правом столбце. А элементы левого столбца калий, натрий, литий и т. Говоря проще, внутри каждого столбца элементы имеют подобные свойства, варьирующиеся при переходе от одного столбца к другому. В своем первоначальном варианте периодическая система понималась только как отражение существующего в природе порядка, и никаких объяснений, почему все должно обстоять именно так, не было. И лишь когда появилась квантовая механика, истинный смысл порядка элементов в таблице стал понятен. Это произошло, когда доктор Алан Айткен наводил порядок в кладовке химического факультета. Факультет переехал в новое помещение в 1968 году, и с тех пор оборудование, реактивы и бумаги пылились в подсобном помещении.
Открытие, о котором было объявлено в 2016 году, открыло новый способ «услышать» космос. В 2017 году LIGO и европейская обсерватория Virgo ощутили еще одну серию толчков, на этот раз вызванных столкновением двух сверхплотных объектов, называемых нейтронными звездами. Телескопы по всему миру видели связанный с этим взрыв, что сделало это событие первым в истории, наблюдаемым как в световых, так и в гравитационных волнах. Эти важные данные дали ученым беспрецедентный взгляд на то, как работает гравитация и как образуются такие элементы, как золото и серебро. Observation of Gravitational Waves from a Binary Black Hole Merger The first gravitational-wave source from the isolated evolution of two stars in the 40—100 solar mass range 16. Встряхивание генеалогического дерева человечества В 2010 году Ли Бергер представил далекого предка по имени Australopithecus sediba. Пять лет спустя он объявил, что в южноафриканской пещерной системе «Колыбель человечества» обнаружены окаменелости нового вида: Homo naledi, гоминида, чья «мозаичная» анатомия напоминает как современных людей, так и гораздо более древних родственников. Последующее исследование также показало, что H. Другие замечательные открытия были сделаны в Азии. В 2010 году группа ученых объявила, что ДНК, извлеченная из древней сибирской кости, не похожа ни на одну из ДНК современного человека, что стало первым свидетельством происхождения потомков, называемых теперь денисовцами. В 2018 году в Китае были обнаружены каменные орудия возрастом 2,1 миллиона лет, что подтверждает, что производители инструментов распространились в Азии на сотни тысяч лет раньше, чем считалось ранее. В 2019 году исследователи на Филиппинах объявили об окаменелостях Homo luzonensis, нового типа гоминина, похожего на Homo floresiensis. Открытие тысяч новых экзопланет Человеческие знания о планетах, вращающихся вокруг далеких звезд, сделали гигантский скачок вперед в 2010-х годах, в немалой степени благодаря космическому телескопу НАСА «Кеплер». С 2009 по 2018 год только Кеплер обнаружил более 2700 подтвержденных экзопланет, что составляет более половины текущего общего количества. Среди них; первая подтвержденная каменистая экзопланета. Его преемник TESS, запущенный в 2018 году, уже находит гораздо больше экзопланет. Надеюсь, в ближайшие годы мы увидим гораздо больше. В 2017 году исследователи объявили об открытии TRAPPIST-1, звездной системы всего в 39 световых годах от нас, в которой находятся семь планет размером с Землю; больше всего встречается вокруг любой звезды, кроме Солнца. За год до этого проект Pale Red Dot объявил об открытии Проксимы b, планеты размером с Землю, которая вращается вокруг Проксимы Центавра, ближайшей к Солнцу звезды, находящейся всего в 4,25 световых года от нас. Некоторые из крупнейших экзопланет в масштабе. Некоторые бактерии естественным образом используют Crispr-Cas9 в качестве иммунной системы, поскольку он позволяет им хранить фрагменты вирусной ДНК, распознавать любой будущий соответствующий вирус, а затем нарезать ДНК вируса на ленточки. В 2012 году исследователи предложили использовать Crispr-Cas9 в качестве мощного инструмента генетического редактирования, поскольку он точно разрезает ДНК способами, которые ученые могут легко настроить. В течение нескольких месяцев другие команды подтвердили, что этот метод работает с ДНК человека. С тех пор лаборатории всего мира стремились идентифицировать подобные системы, модифицировать Crispr-Cas9, чтобы сделать его еще более точным, и экспериментировать с его применением в сельском хозяйстве и медицине. Бозон Хиггса Как материя приобретает массу? В 1960-х и 1970-х годах физики, в том числе Питер Хиггс и Франсуа Энглер, предложили решение в виде нового энергетического поля, которое пронизывает Вселенную и теперь называется полем Хиггса. Это теоретическое поле также пришло с связанной с ним фундаментальной частицей, которую сейчас называют бозоном Хиггса. В июле 2012 года поиски, длившиеся несколько десятилетий, закончились, когда две команды на Большом адронном коллайдере ЦЕРН объявили об обнаружении бозона Хиггса.
100 лет атому Бора, отмеченные на родине знаменитой теории
Нильс Бор на знаменитой конференции по теоретической физике в Вашингтоне 26 января 1939 года сообщил об открытии деления урана. Нильс Бор всемирно известен как один из самых важных учёных 20-го века за его инновационное открытие структуры атомов. 3. Датский физик Нильс Бор в 1922 году был удостоен Нобелевской премии «за заслуги в изучении строения атома».
ФутБОРный клуб. Как великие ученые оставили след в спорте
За экспериментальное исследование поверхностного натяжения воды студент Бор был награжден золотой медалью Копенгагенской академии наук. И хотя до окончания университета — до степени магистра — ему оставалось еще более 2 лет, золотая медаль проложила ему путь в науку, предсказала, что в мире появился физик по имени НИЛЬС БОР [Д. Данин, с. Женился Бор в 25 лет на Маргарет Нер-лунд, которая стала подлинной и незаменимой опорой мужа. У них было 6 сыновей, один из которых, Оге Бор, также стал известным физиком [Д. Самин, с. С именем Нильса Бора связана вся история современной ядерной физики. В 37 лет он стал лауреатом Нобелевской премии «за заслуги в исследовании строения атомов и испускаемого ими излучения».
В 51 год создал капельную модель ядра, введя в ядерную физику термодинамические понятия. Вторая мировая война — немецкая оккупация Дании. В 1943 г. Нильсу Бору — 58 лет. В Соединенных Штатах он принимает участие в создании американской атомной бомбы. Когда стало ясно, что гитлеровская Германия уже не в состоянии овладеть атомным оружием, а Япония даже не пыталась его создать, Бор употребил все свое влияние, чтобы воспрепятствовать применению атомной бом- 1 Шпилянский Эдуард Маркович, д-р мед. С этой целью он беседует с президентом США Франклином Рузвельтом, ссорится с Черчиллем, борется против атомной монополии Англии и США — выдвигает идею «международного контроля» над вооружением.
Его усилия тщетны... Нильс Бор возвращается в Данию в Институт теоретической физики. Он помогает основать Европейский центр ядерных исследований и играет активную роль в его научной программе. В 1950 г.
Я помню, как однажды ко мне пришел один из наших молодых сотрудников, Вейцкопф, и с возмущением рассказал, что один из его друзей, работавших у нас же, ко всему на свете относится с неуважением. Трудные потому, что новая наука рождалась совсем не просто и далеко не всегда и не все получалось. И юмористические отступления были в такие минуты неоценимым подспорьем... Я с удовольствием вспоминаю пребывание у нас в те годы Ландау, его блестящую логику и то оживление, которое он внес в наше общество. Кстати, в связи с логикой и юмористическими отступлениями мне хочется вспомнить еще один момент.
В то время у нас было принято делить, все истины на две категории. Истину, обратная от которой явно нелепа, мы называли "тривиальной". Это была мелкая, неинтересная истина. А вот истине, настолько глубокой, что обратная от нее тоже является или, по крайней мере, кажется такой же глубокой, мы дали название "спиритуальной", так сказать, "духовной" истины. Вот с этими истинами, истинами второго рода, нам больше всего и приходилось сталкиваться в те времена. Честно говоря, мы совсем не возражали против этого. Теперь таких истин стало намного меньше это естественно, ведь физики всегда стремятся к созданию упорядоченных систем. Но наиболее волнующим в науке является тот период, когда мы имеем дело именно с истинами второго рода... Нильс Бор с супругой у входа в Институт физических проблем.
Идет уже третий час беседы. Улыбаясь, Нильс Бор говорит: - Я, вероятно, еще о многом мог бы рассказать, но мне хотелось бы послушать воспоминания нашего уважаемого Капицы. А я их с удовольствием потом прокомментирую. Петр Леонидович обращается к залу: - Хочу обратить внимание наших молодых физиков на то, как нужно выбирать себе "хозяина" в науке. Нильса Бора привели к Резерфорду те же импульсы, что затем привели к нему и меня. В Резерфорде было что-то непреодолимо привлекательное, как в Шаляпине. Кто хоть раз слышал Шаляпина, стремился вновь и вновь услышать его; всякий, кому посчастливилось говорить с Резерфордом, искал новых встреч с ним. В то же время он был грубоват, даже резок в обращении с людьми, а главное - не слишком выбирал выражения в разговоре. Я помню, как Чедвик советовал мне то, что я услышу от Резерфорда, не повторять в дамском обществе.
Но - и в этом одна из причин привлекательности Резерфорда - он был необычайно добрым и отзывчивым человеком. Вспоминая о Резерфорде, вероятно, следует рассказать и о той самой большой шутке, которую я себе позволил в жизни. Сейчас уже всем известно, что именно я дал Резерфорду прозвище "Крокодил". И вот, когда в Кембридже для меня была построена лаборатория, я пригласил известного английского скульптора Эрика Гилла и попросил его высечь на фасаде здания барельеф крокодила. Мне казалось,- Капица лукаво улыбается,- что если крокодил будет высечен столь знаменитым художником, то его уже нельзя будет принять за обиду произведение искусства есть произведение искусства. Итак, снаружи здания был барельеф крокодила, а внутри, в вестибюле,- большой барельеф "Резерфорда, кстати говоря, тоже выполненный Гиллом. Резерфорд, конечно, отлично понял шутку. В своей всегдашней грубоватой манере он проворчал Чедвику "Неужели он, Капица, думает, что я такой осел, что не знаю, как он меня называет? Недавно я получил письмо от одного ученого, который работает над историей Кембриджского университета.
Он пишет, что о нашем крокодиле сейчас ходит столько легенд, и притом противоречивых, что все уже окончательно запутались, и просит меня, как человека, причастного к этой истории, восстановить истину. В беседу вступает Нильс Бор - Да, я, естественно, помню эту историю, наделавшую в свое время столько шума. Резерфорд совсем не обиделся. А вот Кембридж буквально взорвался и раскололся на два лагеря консерваторов и радикалов. Консерваторы считали, что обида, нанесенная Капицей,- это предел обиды, которую один человек может нанести другому, радикалы объявили, что этопредел обиды, которую один человек может снести от другого. Впрочем,- продолжает Бор,- на отношениях между Капицей и Резерфордом случай этот совершенно не сказался. Отношения эти, вообще говоря, были примером отношений, пусть не всегда идеально гладких, но основанных на взаимном понимании и любви друг к другу. В то время Капица подарил мне копию барельефа Резерфорда, сделанную самим скульптором Гиллом, и для меня - это самый дорогой подарок. Записки, записки...
Учась в школе, будущий всемирно известный учёный проявлял особую склонность к физике и математике. В 1903 году Бор поступил в престижный Копенгагенский университет, где помимо физики и математики активно изучал химию и астрономию. В этом университете Нильс выполнил свои первые работы по исследованию колебаний струи жидкости для более точного определения величины поверхностного натяжения воды.
Это теоретическое исследование в 1906 году было отмечено золотой медалью Датского королевского общества. В последующие несколько лет оно было дополнено экспериментальными результатами, полученными Бором в лаборатории. В 1910 году Нильс Бор был удостоен степени магистра, а в мае 1911 года защитил докторскую диссертацию по классической электронной теории металлов.
В своей работе Бор убедительно доказал важную теорему классической статистической механики, согласно которой магнитный момент любой совокупности элементарных электрических зарядов, движущихся по законам классической механики в постоянном магнитном поле, в стационарном состоянии равняется нулю. В 1913 году увидела свет статья «Теория торможения заряженных частиц при их прохождении через вещество», которую Бор написал после непродолжительной, но весьма плодотворной совместной работы с Эрнестом Резерфордом в Англии. В Копенгагене Бор преподавал в университете, в то же время очень активно работая над квантовой теорией строения атома.
Теоретическое исследование в 1906 году было отмечено золотой медалью Датского королевского общества. В последующие годы 1907 — 1909 оно было дополнено экспериментальными результатами, полученными Бором в физиологической лаборатории отца [7] , и опубликовано по представлению корифеев тогдашней физики Рамзая и Рэлея [8]. В 1910 Бор получил степень магистра , а в мае 1911 защитил докторскую диссертацию по классической электронной теории металлов [7]. В своей диссертационной работе Бор, развивая идеи Лоренца , доказал важную теорему классической статистической механики , согласно которой магнитный момент любой совокупности элементарных электрических зарядов , движущихся по законам классической механики в постоянном магнитном поле , в стационарном состоянии равен нулю.
В 1919 эта теорема была независимо переоткрыта Йоханной ван Лёвен и носит название теоремы Бора — ван Лёвен англ. Из неё непосредственно следует невозможность объяснения магнитных свойств вещества в частности, диамагнетизма , оставаясь в рамках классической физики [9]. Это, видимо, стало первым столкновением Бора с ограниченностью классического описания, подводившим его к вопросам квантовой теории. Бор в Англии.
Теория Бора 1911—1916 [ ] В 1911 Бор получил стипендию в размере 2500 крон от фонда Карлсберга для стажировки за границей [10]. В сентябре 1911 он прибыл в Кембридж , чтобы работать в Кавендишской лаборатории под руководством знаменитого Дж. Однако сотрудничество не сложилось: Томсона не заинтересовал молодой датчанин, с ходу указавший на ошибку в одной из его работ и к тому же плохо изъяснявшийся на английском. Впоследствии Бор так вспоминал об этом: Я был разочарован, Томсона не заинтересовало то, что его вычисления оказались неверными.
В этом была и моя вина. Я недостаточно хорошо знал английский и потому не мог объясниться… Томсон был гением, который, на самом деле, указал путь всем… В целом, работать в Кембридже было очень интересно, но это было абсолютно бесполезным занятием. В 1911 Резерфорд по итогам своих опытов опубликовал планетарную модель атома. Бор активно включился в работу по этой тематике, чему способствовали многочисленные обсуждения с работавшим тогда в Манчестере известным химиком Георгом Хевеши и с самим Резерфордом.
Исходной идеей было то, что свойства элементов определяются целым числом — атомным номером , в роли которого выступает заряд ядра, который может изменяться в процессах радиоактивного распада. Первым применением резерфордовской модели атома для Бора стало рассмотрение в последние месяцы своего пребывания в Англии процессов взаимодействия альфа- и бета-лучей с веществом [12]. Летом 1912 Бор вернулся в Данию. Во время свадебного путешествия в Англию и Шотландию Бор с супругой посетили Резерфорда в Манчестере.
Бор передал ему свою подготовленную к печати статью «Теория торможения заряженных частиц при их прохождении через вещество» она была опубликована в начале 1913. Вместе с тем было положено начало тесной дружбе семей Боров и Резерфордов. Общение с Резерфордом оставило неизгладимый отпечаток как в научном, так и в личностном плане на дальнейшей судьбе Бора, который спустя много лет писал: Очень характерным для Резерфорда был благожелательный интерес, который он проявлял ко всем молодым физикам, с которыми ему приходилось долго или коротко иметь дело. Первые результаты содержатся в черновике, посланном Резерфорду ещё в июле 1912 и носящем название «резерфордовского меморандума» [15].
Однако решающие успехи были достигнуты в конце 1912 — начале 1913. Ключевым моментом стало знакомство в феврале 1913 с закономерностями расположения спектральных линий и общим комбинационным принципом для частот излучения атомов. Впоследствии сам Бор говорил: Как только я увидел формулу Бальмера , весь вопрос стал мне немедленно ясен. Итогом проведённой работы стали три части революционной статьи «О строении атомов и молекул» [17] , опубликованные в журнале «Philosophical Magazine» в июле, октябре и декабре 1913 и содержащие квантовую теорию водородоподобного атома.
В теории Бора можно выделить два основных компонента [18] : общие утверждения постулаты о поведении атомных систем, сохраняющие своё значение и всесторонне проверенные, и конкретная модель строения атома , представляющая в наши дни лишь исторический интерес. Постулаты Бора содержат предположения о существовании стационарных состояний и об излучательных переходах между ними в соответствии с представлениями Планка о квантовании энергии вещества. Модельная теория атома Бора исходит из предположения о возможности описания движения электронов в атоме, находящемся в стационарном состоянии, на основе классической физики, на которое накладываются дополнительные квантовые условия например, квантование углового момента электрона. Теория Бора сразу же позволила обосновать испускание и поглощение излучения в сериальных спектрах водорода , а также объяснить с поправкой на приведённую массу электрона наблюдавшиеся ранее Чарлзом Пикерингом и Альфредом Фаулером водородоподобные спектры с полуцелыми квантовыми числами как принадлежащие ионизированному гелию.
Блестящим успехом теории Бора стало теоретическое получение значения постоянной Ридберга [19]. Работа Бора сразу привлекла внимание физиков и стимулировала бурное развитие квантовых представлений. Его современники по достоинству оценили важный шаг, который сделал датский учёный. Так, в 1936 Резерфорд писал: Я считаю первоначальную квантовую теорию спектров, выдвинутую Бором, одной из самых революционных из всех когда-либо созданных в науке; и я не знаю другой теории, которая имела бы больший успех.
Это было так, точно из-под ног ушла земля и нигде не было видно твёрдой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточным, чтобы позволить Бору — человеку с гениальной интуицией и тонким чутьём — найти главные законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это мне кажется чудом и теперь. Это наивысшая музыкальность в области мысли.
Он оставался в Манчестере с осени 1914 до лета 1916. В это время он пытался распространить свою теорию на многоэлектронные атомы, однако скоро зашёл в тупик. Уже в сентябре 1914 он писал: Для систем, состоящих из более чем двух частиц, нет простого соотношения между энергией и числом обращений, и по этой причине соображения, подобные тем, которые я использовал ранее, не могут быть применены для определения «стационарных состояний» системы. Я склонен полагать, что в этой проблеме скрыты очень значительные трудности, которые могут быть преодолены лишь путём отказа от обычных представлений в ещё большей степени, чем это требовалось до сих пор, и что единственной причиной достигнутых успехов является простота рассмотренных систем.
В этом проявилась ограниченность круговых орбит, рассматриваемых в его теории. Преодолеть её стало возможно лишь после того, как в начале 1916 Арнольд Зоммерфельд сформулировал обобщённые квантовые условия, ввёл три квантовых числа для орбиты электрона и объяснил тонкую структуру спектральных линий , учтя релятивистские поправки. Бор сразу же занялся коренным пересмотром своих результатов в свете этого нового подхода [24].
Нильс Бор - биография
Подписка Отписаться можно в любой момент. Он был одним из самых выдающихся физиков-ядерщиков ХХ века, лауреатом Нобелевской премии, но его «полуеврейское» происхождение не соответствовало нацистским стандартам, а отказ от сотрудничества с нацистами грозил ему смертью. Во время оккупации Дании, осознав, что его арест неизбежен, он вынужден был бежать из Копенгагена сначала на рыбацкой лодке в Швецию, оттуда в бомбоотсеке военного самолета - в Шотландию, а операция по его спасению стала одной из самых крупных и опасных операций во времена Холокоста. Его отец был профессором физиологии Копенгагенского университета, мать происходила из еврейской семьи банкиров. Нильс Бор рос в среде ученых, с детства проявляя интерес к различным открытиям и изобретениям. В семье никто не сомневался, что в будущем он будет заниматься наукой. После окончания школы юноша поступил в Копенгагенский университет, где начал изучать физику, спустя семь лет защитил докторскую диссертацию, был приглашен на работу в Кембридж, а затем в Манчестер, где начал сотрудничать с Эрнестом Резерфордом, основателем ядерной физики.
Именно здесь проводились исследования, которые впоследствии привели Бора к мировой славе, а Розерфорд, с которым они очень подружились, стал для него «вторым отцом». Спустя год Нильс Бор женился на Маргрете Норлунд, и этот брак оказался счастливым. На протяжении всей последующей жизни супруга была его самым близким другом и советчиком. У них родилось шестеро сыновей, один из которых Оге Бор пошел по стопам отца и стал известным физиком. Весной 1916 года Бор вернулся в Данию, где ему предложили престижную должность профессора в Копенгагенском университете, который теперь носит его имя. Нильс Бор с супругой В 1922 году за выдающиеся успехи в области исследования атома Нильсу Бору была присуждена Нобелевская премия, он стал уважаемым ученым и почетным гражданином Дании, и в последующие годы занимался ядерной физикой, внеся значительный вклад в изучение ядерных реакций.
Несколько его немецких коллег-физиков еврейского происхождения потеряли работу, оставшись без каких-либо средств к существованию в своей стране. Бор использовал свои связи, чтобы вывезти их из Германии. По его инициативе был создан комитет по оказанию помощи ученым, вынужденным бежать от нацистского режима. Когда весной 1940 года Дания была оккупирована немецкими войсками, ситуация еще больше обострилась, даже несмотря на то, что она оказалась в более выгодном положении, чем другие страны из-за лояльности Гитлера к датчанам, которых он считал представителями арийской расы.
При этом из-за бойкота немецких или австрийских ученых совсем не ждали во Франции или Великобритании. Возможных мест, где их могли принять, было сравнительно немного. Копенгаген для некоторых них — или для их профессоров — представлялся удобным вариантом того, что сейчас бы назвали научным «офшором». Нейтральная страна хоть и имевшая прежде конфликт с Германией, но не воевавшая в последней войне , культурно и географически близкая, где тебя вполне гостеприимно встретят, куда можно поехать, не теряя связи с академической жизнью на родине, и при этом получить щедрую американскую стипендию.
Первой задачей книги, тем самым, было выяснить, благодаря какому сочетанию разного рода факторов — политических, дипломатических, научных, финансовых и экономических — у Бора появился уникальный шанс создать мировой исследовательский центр в крошечной стране, несмотря на недостаток местных ресурсов, и как он сумел превратить этот мизерный шанс в реальность. Это была действительно уникальная комбинация разного рода обстоятельств, которые сложились после окончания Первой мировой войны и продолжались примерно до конца 1920-х годов. В другое время и в несколько другой ситуации это было бы вообще практически нереально. Например, Бор пытался повторить что-то похожее и после Второй мировой войны, но прежние методы уже не сработали. Она о том, каким образом динамика производства научного знания изменилась благодаря кочующей между разными странами и университетами толпе постдокторантов. Девятнадцатый век был веком создания большинства научных дисциплин, многие из которых возникли в немецких университетах, с помощью подготовки докторских диссертаций. Для физической химии, например, главным центром был институт, организованный Вильгельмом Оствальдом в Лейпцигском университете. В нем было помещение и необходимые приборы для большого числа учеников, местных и иностранцев, которым профессор давал темы докторских исследований в рамках определенной им программы и которые, защитив диссертации, разъезжались по миру, основывая новые кафедры и распространяя эту новую область науки.
Дания стала одним из тех редких нейтральных мест в Европе, где ученые из Англии и Германии могли спокойно встречаться друг с другом, обсуждать научные проблемы на конференциях наравне, как коллеги, и даже сотрудничать, не слишком отвлекаясь на политические трения В квантовой теории несколько влиятельных профессоров, в том числе Бор, тоже пытались направлять исследовательский процесс и контролировать развитие этой научной дисциплины, каждый как директор в своем собственном институте, в частности давая задания ученикам и решая, какие статьи можно было послать в печать. Но к середине 1920-х резко увеличившееся количество постдоков, их временный, кочевой образ жизни и работы, внешние источники финансирования и частые переезды из одного центра в другой, с отличающейся исследовательской программой, превысили возможности эффективного контроля со стороны профессоров и директоров. Они председательствовали в процессе, писали рекомендации для получения стипендий и принимали временных исследователей у себя в лабораториях, но уже не могли так же уверенно, как раньше, давать исследовательские задания, определять методы решения и направление работы всего института. Инициатива выдвижения новых стратегических идей все чаще переходила к коллективному постдоку, молодежному, недисциплинированному и транснациональному. И идеи эти часто сочинялись на ходу, в результате обмена, случайных встреч или в процессе переезда из одного места в другое. Поколение Гейзенберга и Паули впоследствии стало настолько знаменитым, что их трудно без специального мысленного усилия представить блестящими молодыми дарованиями без копейки денег, постоянной работы и гарантированного профессионального будущего. Но сам Паули в письме 1923 года сравнивал неопределенность траектории своей собственной будущей карьеры с непредсказуемой судьбой квантовой частицы: «Точно известно только то, что наступающий семестр я проведу в Гамбурге... Идеи новой квантовой механики появились в головах у молодых ученых, не имевших еще постоянной работы, для которых прежние, более предсказуемые пути научной карьеры оказались нарушенными из-за экономических и политических неурядиц послевоенного времени.
Но им представилась возможность воспользоваться новыми, хоть и более неопределенными, переходами из одного метастабильного постдокторантского состояния в другое, которые при этом уводили их из области влияния одного учителя и профессора к другому. В процессе этих переходов у учеников возникала новая, прежде недоступная, степень интеллектуальной свободы, которой они в определенной мере смогли воспользоваться. Вернер Гейзенберг и Вольфганг Паули researchgate. Экспериментаторы же больше, наверное, привязаны к инфраструктуре. Вообще, динамика отношений между экспериментом и теорией менялась в разные периоды. Иногда теория забегала вперед и подсказывала, что делать. Иногда наоборот, она отставала от экспериментов. Но в принципе, экспериментаторы действительно больше зависят от конкретных мест, от инструментов.
И им обычно нужно больше времени, чтобы сделать свои работы, то есть цикл производства результатов медленнее. Для теоретиков же был еще один важный фактор, который повлиял на квантовую революцию, — скорость публикаций и распространения информации. Сейчас есть интернет и препринты, а тогда это зависело прежде всего от того, как быстро журналы могли напечатать новую работу. Журналы 1920-х годов, в которых публиковались квантовые физики, были способны напечатать поступившую статью за два-три месяца, а весь цикл от одной статьи поступившей в журнал, опубликованной и после этого использованной уже другим автором в статье и тоже посланной в журнал для публикации, часто мог уложиться в полгода, а иногда даже всего в четыре месяца. Благодаря такой скорости за полтора года после первой статьи Гейзенберга лета 1925 года новая квантовая механика набрала больше 200 статей примерно 80 авторов из разных стран мира. Журналы 1920-х годов, в которых публиковались квантовые физики, были способны напечатать поступившую статью за два-три месяца, а весь цикл от одной статьи поступившей в журнал, опубликованной и после этого использованной уже другим автором в статье и тоже посланной в журнал для публикации, часто мог уложиться в полгода, а иногда даже всего в четыре месяца — Для нынешних научных журналов это практически невозможно. И поскольку не было более мощных технологий, печатные журналы были главным средством информации, и они старались публиковать быстро. А вторая линия — это революция постдоков.
Но ведь у Бора должны были быть условия, которые позволяли ему принимать таких постдоков? Как и многие европейские университеты, копенгагенский ориентировался на то, как развивались дела в соседней Германии, но с некоторым отставанием. Например, к концу девятнадцатого века в большинстве больших немецких университетов уже был физический институт, то есть специальное здание, обычно трехэтажное, с лекционным залом человек на сто, комнатами для учебного практикума студентов, лабораторными помещениями в подвале для собственно научных исследований профессора, его ассистентов и учеников. И не забыть про квартиру, где жила семья профессора, который настаивал, чтобы университет обеспечил ему служебное жилье в здании института, чтобы ему сподручнее было всем этим хозяйством управлять. В Дании это появилось только после того, как в 1917 году Бор получил деньги на строительство аналогичного, но небольшого института. При первом личном посещении меня больше всего смутили маленькие размеры этого здания на окраине Копенгагена, несопоставимо скромного по физическим размерам по сравнению с тем образом великого научного центра мировых открытий, который сложился в голове после чтения историко-научной литературы. У Дании были какие-то амбиции? Торговля Дании сильно выиграла во время мировой войны, хотя вскоре после ее окончания в стране тоже начался экономический кризис, как и во всей Европе.
Еще интересен колониальный аспект этой истории, поскольку часто забывается, что Дания, несмотря на малость, — это еще и империя с заморскими территориями. В 1916 году они продали США свою часть Виргинских островов в Карибском море, по причине или под предлогом того, что эти острова легко могли быть захвачены Германией. Часть полученных от этой продажи средств и пошла на строительство физического института для Бора. Появляются рокфеллеровские стипендиаты. И он начинает свою деятельность по созданию мирового центра? Если бы не война, то главный центр квантовой физики возник бы, конечно, в Германии. И даже понятно где: в Мюнхене, у Зоммерфельда, в его развивающейся школе. Он подготовил десятки самых сильных теоретиков, в том числе Паули и Гейзенберга.
Но после войны Германия оказалась в международной изоляции, а Бор стал принимать у себя молодых немецких докторов, в том числе самых блестящих из Мюнхена, с зоммерфельдовской подготовкой, а потом еще и из Геттингена. По абсолютным меркам их было в целом не так много. За десять лет, с 1916 по 1927 год, всего в институте Бора работало примерно шестьдесят приезжих ученых из разных стран. Копенгагенская конференция, весна 1930, обсуждает второй кризис квантовой теории. Игрушечная пушка и горн использовались для звукового сопровождения докладов об очередных трудностях теории.
Нейтральная страна хоть и имевшая прежде конфликт с Германией, но не воевавшая в последней войне , культурно и географически близкая, где тебя вполне гостеприимно встретят, куда можно поехать, не теряя связи с академической жизнью на родине, и при этом получить щедрую американскую стипендию. Первой задачей книги, тем самым, было выяснить, благодаря какому сочетанию разного рода факторов — политических, дипломатических, научных, финансовых и экономических — у Бора появился уникальный шанс создать мировой исследовательский центр в крошечной стране, несмотря на недостаток местных ресурсов, и как он сумел превратить этот мизерный шанс в реальность. Это была действительно уникальная комбинация разного рода обстоятельств, которые сложились после окончания Первой мировой войны и продолжались примерно до конца 1920-х годов. В другое время и в несколько другой ситуации это было бы вообще практически нереально. Например, Бор пытался повторить что-то похожее и после Второй мировой войны, но прежние методы уже не сработали. Она о том, каким образом динамика производства научного знания изменилась благодаря кочующей между разными странами и университетами толпе постдокторантов. Девятнадцатый век был веком создания большинства научных дисциплин, многие из которых возникли в немецких университетах, с помощью подготовки докторских диссертаций. Для физической химии, например, главным центром был институт, организованный Вильгельмом Оствальдом в Лейпцигском университете. В нем было помещение и необходимые приборы для большого числа учеников, местных и иностранцев, которым профессор давал темы докторских исследований в рамках определенной им программы и которые, защитив диссертации, разъезжались по миру, основывая новые кафедры и распространяя эту новую область науки. Дания стала одним из тех редких нейтральных мест в Европе, где ученые из Англии и Германии могли спокойно встречаться друг с другом, обсуждать научные проблемы на конференциях наравне, как коллеги, и даже сотрудничать, не слишком отвлекаясь на политические трения В квантовой теории несколько влиятельных профессоров, в том числе Бор, тоже пытались направлять исследовательский процесс и контролировать развитие этой научной дисциплины, каждый как директор в своем собственном институте, в частности давая задания ученикам и решая, какие статьи можно было послать в печать. Но к середине 1920-х резко увеличившееся количество постдоков, их временный, кочевой образ жизни и работы, внешние источники финансирования и частые переезды из одного центра в другой, с отличающейся исследовательской программой, превысили возможности эффективного контроля со стороны профессоров и директоров. Они председательствовали в процессе, писали рекомендации для получения стипендий и принимали временных исследователей у себя в лабораториях, но уже не могли так же уверенно, как раньше, давать исследовательские задания, определять методы решения и направление работы всего института. Инициатива выдвижения новых стратегических идей все чаще переходила к коллективному постдоку, молодежному, недисциплинированному и транснациональному. И идеи эти часто сочинялись на ходу, в результате обмена, случайных встреч или в процессе переезда из одного места в другое. Поколение Гейзенберга и Паули впоследствии стало настолько знаменитым, что их трудно без специального мысленного усилия представить блестящими молодыми дарованиями без копейки денег, постоянной работы и гарантированного профессионального будущего. Но сам Паули в письме 1923 года сравнивал неопределенность траектории своей собственной будущей карьеры с непредсказуемой судьбой квантовой частицы: «Точно известно только то, что наступающий семестр я проведу в Гамбурге... Идеи новой квантовой механики появились в головах у молодых ученых, не имевших еще постоянной работы, для которых прежние, более предсказуемые пути научной карьеры оказались нарушенными из-за экономических и политических неурядиц послевоенного времени. Но им представилась возможность воспользоваться новыми, хоть и более неопределенными, переходами из одного метастабильного постдокторантского состояния в другое, которые при этом уводили их из области влияния одного учителя и профессора к другому. В процессе этих переходов у учеников возникала новая, прежде недоступная, степень интеллектуальной свободы, которой они в определенной мере смогли воспользоваться. Вернер Гейзенберг и Вольфганг Паули researchgate. Экспериментаторы же больше, наверное, привязаны к инфраструктуре. Вообще, динамика отношений между экспериментом и теорией менялась в разные периоды. Иногда теория забегала вперед и подсказывала, что делать. Иногда наоборот, она отставала от экспериментов. Но в принципе, экспериментаторы действительно больше зависят от конкретных мест, от инструментов. И им обычно нужно больше времени, чтобы сделать свои работы, то есть цикл производства результатов медленнее. Для теоретиков же был еще один важный фактор, который повлиял на квантовую революцию, — скорость публикаций и распространения информации. Сейчас есть интернет и препринты, а тогда это зависело прежде всего от того, как быстро журналы могли напечатать новую работу. Журналы 1920-х годов, в которых публиковались квантовые физики, были способны напечатать поступившую статью за два-три месяца, а весь цикл от одной статьи поступившей в журнал, опубликованной и после этого использованной уже другим автором в статье и тоже посланной в журнал для публикации, часто мог уложиться в полгода, а иногда даже всего в четыре месяца. Благодаря такой скорости за полтора года после первой статьи Гейзенберга лета 1925 года новая квантовая механика набрала больше 200 статей примерно 80 авторов из разных стран мира. Журналы 1920-х годов, в которых публиковались квантовые физики, были способны напечатать поступившую статью за два-три месяца, а весь цикл от одной статьи поступившей в журнал, опубликованной и после этого использованной уже другим автором в статье и тоже посланной в журнал для публикации, часто мог уложиться в полгода, а иногда даже всего в четыре месяца — Для нынешних научных журналов это практически невозможно. И поскольку не было более мощных технологий, печатные журналы были главным средством информации, и они старались публиковать быстро. А вторая линия — это революция постдоков. Но ведь у Бора должны были быть условия, которые позволяли ему принимать таких постдоков? Как и многие европейские университеты, копенгагенский ориентировался на то, как развивались дела в соседней Германии, но с некоторым отставанием. Например, к концу девятнадцатого века в большинстве больших немецких университетов уже был физический институт, то есть специальное здание, обычно трехэтажное, с лекционным залом человек на сто, комнатами для учебного практикума студентов, лабораторными помещениями в подвале для собственно научных исследований профессора, его ассистентов и учеников. И не забыть про квартиру, где жила семья профессора, который настаивал, чтобы университет обеспечил ему служебное жилье в здании института, чтобы ему сподручнее было всем этим хозяйством управлять. В Дании это появилось только после того, как в 1917 году Бор получил деньги на строительство аналогичного, но небольшого института. При первом личном посещении меня больше всего смутили маленькие размеры этого здания на окраине Копенгагена, несопоставимо скромного по физическим размерам по сравнению с тем образом великого научного центра мировых открытий, который сложился в голове после чтения историко-научной литературы. У Дании были какие-то амбиции? Торговля Дании сильно выиграла во время мировой войны, хотя вскоре после ее окончания в стране тоже начался экономический кризис, как и во всей Европе. Еще интересен колониальный аспект этой истории, поскольку часто забывается, что Дания, несмотря на малость, — это еще и империя с заморскими территориями. В 1916 году они продали США свою часть Виргинских островов в Карибском море, по причине или под предлогом того, что эти острова легко могли быть захвачены Германией. Часть полученных от этой продажи средств и пошла на строительство физического института для Бора. Появляются рокфеллеровские стипендиаты. И он начинает свою деятельность по созданию мирового центра? Если бы не война, то главный центр квантовой физики возник бы, конечно, в Германии. И даже понятно где: в Мюнхене, у Зоммерфельда, в его развивающейся школе. Он подготовил десятки самых сильных теоретиков, в том числе Паули и Гейзенберга. Но после войны Германия оказалась в международной изоляции, а Бор стал принимать у себя молодых немецких докторов, в том числе самых блестящих из Мюнхена, с зоммерфельдовской подготовкой, а потом еще и из Геттингена. По абсолютным меркам их было в целом не так много. За десять лет, с 1916 по 1927 год, всего в институте Бора работало примерно шестьдесят приезжих ученых из разных стран. Копенгагенская конференция, весна 1930, обсуждает второй кризис квантовой теории. Игрушечная пушка и горн использовались для звукового сопровождения докладов об очередных трудностях теории. Директора тогда имели большую власть, из-за чего могли возникать трения. Я уже упомянул, что журналы публиковали быстро, потому что не было реферирования. Достаточно было, чтобы профессор написал сопроводительное письмо, что статью стоит напечатать.
Казалось, что посещаю вовсе не научное учреждение, наполненное гениями и огромным количеством дорогостоящей аппаратуры, а студенческий кампус. Стены завешаны плакатами научных событий, ярмарок и выставок, а также постерами фильмов о Боре и его наследии. После 20-минутной прогулки по главному корпусу, подумалось, что пора войти в контакт с кем-то из сотрудников. На ресепшене не удивились, а сразу же позвали штатного экскурсовода. Это была милая дама преклонных лет по имени Герти. Она отреагировала на меня воодушевленно. Я заверила даму, что мой материал прочитают многие фанаты физики и науки из России, и что всем им интересно будет вместе со мной немного прикоснуться к истории квантовой физики. Штатный экскурсовод деловито повела меня по коридору и по лестницам. Как оказалось, первая остановка — рабочий кабинет Нильса Бора. Классический скромный интерьер: зеленые драпированные стены и коричневая мебель. На одной из стен, при ближайшем рассмотрении — подборка коллективных фото всех сотрудников Института в разные годы. Видно и самого Бора на каждом фото, вплоть до 1962 года. Моя проводница начала рассказ с того, что денег на институт дал пивовар Карлсберг. Выяснилось, что пивовар был не просто успешный предприниматель, а фанат науки и огромнейшие деньги регулярно жертвовал ученым. При этом, сам очень любил пользоваться научными достижениями в производстве. Сейчас пивоварни Карлсберга назвали бы «инновационными». Бор стал национальной знаменитостью, как только опубликовал свою теорию и начал участвовать в дебатах по ее защите, и благодаря своему влиянию смог сделать Институт ведущим центром исследований в теоретической физике. В одной из комнат института некоторое время жил немецкий физик Вернер Гейзенберг. В середине 20-х они вместе с Бором в этом самом институте совершали революцию в физике. Именно разговоры и споры с Гейзенбергом подтолкнули Бора к формулированию принципа дополнительности, по которому, в том числе, атом может проявлять себя как частица и как волна. Роль принципа дополнительности была очень велика для физики, Паули всерьез предлагал назвать квантовую механику «теорией дополнительности» по аналогии с теорией относительности. Знаменитый парадокс кота Шредингера, кстати, появился от желания автора доказать неправоту «копенгагенской интерпретации» Бора.
Голкипер с Нобелевской премией. 12 фактов о гениальном физике Нильсе Боре
В данном разделе вы найдете много статей и новостей по теме «Нильс Бор». Прежде чем перейти непосредственно к биографии Нильса Бора, хотелось бы описать вкратце его научные открытия и достижения. Его соплеменники очень гордились тем, что Нильс Бор сделал такой большой вклад в развитие физики.
Нобелевские лауреаты 2022: кто и за какие открытия получил премию
Его соплеменники очень гордились тем, что Нильс Бор сделал такой большой вклад в развитие физики. Текст научной работы на тему «Бор нильс 1885–1962 датский физик-теоретик, иностранный член АН СССР, лауреат Нобелевской премии». Телеграф новостей. Новости. Однако мы решили остановить свой выбор на Терлецком — он мог бы произвести своей широкой эрудицией и осведомленностью нужное впечатление на Нильса Бора. Нильс Бор рос в среде ученых, с детства проявляя интерес к различным открытиям и изобретениям.
Голкипер с Нобелевской премией. 12 фактов о гениальном физике Нильсе Боре
Так немец доказал, что нервный импульс рождался с помощью вещества, которое появилось в первом растворе после реакции. Позже он выяснил, что одним из таких веществ является адреналин. Стивен Кинг и «Мизери» Не только научные открытия — идеи художественных произведений тоже приходят во сне. Например, Стивену Кингу приснился сюжет романа «Мизери».
Во сне он увидел историю о том, как известный писатель попадает в плен к фанатке-садистке. По воспоминаниям Кинга, ему снилась одинокая женщина с манией преследования. В сарае она держала разную живность, в том числе свою любимицу — хрюшку Мизери с англ.
Безумная фанатка назвала животное так в честь героини из романов своего кумира. Позже по роману сняли одноименный фильм. Кэти Бейтс, которая сыграла ту самую фанатку, получила за него Оскар.
Джузеппе Тартини и «Дьявольская соната» Итальянскому композитору Джузеппе Тартини приснилась… музыка! Во сне он продал душу дьяволу, а взамен попросил того сыграть на скрипке. Сатана исполнил прекрасную мелодию — ее и записал проснувшийся композитор.
Сразу оговоримся, что речь идет об эффектах, которые скрыты от нас, — они происходят только в микромире - в мире квантовых явлений. Само понятие «запутывание» ввел еще в 1935 году Эрвин Шредингер. Однако широко использоваться оно стало только с появлением первых систем квантовой связи и прототипов квантовых компьютеров. Чтобы частицы стали связанными, или запутанными, они должны были когда-то провзаимодействовать.
Например, они могли образоваться в результате распада одной частицы. Даже если их после этого взаимодействия разнести на любое расстояние, изменение одной частицы мгновенно, быстрее скорости света, повлечет за собой изменение другой. Эйнштейн не соглашался с квантовой теорией. По его мнению, весь мир должен был подчиняться классической физике, а значит, ничто не должно превышать скорости света.
Посему мгновенное изменение состояния частицы, удаленной на сотни или тысячи километров только из-за случайной запутанности просто невозможно.
Он был похоронен в своём родном городе, на городском муниципальном кладбище Ассистенс. Интересные факты о характере и жизни Нильса Бора Нобелевскую премию Бор получил за революционное открытие: именно он оповестил мир о том, что в атоме электроны вращаются вокруг ядра, а значит, атом имеет планетарную модель строения. Можно сказать, что датский физик повторил научный успех Николая Коперника, жившего в далёком XVI веке.
Бора за грандиозное открытие удостоили высшей академической награды — Нобелевской премии. Интересный факт: 1922 год стал для молодого датчанина, возможно, самым удачным в его жизни. В тот год он не только получил Нобелевскую премию, но и обзавёлся своим первым ребёнком, Оге, который спустя десятки лет тоже получил Нобелевскую премию по физике. Нильс Бор был эксцентричным человеком с неординарным характером.
Этот датчанин был увлечён не только точными науками. Его главной страстью был футбол, в который он играл в молодом возрасте, исполняя на поле роль вратаря небольшого любительского клуба. Он играл в одной команде со своим родным братом Харальдом, который впоследствии тоже стал академиком — в сфере математики. Больше всего датчанин любил вестерны.
Бывало, что по вечерам Бор сетовал своим ученикам на утомлённость, с которыми, между прочим, знаменитый академик до самой старости был в тёплых дружеских отношениях. В такие дни юные студенты заботливо водили своего профессора в кино на сеансы американских кинолент. Бывает, что учёные и академики отличаются недоброжелательностью и отрешённостью. Но только не Нильс Бор!
За заслуги в создании советского атомного оружия Н. Риль был удостоен высшей награды — звания Героя социалистического труда, которую ему вручил лично Берия. Отдел «С» также осуществлял тесное взаимодействие с другими специальыми разведывательными службами советского руководства, которые не входили в систему органов безопасности и военной разведки. Сталине, существовавшей в 1945—1953 годах. В курсе этого взаимодействия отдела «С» со спецслужбой главы правительства был мой заместитель по отделу и одновременно начальник научно-технической разведки НКГБ полковник Василевский.
Что бы не писали и не говорили в телепередачах о Василевском, Хейфеце и Семенове их недоброжелатели Барковский и Чиков, они в то время были единственными офицерами советской разведки, которые сами смогли привлечь для работы на Советский Союз виднейших и авторитетных ученых и политиков стран Запада. Яцков, Феклисов, Квасников последний не владел иностранными языками лишь использовали проложенные ими направления работы. Они принадлежали к немногочисленной когорте советских разведчиков не кабинетного типа, а тех, кто по своему уровню мог самостоятельно работать с агентурой из числа видных иностранцев и эмигрантов. Вообще, неуважительное отношение к людям, ставшим жертвами гонений и репрессий, со стороны проживших свою жизнь в разведке в качестве чиновников и журналистов, не удивляет. Чиков, проконсультировавшись у меня по неизвестным ему эпизодам, присвоил себе уникальный экземпляр отчета комиссии Смита по атомной проблеме и до сих пор не желает вернуть эту библиографическую редкость.
Вместе с Василевским я должен был подобрать физи-ков-ядерщиков для поездок в США, Англию и Канаду, чтобы привлечь западных специалистов из ядерных центров для работы в Советском Союзе. В этот же период Василевский несколько раз выезжал в Швейцарию и Италию на встречу с Бруно Понтекорво. Для прикрытия этих поездок он использовал визиты советской делегации деятелей культуры во главе с известным кинорежиссером Григорием Александровым и кинозвездой Любовью Орловой. Василевский встречался также с Жолио-Кюри. Оставаясь на Западе, Жолио-Кюри был более полезен, потому что влиял на формирование выгодной для нас пацифистской позиции видных уче-ных-атомщиков.
За успешные акции в Дании, Швейцарии и Италии Василевский был поощрен солидной по тем временам денежной премией в размере тысячи долларов и отдельной квартирой в центре Москвы, что тогда было большой редкостью. Наши активные операции в Западной Европе совпали с началом «холодной войны». Мы отдавали себе отчет, что американская контрразведка подобралась довольно близко к нашим источникам информации и агентуре, обслуживающей их. Оперативная обстановка резко осложнилась. Когда был запущен наш первый реактор в 1946 году, Берия приказал прекратить все контакты с американскими источниками.
На встрече со мной он предложил обдумать, как можно воспользоваться авторитетом Оппенгеймера, Ферми, Сциларда и других близких к ним ученых в антивоенном движении. Мы считали, что антивоенная кампания и борьба за ядерное разоружение может помешать американцам шантажировать нас атомной бомбой, и начали широкомасштабную политическую кампанию против ядерного превосходства США. Мы хотели связать американские правящие круги политическими ограничениями в использовании ядерного оружия — у нас атомной бомбы еще не было. Берия категорически приказал не допустить компрометации видных западных ученых связями с нашей разведкой: для нас было важно, чтобы западные ученые представляли самостоятельную, имеющую авторитет и влияние политическую силу, дружественную по отношению к Советскому Союзу. Через Фукса идея о роли и политической ответственности ученых в ядерную эпоху была доведена до Ферми, Оппенгеймера и Сциларда, которые решительно выступили против создания водородной бомбы.
В своих доводах они были совершенно искренни и не подозревали, что Фукс под нашим влиянием логически подвел их к этому решению. Действуя как антифашисты, они объективно превратились в политических союзников СССР. Директива Берии основывалась на информации, полученной от Фукса в 1946 году, о серьезных разногласиях между американскими физиками по вопросам совершенствования атомного оружия и создания водородной бомбы. На совещании, состоявшемся в конце 1945 или в начале 1946 года, ученые вместе с Фуксом выступили против разработки «сверхбомбы» и столкнулись с резкими возражениями Теллера. Клаус Фукс отклонил предложение Оппенгеймера продолжить работу с ним в Принстоне, возвратился в Англию и продолжал снабжать нас исключительно важной информацией.
С осени 1947 года по май 1949-го Фукс передал нашему оперативному работнику Феклисову основные теоретические разработки по созданию водородной бомбы и планы начала работ, к реализации которых приступили в США и Англии в 1948 году. Особенно ценной была полученная от Фукса информация о результатах испытаний плутониевой и урановой атомных бомб на атолле Эниветок. Фукс встречался с Феклисовым в Лондоне один раз в 3—4 месяца. Каждая встреча тщательно готовилась и продолжалась не более сорока минут. Феклисова сопровождали три оперативных работника, чтобы исключить возможность фиксации встречи службой наружного наблюдения британской контрразведки.
Фукс и Феклисов так и не были зафиксированы английской контрразведкой. Фукс сам невольно способствовал своему провалу, сообщив службе безопасности, курировавшей английские атомные разработки, что его отец получил место преподавателя теологии в Лейпцигском университете в Восточной Германии. В это время американские спецслужбы разоблачили нашего агента, курьера Фукса, Голда, он опознал Фукса на фотографии, и американцы сообщили об этом английской контрразведке.
Открытия, сделанные во сне
В 1939 году Бор становится президентом Датского королевского общества. До последних дней Нильс не прекращал исследования, внося вклад в развитие науки. В 1947 году, в свой 62-й день рождения он получил от короля Дании Фредерика IX высшую национальную награду — орден Слона. Умер Нильс Бор 18 ноября 1962 года в Копенгагене. Персоны дня 27 апреля: 1803 — 1882 Ральф Уолдо Эмерсон американский поэт и философ, основатель трансцендентализма.
Во многом она опиралась на боровскую теорию соответствия. Однако сами теории оперировали умозрительными построениями, которые нельзя было связать с опытом. Механика Ньютона на службе теоретической физики XX века Работая над этой проблемой, Бор пришёл к выводу о необходимости использования отдельных элементов обычной классической механики в виде дополнений к квантовой теории поля, волны и вещества. В 1925 году он уже принял дуализм волны-частицы. В основу дополнительности лёг корпускулярно-волновой дуализм и принцип неопределённости. В микромире нет состояния, когда объект имел бы точные динамические характеристики, относящиеся к двум определённым классам, взаимно исключающим друг друга.
Другими словами, абстрактный и умозрительный «измерительный прибор» влияет на результаты измерений. Они дополняют друг друга, а взятые из классической физики динамические характеристики микрочастицы могут не иметь к частицам никакого отношения, но мы всё равно получим какой-то относительный результат. Старого мира больше нет В 30-е годы Бор почти все свои исследования направляет на ядерную физику. Основным его достижением той поры является модель составного ядра. Это не ядро само по себе, а его возбуждённое состояние, которое соответствует времени прохождения нейтрона через него. Начинается изучение механизма деления ядер, связанное с высвобождением огромного количества энергии. Между тем мир приближается к новому грандиозному конфликту. В Германии приходят к власти национал-социалисты. Уже к середине 30-х годов становится ясно, что квантовая механика перестаёт быть отраслью сугубо теоретических познаний, граничащих с философией. Бор активно помогает учёным покидать пределы Рейха, даже создаёт для этого социальный комитет помощи учёным-эмигрантам.
В 1940 году Дания оккупирована немецкими войсками. Несмотря на постоянный риск оказаться под арестом, а затем в лагере, Бор принимает решение до последней возможности не покидать Копенгаген.
Среди знаменитых выходцев Боровской школы можно выделить: Ф. Блоха, В. Вайскопфа, Х. Казимира, О. Бора, Л. Ландау, Дж.
Уиллера и многих других. К Бору не единожды приезжал немецкий ученый Верне Гейзенберг. Во времена, когда создавался «принцип неопределенности», с Бором дискутировал Эрвин Шредингер, который был сторонником чисто-волновой точки зрения. В бывшем «Доме Пивовара» формировался фундамент качественно новой физики двадцатого века, одним из ключевых фигурантов которой был Нильс Бор. Модель атома, предложенная датским ученым и его наставником Резерфордом, была непоследовательной. Она объединяла постулаты классической теории и гипотезы, явно ей противоречащие. Дабы устранить эти противоречия, необходимо было радикально пересмотреть основные положения теории. В этом направлении важную роль сыграли прямые заслуги Бора, его авторитет в научных кругах, и просто личное влияние.
Работы Нильса Бора показали, что для получения физической картины микромира не подойдет подход, с успехом применяющийся для «мира больших вещей», и он стал одним из основоположников такого подхода. Ученый ввел такие понятия, как «неконтролируемое воздействие измерительных процедур» и «дополнительные величины». Копенгагенская квантовая теория С именем датского ученого связана вероятностная она же копенгагенская интерпретация квантовой теории, а также изучение ее многочисленных «парадоксов». Важную роль здесь сыграла дискуссия Бора с Альбертом Эйнштейном, которому не по душе была квантовая физика Бора в вероятностном истолковании. Ядерная тематика Начав заниматься физикой ядра еще у Резерфорда, Бор уделял ядерной тематике много внимания. Он предложил в 1936 году теорию составного ядра, вскоре породившую капельную модель, которая сыграла весомую роль в исследовании деления ядер. В частности, Бору принадлежит предсказание спонтанного деления ядер урана. Когда фашисты захватили Данию, ученый тайно был доставлен в Англию, а затем в Америку, где совместно с сыном Оге трудился над Манхэтеннским проектом в Лос-Аламосе.
В послевоенные годы Бор много времени уделял вопросам контроля над ядерным оружием и мирного применения атомов. Он принял участие в создании центра ядерных исследований Европы и даже обращался со своими идеями к ООН. Исходя из того, что Бор не отказался обсуждать с советскими физиками определенные аспекты «ядерного проекта», он считал опасным монопольное владение атомным вооружением. Другие области знания Кроме того, Нильс Бор, биография которого подходит к концу, интересовался также вопросами сопредельными с физикой, в частности биологией. Также его интересовала философия естествознания. Выдающийся датский ученый скончался от сердечного приступа 18 октября 1962 года в Копенгагене. Заключение Нильс Бор, открытия которого, безусловно, изменили физику, пользовался огромным научным и нравственным авторитетом. Общение с ним, даже мимолетное, производило на собеседников неизгладимое впечатление.
По речи и письму Бора было видно, что он старательно подбирает слова, дабы максимально точно проиллюстрировать свои мысли.
Последнюю попытку запустить цепную реакцию немцы предприняли 23 марта 1945 года, она вновь закончилась неудачей из-за недостаточного количества урана и тяжелой воды. В мае — июне 1945 года Гейзенберг и 9 соратников были арестованы американцами и в ходе операции «Эпсилон» вывезены на территорию Великобритании. Нацистский реактор в Хайгерлохе.
Их поселили в поместье Фарм-Холл недалеко от Кембриджа. Здание, где жили германские физики, было буквально напичкано подслушивающей аппаратурой. Задачей «Эпсилона» было определить, насколько близко немцы подобрались к созданию атомной бомбы. Для обеих сторон результат оказался удивительным.
Американцы поняли, что никакой угрозы нацистского ядерного гриба и близко не существовало, а Гейзенберг с коллегами были буквально шокированы бомбардировками Хиросимы и Нагасаки. Они были уверены, что опережают конкурентов, и даже представить себе не могли, насколько на самом деле в США ушли вперед. Поместье Фарм-Холл. Почему Гитлер не получил ядерной бомбы Вопрос, реально ли было создание Третьим рейхом атомного оружия, волнует не только любителей альтернативной истории Второй мировой войны.
Действительно, еще в начале 1940-х нацисты опережали своих противников. Возможно, при определенных обстоятельствах например, если бы Гитлер не ввязался бы в войну с Советским Союзом Германия смогла бы с помощью концентрации ресурсов всей Европы, лежащей у ее ног, в течение нескольких лет подойти к созданию ядерной бомбы. Другой вопрос, насколько реальным был продолжительный мир с СССР и сколь трезво оценивали потенциал «уранового проекта» в высшем руководстве Третьего рейха. В конце концов, среди историков, изучавших проблему, сложилось три точки зрения на причины немецкого атомного провала.
Послевоенные статьи и выступления Вернера Гейзенберга и его соратников настойчиво проталкивали мысль о пассивном саботаже учеными своей работы. Мол, германские физики понимали, чем грозит их успех человечеству, поэтому сознательно тормозили свою работу. В общем-то, в такой позиции ничего удивительного нет. Многие из непосредственных участников создания ядерного оружия в США или в СССР после Хиросимы и Нагасаки, холодной войны, «Карибского кризиса» стали убежденными противниками своих разработок и жалели о своем в них участии.
Даже Эйнштейн переживал о том письме 1939 года Рузвельту, во многом инициировавшем включение США в атомную гонку: «Мое участие в создании ядерной бомбы состояло в одном-единственном поступке. Я подписал письмо президенту Рузвельту, в котором подчеркивал необходимость проведения в крупных масштабах экспериментов по изучению возможности создания ядерной бомбы. Я полностью отдавал себе отчет в том, какую опасность для человечества означает успех этого мероприятия. Однако вероятность того, что над той же самой проблемой с надеждой на успех могла работать и нацистская Германия, заставила меня решиться на этот шаг.
Я не имел другого выбора, хотя я всегда был убежденным пацифистом». Американские солдаты на немецком ядерном реакторе. Другая группа экспертов уверена, что неудачи нацистов были вызваны некомпетентностью немцев, изгнанием из рейха ученых-евреев, выбором в качестве замедлителя реакции тяжелой воды, а не графита, другими научными ошибками, в основе которых лежит принципиальная невозможность успешного творчества ученого в условиях тоталитаризма. Определенное рациональное зерно есть и в таком мнении.
Гейзенберг и его команда, другие исследовательские группы, работавшие параллельно, действительно немало ошибались, но в этом и заключается экспериментальная наука. А аргумент про влияние степени тоталитарности режима на успешность решения поставленных научных задач и вовсе не выдерживает критики, как показывает уже опыт XXI века в Северной Корее.