Новости что мощнее водородная или ядерная бомба

В водородной бомбе применяется не чистый водород, а дейтерид лития-6, содержащий в себе изотоп водорода дейтерий и изотоп лития, служащий для выделения еще одного изотопа водорода – трития. Водородная бомба является гораздо более продвинутой и технологичной, чем атомная. Водородные и атомные бомбы относятся к атомной энергетике.

10 самых мощных бомб в мире

Если сравнивать выделяемую энергию между ядерным делением и ядерном синтезе, то водородная бомба мощнее в 3 раза атомной. Водородная (термоядерная) бомба: испытания оружия массового поражения. как действует водородная бомба и каковы последствия взрыва. Концепция термоядерной бомбы на жидком дейтерии нашла развитие в TX-16, единственном снаряде данного типа.

Что такое ядерное оружие и сколько его у России. Простыми словами

Водородная бомба и атомная бомба оба типы ядерного оружия, но одно устройства очень сильно отличаются от другого. B-53 — американская термоядерная бомба, наиболее старое и мощное ядерное оружие находившееся в арсенале стратегических ядерных сил США вплоть до 1997 года. В принципе, водородная бомба основана на легком ядерном синтезе, также известном как термоядерный синтез. Основное преимущество водородной бомбы над ядерной, это то, что ядерную бомбу нельзя сделать больше определенной мощности, а водородную можно). «взрывает» реакция неуправляемого термоядерного синтеза. За счет дополнительного урана взрыв получился вдвое мощнее, чем с обычной атомной бомбой.

Виды ядерных зарядов (ядерных бомб)

  • Что включает в себя ядерное оружие
  • США — ядерная триада
  • Водородная бомба и ядерная бомба отличия
  • «Дитя не плачет — мать не разумеет»
  • Зона поражения — вся планета: почему атомные бомбы такие мощные?
  • Как действует водородная бомба и каковы последствия взрыва. — DRIVE2

Курсы валюты:

  • Водородная против атомной. Что нужно знать о ядерном оружии
  • Чем отличается атомная бомба от водородной: что сильнее и какой взрыв мощнее
  • Ядерный меч. Какое ядерное оружие могут применить против России
  • Как же работает атомная бомба?
  • Водородная бомба
  • Ученые придумали, из чего можно было бы создать бомбу мощнее водородной

Инфографика: отличия атомной и водородной бомб

Термоядерное оружие Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные водородные бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках. Атомная бомба В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород — дейтерий, ядра которого имеют необычную структуру — один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия.

Результатом этого процесса и становится выделения энергии. Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии для поддержания из жидкостного агрегатного состояния. Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес более 60 т.

С другой стороны, новый источник энергии открывает и мирные перспективы. Как за атомной бомбой последовали атомные электростанции, за водородной — вот вот последует управляемый термоядерны синтез, так за кварковой бомбой — какие-нибудь кварковые энергосинтезаторы. Например, протоны и нейтроны. Кварки крошечные — примерно 20 тысяч раз мельче протона. Протоны и нейтроны являются барионами. Электроны — тоже барионы. Все они — вещество, привычная нам материя. А есть еще барионное антивещество — антиматерия.

Под «оперативными факторами», о которых говорил Страусс, подразумевался взрыв многомегатонной водородной бомбы на большой высоте, примерно девять тысяч метров, т. Когда взрыв происходит на высоте, превышающей этот радиус от 5 до 6,5 километра , огненный шар не касается земли или водной поверхности и поэтому не поднимает при взрыве тысячи тонн земли или воды, зараженных радиоактивными частицами и образующих гигантское облако, дающее смертоносные осадки. Однако предположение Страусса о том, что существует много факторов, кроме чисто оперативных, «которые позволяют уменьшить выпадение осадков при ядерных взрывах», может означать только одно — уменьшение количества используемого расщепляющегося материала, прежде всего урана, который является основным источником опасных осадков. Эта мысль была еще. Можно надеяться на дальнейший прогресс в этом направлении». Так как в качестве детонаторов водородных бомб служат обычные атомные бомбы и так как все атомные бомбы в зависимости от их размеров вызывают образование определенного количества осадков, то ясно, что и любая водородная бомба образует при взрыве радиоактивные осадки. С другой стороны, основываясь на реакции ядерного синтеза, можно создать такую водородную бомбу, в которой «маленькая» атомная бомба мощностью в пятьдесят тысяч тонн тротила может поджечь водородную бомбу мощностью в пять мегатонн пять миллионов тонн тротила. Конечно, конструкция «чистой» водородной бомбы засекречена. Но, основываясь на некоторых фактах, известных многим, можно догадываться, что лежит в основе процесса очищения. Поэтому ясно, что для создания «чистой» бомбы необходимо удалить «грязный» элемент из процесса, происходящего внутри бомбы. Но, как будет показано в дальнейшем, это связано с огромными трудностями, которые одно время казались непреодолимыми. Природа «грязного» элемента была впервые раскрыта в работах японских физиков, опубликовавших подробный отчет в двух томах с результатами тщательного анализа смертоносного радиоактивного пепла, который выпал на японское рыболовное судно после взрыва «грязной» водородной бомбы 1 марта 1954 г. Эти исследования показали, что образование гигантского облака радиоактивной пыли, заразившего площадь в восемнадцать тысяч квадратных километров, не было вызвано присутствием в бомбе ни водорода, ни одного из двух расщепляющихся элементов — урана-235 или плутония, которые служат детонаторами в водородных бомбах. Анализы, проведенные японцами, показали, что тайна «грязной» водородной бомбы заключается в успешном превращении урана «Доктор Джекилл» в уран «Мистер Хайд» названия «Доктор Джекилл» и «Мистер Хайд» взяты из фантастического рассказа Р. Стивенсона, в котором мягкий и воспитанный доктор Джекилл, выпив определенное снадобье, может превращаться в злого и распутного мистера Хайда. При синтезе водородных элементов за одну десятимиллионную долю секунды, в течение которой бомба еще представляет единое целое, выделяется огромное количество нейтронов такой большой энергии, что они способны расщепить атомы урана-238. В отличие от элементов обычной атомной бомбы, которые могут мгновенно взрываться при достижении сравнительно небольшой критической массы, для основного компонента водородной бомбы — урана-238 — нет предела, и это делает его особенно устрашающим для человечества. Так как уран-238 по своей природе является «мягким доктором Джекиллом» до момента взрыва, в бомбу можно поместить любое его количество в зависимости от того, какой мощности должен быть взрыв. Од- номегатонная бомба взорвет пятьдесят килограммов элемента «Джекилл и Хайд», а бомба в двадцать мегатонн— около тысячи килограммов этого «грязного» элемента. Так как наличие вещества «Джекилл и Хайд» определяет степень загрязненности водородной бомбы это в основном бомба из урана-238 , очевидно, что единственной возможностью создать «чистую» водородную бомбу является удаление «грязного» элемента. Единственная возможность получения «чистой» водородной бомбы, совершенно не образующей радиоактивных осадков, за исключением лишь небольшого их количества от атомной бомбы-детонатора,— это создание оружия, взрывная сила которого имеет своим источником исключительно процесс ядерного синтеза водорода. Но здесь природа выдвинула, казалось бы, непреодолимое препятствие. Для создания «чистой» водородной бомбы необходимо наличие двух тяжелых изотопов водорода — водорода-2 и водорода-3. Но водород-3, или тритий, вес которого в три раза больше обычного водорода, исчез на Земле миллионы лет назад. Нейтрон, выделяемый при делении урана-235 в реакторе, попадает в ядро лития-6, которое состоит из трех протонов и трех нейтронов. При этом образуются два газа — тритий, ядро которого состоит из одного протона и двух нейтронов, и гелий, ядро которого состоит из двух протонов и двух нейтронов. На общую массу ядер трития и гелия приходится, таким образом, три протона и три нейтрона ядра бывшего лития-6 плюс дополнительный нейтрон, образовавшийся при делении урана. Получение трития в большом количестве, необходимом для создания запаса «чистых» водородных бомб порядка нескольких мегатонн с взрывной силой, создаваемой исключительно за счет синтеза дейтерия и трития не принимая во внимание взрывную силу атомной бомбы-детонатора ,— процесс исключительно дорогой, требующий наличия большого числа ядерных реакторов стоимостью много миллионов долларов. Однако, как уже отмечалось, есть основания предполагать, что наши ученые разработали простой и дешевый метод получения трития в самой бомбе в ходе процесса синтеза. Это достигается помещением в бомбу специального твердого соединения — дейтерида лития, который состоит из лития-6 и водорода-2. Когда атомная бомба-детонатор взрывается, нейтроны, выделяемые в ходе этого процесса, попадают в литий-6 и превращают его в тритий и гелий, как об этом уже ранее говорилось. Под влиянием температуры в 50 млн. При этом выделяется незначительное количество опасных радиоактивных осадков. Как отмечалось в докладе Комиссии по атомной энергии июль 1956 г. Но бомба даже в одну или две мегатонны является достаточно мощной, чтобы разрушить любой большой город, и, таким образом, она выполняет свою миссию как мощное сдерживающее средство в нашем оборонительном арсенале. Более того, устранение «грязного» элемента делает бомбу гораздо легче. Действительно, тихоокеанские испытания 1956 г. Эти небольшие водородные бомбы намного увеличили потенциал «чистого» оружия как средства обороны. Их можно использовать как боеголовки в радиоуправляемых ракетах, как мощное оборонительное средство в случае воздушного нападения и как транспортабельное оружие, которое может доставляться сверхзвуковыми реактивными самолетами. Все эти известные факты позволяют сделать вывод, что нам удалось сделать водородную бомбу более «гуманной», ограничив ее громадную убийственную силу одним только огнем и взрывом и превратив ее из радиоактивного чудовища, которое черпает большую часть своих сил из «грязного» элемента, в оружие локального действия. Алиса в стране грома В момент испытания многомегатонной бомбы в атолле Эниветок, в нескольких сотнях километров от места испытаний, в самый момент взрыва у туземки Маршальских островов родилась девочка. Ее назвали Алисой, в честь Алисы Страусс — жены тогдашнего председателя Комиссии по атомной энергии, которая подарила молодой матери целое состояние из десяти свиней. Рано или поздно кто-нибудь будет называть эту девочку «Алисой в стране грома» по-английски созвучно названию популярной детской книги Льюиса Кэррола «Алиса в стране чудес». Ее земные владения состоят из двух атоллов — Эниветок и Бикини — цепочки крохотных коралловых островков, окружающих огромные лагуны площадью в сотни квадратных километров. Когда приезжаешь туда, то попадаешь на остатки разбитых надежд созидателей Германской, а затем Японской империй. Например, на Энау — одном из островков атолла Эниветок — растет лес аккуратно посаженных кокосовых пальм. Все коралловое основание острова на несколько акров покрыто толстым слоем жирного чернозема. Тысячи тонн этого чернозема были перевезены до первой мировой войны из Шварцвальда для выполнения честолюбивого плана по превращению коралловых островков в богатые сельскохозяйственные колонии Германии. Японцы, в свою очередь, превратили эти острова в опорные базы Микронезийской крепости, которая должна была служить одним из плацдармов для завоевания Тихоокеанского пространства. Сейчас Энау является местом отдыха американских обитателей «страны грома». Здесь есть клуб и бар с большим запасом напитков. Я хорошо запомнил эти атоллы еще со своего первого посещения их во время операции «Перекресток» — первого атомного испытания па Бикини летом 1946 г. Главный остров атолла Бикини, под названием Бикини, был тогда настоящим маленьким раем. Покрытый высокими тенистыми пальмами и рощами кокосовых деревьев, остров со всех сторон омывался зелеными водами океана, в которых отражались кораллы. Мое внимание тогда привлекла одна из рощ около пляжа. В свое время я предсказал, что ее сметет атомный взрыв, но ошибся. С тех пор роща получила название «роща Уильяма Л. Роща сохранилась во всем своем великолепии. Но в остальном рай на острове напоминает библейский в двух отношениях: вход туда запрещен, так как на острове находятся совершенно секретные установки, а на пляже — крупная надпись: «Не ешьте плодов с деревьев, они отравлены». Почва, деревья и все их плоды стали опасно радиоактивными. Аналогичные объявления висят на деревьях, которые растут в «перевезенном Шварцвальде». Они предупреждают о запретных плодах с древа знания атомного века.

Самое мощное взрывное устройство за всю историю человечества. Полная энергия взрыва, по разным данным, составляла 58,6 мегатонны в тротиловом эквиваленте, или около 2,4 х 1017 Дж что соответствует дефекту массы 2,65 кг. В группу разработчиков входили А. Сахаров, В. Адамский, Ю. Бабаев, Ю. Смирнов, Ю. Трутнев и другие. Название "Кузькина мать" появилось под впечатлением известного высказывания Н. Хрущёва: "Мы еще покажем Америке кузькину мать! Испытания бомбы состоялись 30 октября 1961 г. Взрыв АН602 по классификации ядерных взрывов был низким воздушным ядерным взрывом сверхбольшой мощности. Результаты его впечатляли. Огненный шар взрыва достиг радиуса примерно 4,6 км. Теоретически он мог бы вырасти до поверхности земли, однако этому воспрепятствовала отраженная ударная волна, подмявшая низ шара и отбросившая шар от земли. Световое излучение потенциально могло вызывать ожоги третьей степени на расстоянии до 100 км. Ядерный гриб взрыва поднялся на высоту 67 км, диаметр его двухъярусной "шляпки" достиг у верхнего яруса 95 км. Ощутимая сейсмическая волна, возникшая в результате взрыва, три раза обогнула земной шар. Ядерная бомба В-41 B-41 — самая мощная американская термоядерная бомба, эквивалентом около 25 мегатонн. Самое мощное серийно производившееся термоядерное оружие. Состояла на вооружении с 1960 по 1976 гг.

«Сердце» взрыва

  • Водородная и атомная бомбы: сравнительные характеристики
  • Что включает в себя ядерное оружие
  • Самая мощная бомба в мире. Какая бомба сильнее: вакуумная или термоядерная?
  • Описание водородной бомбы
  • Что произойдет после взрыва ядерной бомбы? - Hi-Tech
  • Чем отличается атомная бомба от водородной: что сильнее и какой взрыв мощнее

Ядерный меч. Какое ядерное оружие могут применить против России

Чтобы получить энергию, равную энергии взрыва атомной бомбы малого калибра, нужно взорвать несколько тысяч тонн тротила. Тротиловый эквивалент атомной бомбы среднего калибра составляет десятки тысяч, а бомбы крупного калибра — сотни тысяч тонн тротила. Еще большей мощностью может обладать термоядерное водородное оружие, его тротиловый эквивалент может достигать миллионов и даже десятков миллионов тонн. Атомные бомбы, тротиловый эквивалент которых равен 1- 50 тыс. К тактическому оружию относят также: артиллерийские снаряды с атомным зарядом мощность 10 — 15 тыс. Атомные и водородные бомбы мощностью свыше 50 тыс.

Нужно отметить,что подобная классификация атомного оружия является лишь условной, поскольку в действительности последствие применения тактического атомного оружия могут быть не меньшими, чем те, которые испытало на себе население Хиросимы и Нагасаки, а даже большими. Сейчас очевидно, что взрыв только одной водородной бомбы способен вызвать такие тяжелые последствия на огромных территориях, каких не несли с собой десятки тысяч снарядов и бомб, применявшихся в прошлых мировых войнах. А нескольких водородных бомб вполне достаточно, чтобы превратить в зону пустыни огромные территории. Ядерное оружие подразделяется на 2 основных типа: атомное и водородное термоядерное. В атомном оружии выделение энергии происходит за счет реакции деления ядер атомов тяжелых элементов урана или плутония.

В водородном оружии энергия выделяется в результате образования или синтеза ядер атомов гелия из атомов водорода. Термоядерное оружие Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные водородные бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.

Атомная бомба В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями.

Что такое бомба? Атомные электростанции работают по принципу высвобождения и сковывания ядерной энергии. Этот процесс обязательно контролируется. Высвобожденная энергия переходит в электричество. Атомная бомба приводит к тому, что происходит цепная реакция, которая совершенно не поддается контролю, а огромное количество освобожденной энергии наносит чудовищные разрушения. Уран и плутоний - не такие уж и безобидные элементы таблицы Менделеева, они приводят к глобальным катастрофам. Атомная бомба Чтобы понять, какая самая мощная атомная бомба на планете, узнаем обо всем подробнее.

Водородные и атомные бомбы относятся к атомной энергетике. Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу. Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада. Нейтронная сила совершенно не поддается контролю человека. Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое. Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм взрывчатого вещества стал причиной гибели 200 тысяч человек. Принцип работы и преимущества вакуумной бомбы Считается, что вакуумная бомба, созданная по новейшим технологиям, может конкурировать с ядерной.

Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию. Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет. Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища.

По сути, внутри термоядерной бомбы содержится небольшая атомная бомба, которая взрывается во время детонации, а высвобождаемая при этом энергия используется в качестве своеобразного термоядерного «детонатора». Топливо для ядерного синтеза нагревается до невероятно огромной температуры. Но этого мало для запуска термоядерного синтеза. Создание необходимых условий обеспечивает плутониевый стержень, который в результате сжатия переходит в надкритическое состояние — начинается ядерная реакция внутри контейнера. Испускаемые плутониевым стержнем в результате деления ядер плутония нейтроны взаимодействуют с ядрами лития-6, в результате чего получается тритий, который далее взаимодействует с дейтерием. Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов урана-238, добавляющие свою энергию в общую энергию взрыва. Подобным образом создается термоядерный взрыв практически неограниченной мощности, так как за оболочкой могут располагаться еще другие слои дейтерида лития и слои урана-238 слойка. Подробнее об этом можно прочитать здесь. Кстати, в нашей стране во времена СССР было взорвано немало водородных бомб в качестве испытаний термоядерного оружия. Во время испытаний в радиусе 1000 километров от эпицентра взрыва не раз было зафиксировано нарушение радиосвязи. В пределах 100 км от взрыва здания были полностью уничтожены. Ударная волна, создаваемая водородной бомбой, три раза проходила вокруг всего Земного шара, заставив весь мир содрогнуться, посеяв беспрецедентный страх. Ядерные бомбы идеальным образом уравновешивают мир на Земле. Также ядерное вооружение, которым владеют многие страны, позволяет избегать крупномасштабных военных действий между государствами.

Реклама - Продолжить чтение ниже. Северная Корея утверждает, что испытание было успешной детонацией так называемой водородной бомбы, которая отличается от атомных бомб более сложной конструкцией и гораздо более высоким взрывным выходом. Типичная атомная бомба имеет выход 100 килотонн или более, в то время как водородная бомба может иметь выход мегатонны или больше. Водородные бомбы по крайней мере приводят к меньшим негативным последствиям, чем атомные бомбы. Взрыв водородной бомбы эквивалентен мегатонне тротила, гораздо более мощный, чем у атомной бомбы. Царь Бомба, крупнейшая ядерная авиационная бомба, с энергией взрыва более 50 мегатонн в тротиловом эквиваленте. Она была взорвана на высоте четырех километров над поверхностью земли. А ударную волну от ее взрыва зафиксировали приборы во всех странах Земного шара. Выход снова был пересмотрен, поскольку сейсмический рейтинг взрыва был пересмотрен вверх с 8 до. Ранее этим летом Северная Корея проверила, что, по мнению внешних аналитиков, была ракета, способная достичь Соединенных Штатов. Боевой корабль ракеты, который в ходе фактического ракетного удара держит ядерную боеголовку , оценивался как выживший на высоте, достаточно близкой, чтобы позволить ракете взорваться над мишенью, так называемый взрыв авиационного взрыва. Принцип действия водородной бомбы Хотя это звучит страшно, есть много вещей, о которых нужно помнить. Ракета, на данный момент, по-видимому, дико неточна и не может точно ориентироваться в любом месте. Точность, вероятно, измеряется в милях, если не десятки или десятки миль. Самое главное, что Северная Корея понимает, что использование этого оружия против Соединенных Штатов гарантирует эскалацию, которая потребует значительных ответных ударов. Как и в период «холодной войны», баланс террора означает, что использовать ядерное оружие против другой ядерной энергии - это обеспечить собственное уничтожение. Атомная бомба и водородная бомба Оба типа ядерного оружия выделяют огромное количество энергии из небольшого количества вещества. Взрывы таких бомб приводят в радиоактивным осадкам. Водородная бомба имеет потенциально более высокую энергию взрыва и является более сложной конструкцией для построения. Ядерные боеприпасы В дополнение к атомным бомбам и водородным бомбам, существуют и другие виды ядерного оружия, например, нейтронная бомба, кобальтовая бомба, «чистая» термоядерная бомба , электромагнитная бомба, гипотетически возможно создание бомбы с зарядом антивещества. Царица всех цариц Никакая ядерная держава , а не Соединенные Штаты и Северная Корея не защищены от этой логики. В истории было много оружия и орудий разрушения. Среди самых разрушительных - атомная бомба и водородная бомба. В этой статье объясняется разница между ними. Атомная бомба или бомба деления, также называемая «атомной бомбой», является оружием, которое выводит свою взрывную и разрушительную силу из ядерного деления. Процесс ядерного деления выглядит следующим образом: материал для деления, такой как уран или плутоний, объединяется в так называемую сверхкритическую массу, количество материала, необходимое для начала ядерной цепной реакции. Нейтронная бомба , как и водородная бомба, это термоядерное оружие. Вспышка от нейтронной бомбы относительно невелика, но высвобождается большое число нейтронов. Все живые организмы погибают от такой атаки, однако от взрыва нет физических разрушений. Взрывной материал в бомбе, когда он взорвется, начнет ядерную цепную реакцию, которая вызывает взрыв. На приведенной выше фотографии показаны два метода сборки. Водородная бомба, также называемая термоядерным оружием или водородной бомбой, является оружием, которое выводит свою взрывную и разрушительную силу из ядерного синтеза. Как этот процесс работает как таковой: в радиационно-отражающем контейнере помещается бомба-деление, а также плавное топливо, такое как тритий и дейтерий. Водородная бомба берет свое название от того факта, что тритий и дейтерий являются изотопами водорода. Кобальтовая бомба — это ядерная бомба, окруженная кобальтом, золотом, или другим материалом для того, чтобы детонация производила гораздо большее количество долгоживущих радиоактивных фрагментов. Этот тип оружия потенциально может служить в качестве оружия «судного дня». Потому что заражение от взрыва распространяется повсеместно. Она считается «грязным» оружием, потому что приводит к радиоактивному и нейтронному загрязнению. Этот тип бомбы не приводит к радиоактивным осадкам. Электромагнитная бомба — этот вид оружия предназначен для производства ядерного электромагнитного импульса, который может привести к нарушению электронного оборудования. Ядерное устройство взорванное в атмосфере излучает электромагнитный импульс сферически.

Ученые придумали, из чего можно было бы создать бомбу мощнее водородной

В 1961 году в Советском Союзе было проведено испытание " Царь-бомбы ", которая до сих пор остается самым крупным ядерным оружием, когда-либо взорванным. Однако это мощное термоядерное оружие никогда не применялось в реальных конфликтах. Что такое атомная бомба? Атомная бомба — это ядерное оружие, предназначенное для создания мощного взрыва в результате процесса деления ядер. Бомбы на основе деления работают за счет детонации нескольких ядер урана или плутония. В качестве топлива в атомных бомбах обычно используется крайне нестабильный ядерный материал, такой как уран-235 или плутоний-239. Эти изотопы нестабильны, поскольку имеют избыток нейтронов по сравнению со стабильными изотопами того же элемента.

Для того чтобы произошел взрыв, бомба должна быть воспламенена, чтобы ядерный материал быстро сжался. Это можно сделать несколькими способами, но одним из наиболее распространенных является использование обычных взрывчатых веществ например, тротила для создания высокого давления и температуры в центре бомбы. После взрыва в атомной бомбе начинается интенсивная цепная реакция деления ядер. В ходе этой реакции ядра атомов урана или плутония расщепляются на более мелкие ядра с выделением большого количества энергии.

А вот водородная термоядерная бомба работает по принципу синтеза. В процессе взрыва, дейтерид лития-6 распадается на дейтерий и тритий, а те соединяются с ядром гелия. Получается, фактически неограниченная мощность взрыва.

Политическое воздействие ядерного оружия как средства взаимного шантажа хорошо известно. Угроза быстрого нанесения противнику мощного ответного ядерного удара была и остается главным сдерживающим фактором, вынуждающим агрессора искать другие пути ведения военных действий Это проявилось и в специфическом характере третьей мировой войны, осторожно именовавшейся «холодной» Официальная «ядерная стратегия» хорошо отражала и оценку общей военной мощи. Так, если вполне уверенное в своей силе государство СССР в 1982 году объявило о «неприменении ядерного оружия первым», то ельцинская Россия вынуждена была объявить о возможности применения ядерного оружия даже против «неядерного» противника.

США в 2003 году, когда агрессия против Ирака была уже решенным делом, от болтовни о «несмертельном» оружии перешли к угрозе «возможного использования тактического ядерного оружия». Другой пример. И почти сразу последовало резкое обострение противостояния на их границе. Израильтяне же предпочитают загадочно улыбаться — сама возможность наличия ядерного оружия остается мощным средством давления даже в региональных конфликтах. A-bomb Для создания атомной бомбы необходимым и достаточным условием является получение делящегося материала в достаточном количестве. Работа довольно трудоемкая, но малоинтеллектуальная, лежащая ближе к горнорудной промышленности, чем к высокой науке. Основные ресурсы при создании такого оружия уходят на строительство гигантских урановых рудников и обогатительных комбинатов. Свидетельством простоты устройства является тот факт, что между получением необходимого для первой бомбы плутония и первым советским ядерным взрывом не прошло и месяца. Напомним вкратце принцип работы такой бомбы, известный из курса школьной физики. В ее основе лежит свойство урана и некоторых трансурановых элементов, например, плутония, при распаде выделять более одного нейтрона.

Эти элементы могут распадаться как самопроизвольно, так и под воздействием других нейтронов. Высвободившийся нейтрон может покинуть радиоактивный материал, а может и столкнуться с другим атомом, вызвав очередную реакцию деления. При превышении определенной концентрации вещества критической массе количество новорожденных нейтронов, вызывающих дальнейшее деление атомного ядра, начинает превышать количество распадающихся ядер. Количество распадающихся атомов начинает расти лавинообразно, рождая новые нейтроны, то есть происходит цепная реакция. Для урана-235 критическая масса составляет около 50 кг, для плутония-239 — 5,6 кг. То есть шарик плутония массой чуть меньше 5,6 кг представляет собой просто теплый кусок металла, а массой чуть больше существует всего несколько наносекунд. Наука Как спят слоны? Собственно схема работы бомбы простая: берем две полусферы урана или плутония, каждая чуть меньше критической массы, располагаем их на расстоянии 45 см, обкладываем взрывчаткой и взрываем. Уран или плутоний спекается в кусок надкритической массы, и начинается ядерная реакция. Существует другой способ запустить ядерную реакцию — обжать мощным взрывом кусок плутония: расстояние между атомами уменьшится, и реакция начнется при меньшей критической массе.

На этом принципе работают все современные атомные детонаторы. Проблемы атомной бомбы начинаются с того момента, когда мы хотим нарастить мощность взрыва. Простым увеличением делящегося материала не обойтись — как только его масса достигает критической, он детонирует. Придумывались разные хитроумные схемы, например, делать бомбу не из двух частей, а из множества, отчего бомба начинала напоминать распотрошенный апельсин, а потом одним взрывом собирать ее в один кусок, но все равно при мощности свыше 100 килотонн проблемы становились непреодолимыми. Возможные последствия взрыва водородной бомбы В первую очередь водородная бомба — это оружие массового поражения. Оно способно уничтожать не только взрывной волной, как на это способны тротиловые снаряды, но и радиационными последствиями. Что происходит после взрыва термоядерного заряда: ударная волна, сметающая всё на своём пути, оставляя после себя масштабные разрушения; тепловой эффект — невероятная тепловая энергия, способна расплавить даже бетонные конструкции; радиоактивные осадки — облачная масса с каплями радиационной воды, элементами распада заряда и радионуклидами, движется по ветру и выпадает в виде осадков на любом удалении от эпицентра подрыва. Вблизи ядерных полигонов или техногенных катастроф на протяжении десятилетий наблюдается радиоактивный фон. Последствия применения водородной бомбы очень серьёзные, способные нанести вред будущим поколениям. Всем спасибо!

Одно время поговаривали, что достаточно мощный термоядерный взрыв может запустить цепную реакцию и весь воздух на нашей планете выгорит. Но это миф. Не то что газообразный, но и жидкий водород недостаточно плотный, чтобы начался термоядерный синтез. Его нужно сжимать и нагревать ядерным взрывом, желательно c разных сторон, как это делается двухступенчатым запалом. В атмосфере таких условий нет, поэтому самоподдерживающиеся реакции слияния ядер там невозможны. Это не единственное заблуждение о термоядерном оружии. Часто говорят, что взрыв «чище» ядерного: мол, при слиянии ядер водорода «осколков» — опасных короткоживущих ядер атомов, дающих радиоактивное загрязнение, — получается меньше, чем при делении ядер урана. Заблуждение это основано на том, что при термоядерном взрыве большая часть энергии якобы выделяется за счет слияния ядер. Это неправда. Да, «Царь-бомба» была такой, но только потому, что ее урановую «рубашку» для испытаний заменили на свинцовую.

Современные двухступенчатые запалы приводят к значительному радиоактивному загрязнению. Правда, зерно истины в мифе о «чистой» бомбе все же есть. Взять лучшую американскую термоядерную боеголовку W88.

Принцип действия водородной бомбы Разберем пошагово, этапы приведения в действие водородных бомб: Детонация заряда. Заряд находится в специальной оболочке. После детонации идет выброс нейтронов и создается высокая температура, требуемая для начала ядерного синтеза в главном заряде. Расщепление лития. Под воздействием нейтронов, литий расщепляется на гелий и тритий. Термоядерный синтез.

Тритий и гелий запускают термоядерную реакцию, вследствие чего в процесс вступает водород, и температура внутри заряда мгновенно возрастает. Происходит термоядерный взрыв. Принцип действия атомной бомбы Далее пошаговый принцип действия атомных бомб: Детонация заряда. В оболочке бомбы находится несколько изотопов уран, плутоний и т. Лавинообразный процесс. Разрушение одного атома, инициируют к распаду еще нескольких атомов.

Атомная бомба и Водородная бомба: что сильнее? | Plushkin

Осадки с содержанием кобальта-60 значительно опаснее осадков от обычного ядерного взрыва по следующим причинам: Многие изотопы, возникающие при делении ядра урана, имеют очень краткий период полураспада. Соответственно, они распадаются до того, как успеют выпасть с осадками, либо на время их распада можно отсидеться в укрытии; Другие продукты деления ядра обладают очень длительным периодом полураспада, поэтому и излучение от них не слишком интенсивное; Кроме того, при обычном ядерном взрыве многие продукты распада быстро превращаются в нерадиоактивные вещества, например, в свинец. Кобальт-60 занимает ровно промежуточное положение между первыми двумя ситуациями, и именно поэтому так опасен. Его изотопы успеют разнестись на большие расстояния с потоками воздуха и выпасть с осадками, а переждать в бункерах его полураспад не получится — не хватит и целой жизни. Вдобавок к этому, кобальт-60 дает сильное проникающее гамма-излучение. Непосредственно после взрыва гамма-излучение у обычной атомной бомбы выше, чем у кобальтовой: в 15 000 раз выше в первый час, в 35 раз выше в первую неделю, в 5 раз выше в первый месяц. Зато уже через год излучение остаточного кобальта будет в 8 раз выше, чем излучение обычного ядерного заряда, а через 5 лет — в 150 раз выше. Излучение кобальта-60 существенно снизится только через 75 лет после взрыва. В качестве более «гуманной» альтернативы кобальту мог бы служить цинк-65, чья радиоактивность будет гораздо выше на начальном этапе и, соответственно, спадет быстрее.

Но затравочный изотоп цинк-64 составляет лишь примерно половину природного цинка, поэтому для военного применения цинк пришлось бы им обогащать. Гамма-излучение у цинка-65 также слабее, чем у кобальта-60. Сразу после взрыва радиоактивность цинка-65 будет примерно вдвое выше, чем у кобальта-60, затем эти изотопы сравняются по смертоносности через 8 месяцев, а через пять лет радиоактивность у кобальта-60 будет в 110 раз выше, чем у цинка-65. Вот как Силард характеризовал метеорологические аспекты проблемы.

К счастью, водородные бомбы до сих пор не применялись в боевых действиях, и их разрушительный потенциал остается серьезной угрозой глобальной безопасности. Нейтронные бомбы, также известные как усиленное радиационное оружие, представляют собой тип ядерного оружия, предназначенного для высвобождения большого количества нейтронного излучения при минимальном взрывном и тепловом эффектах. Нейтроны — это нейтральные субатомные частицы, которые могут проникать сквозь твердые объекты и ионизовать атомы, вызывая повреждение биологических тканей и электронных цепей.

Нейтронное излучение нейтронной бомбы может убить или вывести из строя людей и животных в радиусе нескольких сотен метров, оставив нетронутыми здания и инфраструктуру. Идея нейтронных бомб заключалась в том, чтобы разработать оружие, которое могло бы нейтрализовать солдат и танки противника, не вызывая массовых разрушений в городах или инфраструктуре. Соединенные Штаты испытали свою первую нейтронную бомбу в 1963 году, но это оружие так и не было развернуто в полевых условиях из-за политических и этических соображений. Однако, как сообщается, Советский Союз произвел и развернул небольшое количество нейтронных бомб во время холодной войны, и несколько других стран, таких как Франция и Китай, также заявили, что обладают ими. Таким образом, атомные бомбы, водородные бомбы и нейтронные бомбы — это все типы ядерного оружия, которые различаются по своей взрывной мощности, механизмe детонации и радиационному эффекту. Атомные бомбы основаны на делении ядер и выделяют огромное количество энергии в виде тепла, взрыва и излучения. Водородные бомбы, с другой стороны, основаны на ядерном синтезе и намного мощнее атомных бомб, высвобождая энергию, эквивалентную миллионам тонн тротила.

Атолл превратился в безжизненный остров. Последнее испытание было проведено на нём в 1998 году. Именно тогда были созданы и испытаны наиболее мощные американские атомные бомбы. В марте того же года испытали новую бомбу Romeo мощностью 11 мегатонн тротилового аналога. Такой показатель энерговыделения позволил ей занять пятое место среди крупнейших в мире атомных бомб. Это разрушительное изделие взорвали в открытом океане на морской барже. У Соединённых Штатов просто не осталось островов, пригодных для испытания ядерных боеприпасов. Взрыв уничтожил всё живое в радиусе 2 кв. Ivy Mike 12 мегатонн Испытание этого устройства показало, что Ivy Mike занимает четвёртую позицию нашего списка самых мощных ядерных бомб в мире. Это первое испытание бомбы нового типа, основанного на принципе термоядерного синтеза.

При мощности в 12 мегатонн, это жуткое изделие полностью уничтожило остров Элугелаб, вызвав гриб высотой 37 км. Размер шляпки оценили в 160 км. В двухкилометровом кратере глубиной 50 метров, оставшемся на месте острова, было впервые обнаружено большое количество энштейния и фермия. Документальный фильм, снятый во время испытания, показали по телевидению. Castle Yankee 13,5 мегатонн В то время США мечтали изготовить небольшую бомбу, но обладающую большой мощностью. В рамках серии испытаний Castle был создан прототип такого устройства. Оно получило название Castle Yankee. После проведённого испытания оказалось, что мощность взрыва составляет более 13 мегатонн. Это поставило Castle Yankee на третье место в рейтинге самых мощных ядерных бомб в мире. Castle Yankee стала второй по мощности бомбой, изготовленной и испытанной Соединёнными Штатами.

Ядерный гриб высотой более 40 км и диаметром шляпки более 16 км, создал радиационное облако, которое в течении 4 дней достигло столицы Мексики. Castle Bravo 15 мегатонн Цилиндрическое устройство весом в 10 тонн, имевшее длину около 5 метров, стало вторым в США и в мире ядерным боеприпасом. Конструкция бомбы создавалась так, чтобы её можно было транспортировать на самолёте.

Фото: РИА Новости Игорь Васильевич Курчатов Разработка бомбы велась в режиме секретности, ученых поселили недалеко от Семипалатинского полигона в Казахстане, работники между собой называли это место объектом. Благодаря кропотливой работе команды Игоря Курчатова, советские ученые превзошли своих американских коллег. Американская водородная бомба была большой и не поддавалась транспортировке, а советский вариант помещался в бомбардировщик. В первый день тренировок пуски успешно выполнили все компоненты российской триады О прорыве СССР в термоядерных исследованиях заявил 8 августа 1953 года председатель Совета министров СССР Георгий Маленков, выступая на закрытом заседании Верховного Совета. Испытание водородной бомбы провели под научным руководством Игоря Курчатова 12 августа 1953 года.

Полигон представлял собой поле, на котором построили объекты разного назначения: небольшие дома, многоэтажки, мост. Там же разместили образцы военной техники. В центре этого своеобразного макета населенного пункта установили мачту высотой 30 м, откуда и была сброшена бомба. Фото: commons. Эти показатели в 20 раз превзошли мощность атомных бомб, сброшенных на Хиросиму и Нагасаки. Абсолютно все объекты, которые были построены на Семипалатинском полигоне, оказались уничтожены: танки перевернуты, от макетов жилых зданий остались лишь бетонные ошметки, а 100-тонные элементы моста отбросило на 150—200 м. Нервное спокойствие Официально об испытаниях первой водородной бомбы объявили лишь спустя восемь дней — 20 августа 1953 года — в газетах «Правда» и «Известия». Отечественную ядерную триаду ждут большие перемены «Вследствие осуществления в водородной бомбе мощной термоядерной реакции взрыв был большой силы, — писали «Известия».

В той статье также отметили резонанс в зарубежных СМИ. Многие считали, что обладание СССР таким мощным оружием является угрозой для мирового порядка.

Термоядерное оружие: защита суверенитета или угроза человечеству

Концепция термоядерной бомбы на жидком дейтерии нашла развитие в TX-16, единственном снаряде данного типа. Для сравнения: мощность атомной бомбы "Малыш", которую американцы сбросили на Хиросиму, составляла около 18 килотонн. Мощнейшая в истории человечества водородная бомба была взорвана на полигоне Новая Земля примерно за 1,5 года до официального заявления Хрущёва о наличии у СССР 100-мегатонной водородной бомбы. Самая мощная из всех бомб когда-либо построенных человеком, была создана в Советском Союзе.

Водородная (термоядерная) бомба: испытания оружия массового поражения

В прошлом Северная Корея уже взрывала атомные бомбы, но водородная бомба может изменить все правила игры. Атомные бомбы середины прошлого века, сконструированные в основном по модели «Толстяк» (инициирующий тротиловый заряд приводит к схлопыванию контура, образованного дольками из оружейного плутония). То есть фактически мощность водородной бомбы была в 111 раз больше самой мощной в мире атомной бомбы.

Какая бомба мощнее, атомная или водородная?

Самые мощные бомбы в мире! Царь-бомба, Castle Bravo Термоядерное оружие (водородная бомба) — вид ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия).
Водородная и атомная бомбы: сравнительные характеристики И водородная, и атомная бомбы работают с помощью ядерной физики, но одна из них в 1000 раз мощнее и производит гораздо меньше радиоактивных осадков.
Ядерный меч. Какое ядерное оружие могут применить против России Их самая мощная бомба, боеголовка водородной бомбы, имеет расчетную мощность в несколько сотен килотонн.
Топ-10 самых страшных ядерных ракет в мире Самые мощные бомбы давно имеют ядерную «начинку» и по поражающему воздействию на порядок обошли своих пороховых «товарищей».

ТОП-10 самых мощных атомных бомб в мире

В прошлом Северная Корея уже взрывала атомные бомбы, но водородная бомба может изменить все правила игры. Водородная бомба – это термоядерный боеприпас комбинированного действия, использующий оба указанных принципа ядерных реакций. Мощнейшее смертоносное оружие: как устроена водородная бомба и чем она отличается от атомной. Водородная бомба является гораздо более продвинутой и технологичной, чем атомная.

Инфографика: отличия атомной и водородной бомб

Ядерное оружие в России В России ядерное оружие официально подразделяют: на стратегическое; тактическое нестратегическое. Что такое стратегическое ядерное оружие Стратегическое ЯО предназначено для масштабного поражения территории противника, самых чувствительных и важных целей. В России этот вид оружия представлен так называемой «ядерной триадой». Это значит, что ядерный запас разделён между тремя типами вооружений: наземного, воздушного, морского базирования. Обычно «триада» представлена межконтинентальными баллистическими ракетами, стратегическими бомбардировщиками-ракетоносцами и атомными подводными лодками.

То есть, защищает государство на всех трёх уровнях: на земле, в воде и в воздухе. Что такое тактическое ядерное оружие Тактическое ЯО — боеприпасы с более ограниченным радиусом действия, нежели стратегические. Оно нужно для точечного применения на поле боя, для какого-то ограниченного ядерного удара. Сколько в России ядерного оружия По данным на 2022 год у России было 5977 ядерных боеголовок, в том числе 1588 в боеготовности и еще 2889 в законсервированном состоянии.

Остальные — в резерве, в том числе в законсервированном состоянии. Такие данные приводит Стокгольмский международный институт исследования проблем мира. По данным американских исследователей, всего в РФ боеголовок 5889, из них 1674 в боевой готовности.

Непринципиально, какая бомба самая мощная — неважно какая из их наносит несопоставимый ни с чем разрушительный удар, поражающий все живое. Водородная бомба Водородная бомба — очередное ужасное ядерное орудие. Соединение урана и плутония порождает не только лишь энергию, да и температуру, которая увеличивается до миллиона градусов.

Изотопы водорода соединяются в гелиевые ядра, что делает источник колоссальной энергии. Водородная бомба самая мощная — это бесспорный факт. Довольно всего только представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме. Взрыв такового боеприпаса сравним с процессами, которые наблюдается снутри Солнца и звезд. Резвые нейтроны с большой скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только лишь тепло, да и радиоактивные осадки.

Насчитывают до 200 изотопов. Создание такового ядерного орудия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Русском Союзе 12 августа 1953 года. Последствия взрыва Итог взрыва водородной бомбы носит тройной нрав. Самое 1-ое, что происходит — наблюдается мощная взрывная волна. Ее мощность находится в зависимости от высоты проводимого взрыва и типа местности, также степени прозрачности воздуха.

Могут создаваться огромные пламенные ураганы, которые не успокаиваются в течение нескольких часов. И все таки вторичное и более опасное последствие, которое может вызвать самая мощная термоядерная бомба — это радиоактивное излучение и инфецирование окружающей местности на долгое время. Радиоактивные остатки после взрыва водородной бомбы При взрыве пламенный шар содержит внутри себя огромное количество очень малеханьких радиоактивных частиц, которые задерживаются в атмосферном слое земли и навечно там остаются. При соприкосновении с землей этот пламенный шар делает раскаленную пыль, состоящую из частиц распада. Поначалу оседает большая, а потом более легкая, которая с помощью ветра разносится на сотки км. Эти частички можно рассмотреть невооруженным глазом, к примеру, такую пыль можно увидеть на снегу.

Она приводит к смертельному финалу, если кто-нибудь окажется вблизи.

Длина этого смертельного устройства всего 3 метра, при диаметре около 70 см. При взрыве Малыша образовался «грибок» выстой более 6 километров. Тогда японский город был стёрт с лица земли. Погибло 140 000 мирных горожан. Fat Man 21 килотонна Девятое место в рейтинге самых мощных ядерных бомб в мире занял «толстяк». Именно так переводится название с английского языка. Мощность «толстяка» превышает мощность «малыша» на 3 килотонны. Взорвавшись в небе над беззащитным японским городом, бомба унесла жизни 80 000 мирных жителей.

Последствия лучевой болезни до сих пор проявляются у потомков жертв ядерной бомбардировки. Это был второй и последний взрыв ядерной бомбы в истории человечества, использованный в реальных боевых целях. Trinity 21 килотонна Эту бомбу, получившую название «Штучка», американцы испытали первой в мире. Мощность в 21 килотонну позволили ей занять восьмое место в нашем рейтинге ядерных взрывов. При взрыве «штучки» ядерный гриб поднялся на 11 километров. Вызванные испытанием разрушения ошеломили учёных. На месте взрыва впервые был получен новый минерал — тринитит, образовавшийся в результате сплавления кварца и полевого шпата. Baker 23 килотонны Этот боеприпас, обладающий мощностью в 23 килотонны в тротиловом эквиваленте, разместился на седьмом месте в нашем списке самых мощных ядерных взрывов. Бомба была создана в рамках проекта Crossroads — перекрёстки, последовавшего сразу за Trinity.

Взорвали её в июне 1946 года в районе атолла Бикини, жители которого были предварительно эвакуированы. Это было первым испытанием атомной бомбы на морской глубине. Основной целью было определить ущерб от ядерного взрыва для морских судов. После взрыва, произведённого на 27-метровой глубине, образовался полукилометровый ядерный гриб. В атмосферу поднялось около 2 миллионов тонн морской воды. После испытания проживание на атолле Бикини запретили, из-за радиоактивного заражения.

Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес более 60 т. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение. В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах. Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно- урановая бомба, а также некоторые ее разновидности — сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы. Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров. Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, то есть не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания. Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека. Как они образуются. При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными — в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей. Устройство термоядерной бомбы по принципу Теллера-Улама Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба т. Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже. Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы эта идея сначала была использована в СССР просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще. По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой или урановой оболочкой. Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия. Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже. H-bomb А вот горючее для термоядерного синтеза критической массы не имеет.

Инфографика: отличия атомной и водородной бомб

Атомная, водородная и нейтронная бомбы Термоядерные бомбы гораздо мощнее атомных и способны нанести разрушения в гораздо больших масштабах.
Инфографика: отличия атомной и водородной бомб - ПИР-Центр Энергия взрыва атомной и водородной части при этом суммируется, но водородную бомбу можно сделать сколь угодно мощной, — потому СССР и США старались обогнать друг друга, создав такое устройство первыми.
Последствия взрыва водородной бомбы Ядерная бомба — самое мощное оружие, придуманное человечеством.
Что произойдет после взрыва ядерной бомбы? Их самая мощная бомба, боеголовка водородной бомбы, имеет расчетную мощность в несколько сотен килотонн.

Похожие новости:

Оцените статью
Добавить комментарий