Новости термоядерная физика

Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки.

Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды

Китайский термоядерный реактор поставил рекорд в ядерной энергетике. Делается вывод о том, что термоядерные исследования способны выступать и уже выступают мощным драйвером научно-технологического прогресса, механизмом, стимулирующим. Все самое интересное и актуальное по теме "Ядерная физика".

Американцы произвели термоядерный прорыв к 100-летию советского академика Басова

В Саровском ядерном центре создается аналогичная установка для экспериментов, позволяющих работать с управляемым термоядерным синтезом с инерциальным удержанием. Поговорим о том, зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика — новости от эксперта в мире энергетики, онлайн-журнала «Энергия+». Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного. На фото: физик-теоретик, участник Манхэттенского проекта от Великобритании, передавший сведения о ядерном оружии Советскому Союзу, Клаус Фукс. Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Заключить искусственное Солнце в клетку. Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5.

Начало эпохи Водолея в 2021 году

  • Главные новости
  • Термоядерный запуск. Как Мишустин нажал на большую красную кнопку | Аргументы и Факты
  • Быстрее взрыва
  • Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды - Телеканал "Наука"
  • Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды

Российский инженер рассказала о значении термоядерного прорыва американских ученых

Но до практического применения результатов еще далеко, поскольку полная энергия, потребляемая установкой, в десятки раз превышает энергию, полученную от синтеза». Духова «Событие, важное не только для мировой науки, для человечества — это термоядерный синтез с положительным выходом энергии. Американский "Национальный комплекс зажигания" National Ignition Facility, NIF в Ливерморской национальной лаборатории воспроизвел так называемый инерционный управляемый термоядерный синтез, предусматривающий облучение крошечной порции водородной плазмы самым большим в мире лазером». Вот когда появится первая ТЯ электростанция на 100 гвт, тогда и будет порыв. А так, просто болтовня! Гоблин даже про него говорил.

Для этого ученым необходимо обеспечить стабильное "зажигание", которое выводит реакцию на самоподдерживающийся уровень. Физики потратили более десяти лет на создание технологии воспламенения термоядерной реакции, и в августе 2021 года они смогли успешно провести эксперимент. Чтобы добиться эффекта "зажигания", команда поместила капсулу с тритиевым и дейтериевым топливом в центр облицованной золотом камеры с обедненным ураном и направила на нее 192 высокоэнергетических рентгеновских луча.

В этих условиях атомы водорода подверглись слиянию, выделяя 1,3 мегаджоулей энергии за 100 триллионных долей секунды, что составляет 10 квадриллионов ватт мощности.

В конце концов был создан комплекс NIF размером со спортивный стадион, где лазеры используются для создания температур и давлений, подобных тем, что возникают в ядрах звезд и планет-гигантов, а также внутри ядерных взрывов Ударные волны от взрыва заставляют дейтериево-тритиевое топливо сжиматься до давления в сотни гигабар, что создает в его центре горячую точку с температурой около 10 миллионов кельвинов. В таких условиях экстремальная температура, сравнимая с температурой звезд, приводит к тому, что изотопы водорода начинают сливаться с образованием ядер гелия, высвобождая дополнительную энергию и создавая каскад термоядерных реакций. Термоядерные реакции синтеза производят альфа-частицы, энергия которых нагревает все остальное топливо. Исследователи классифицирует ее как воспламенение англ. Ignition — самоподдерживающую реакцию термоядерного синтеза, при которой выделяется больше энергии, чем тратится на ее поддержание. Чтобы добиться безубыточной реакции синтеза, физики внесли изменения в ход эксперимента, основываясь на результатах предыдущих исследований. Они увеличились мощность лазеров примерно на восемь процентов, а также изготовили мишень с меньшим количеством дефектов и отрегулировали способ подачи энергии, чтобы взрыв внутрь был более сферическим. До коммерческого получения термоядерной энергии еще далеко Пока что о коммерческом получении термоядерной энергии речь не идет. Дело в том, что воспламенение не компенсирует всю энергию, потраченную на работу лазеров — около 322 мегаджоулей, — а только ту, что была потрачена непосредственно на нагрев мишени.

Ранее в этом году, в ходе оглашения стратегии развития термоядерной энергии, один из американских конгрессменов заявил, что технология является «святым граалем» чистой энергетики и потенциально способна избавить большее число людей от бедности, чем открытие огня. Большинство исследований пока связаны с т. Если ранее термоядерной энергетикой занимались преимущественно государственные учреждения, то в последнее время инвестиции в соответствующую отрасль потекли и в частные компании, обещающие создать работоспособные технологии к 2030-м годам. Хотя многие учёные считают, что до появления термоядерных электростанций пройдут ещё десятилетия, новости невозможно игнорировать. Термоядерные реакции намного безопаснее с экологической точки зрения, чем обычные ядерные. К тому же даже небольшое количество водорода в теории способно снабжать дом энергией в течение сотен лет.

Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики

Да, полученной «сверхнормативной» энергии хватит, чтобы вскипятить 10—15 чайников. Но журнал Nature напоминает: на работу всей установки потратили 322 МДж; лазеры выдали мощность на топливо, равную 2,05 МДж; конечная реакция произвела 3,15 МДж. Но с точки зрения промышленности все остается на своих местах: потратили 322, получили 3,15», — резюмируют сотрудники Московского инженерно-физического института в Telegram-канале «Эвтектика из МИФИ». Но в этой гонке принципов — токамаки vs инерциальный термояд — как-то оказался отодвинутым на периферию научного и государственного, что важно! Этот сценарий, как бы, зеркально противоположен лазерному термояду.

Если в реакторе NIF происходит внешнее обжатие капли термоядерного топлива, то в пузырьковом варианте, наоборот, нейтроны рождаются в результате экстремального схлопывания газовых пузырьков. Любопытно, что теоретическую схему этого процесса предложил как раз академик Роберт Нигматулин в середине 1990-х. По крайней мере в 1995 году он уже выступал с докладом «Перспективы пузырькового термояда» на научной конференции в США. Несколько американских физиков заинтересовались теоретическими выкладками российского ученого, и начались «камерные» лабораторные эксперименты.

Действие лабораторной термоядерной установки основано на эффекте акустической кавитации в специально подготовленной жидкости, подвергнутой воздействию акустической волны, образуется кластер мельчайших пузырьков, которые с огромной скоростью схлопываются. Все происходило в небольшом цилиндре с ацетоном, в котором ядра водорода были заменены ядрами дейтерия, имеющими в своем составе по дополнительному нейтрону. Ученые зарегистрировали поток нейтронов, вылетающих из камеры, где находился цилиндр с ацетоном. Это и появление ядер трития в облученном таким образом ацетоне — явные признаки термоядерной реакции.

А в середине нулевых в одном из номеров журнала Physical Review Е оявилось сообщение группы физиков из двух американских институтов Окриджская национальная лаборатория, штат Теннесси, и Ренселлерский политехнический институт в Трое, штат Нью-Йорк о том, что им вторично удалось получить доказательства существования пузырькового термояда. Экспериментаторы «бомбардировали» цилиндр мощными звуковыми волнами и одновременно — высокоэнергичными нейтронами. В результате рождалось скопление воздушных пузырьков диаметром около миллиметра, то есть гораздо более крупных, нежели образуются при воздействии только звуковых волн. Схлопывание пузырьков нагревало дейтерированный ацетон до таких температур, при которых, утверждают физики, уже начинается термоядерная реакция — слияние двух ядер дейтерия в ядро трития с вылетом лишнего нейтрона.

Кстати, о температурах. Пузырьковый термояд иногда называют «холодным». Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза». В центре пузырька, который испускает нейтроны, температура от 100 до 200 миллионов градусов Кельвина.

Процесс длится доли пикосекунды 10—12 с.

Результаты исследования помогут развитию энергоэффективной термоядерной энергетики.

В реальности все оказалось еще скромнее. Установка произвела первые полноценные выстрелы в 2010 году и вместо мегаджоулей термоядерной энергии ученые увидели сотни джоулей. Три года непрерывных усилий по совершенствованию установки привели к первому breakeven — выходу около 15 килоджоулей термоядерной энергии, что было больше, чем сообщали рентгеновского тепла стенки сосуда с капсулой. Однако это было далеко от того, что обещали до начала строительства NIF.

Впрочем, основного заказчика этой установки все устраивало. Дело в том, что условия, создающиеся в топливной капсуле и хольрауме очень похожи на то, что происходит в термоядерном боеприпасе в момент срабатывания. И изначально NIF создавался как большой стенд для верификации нового поколения программ, симулирующих поведение ядерного оружия, а энергетическое направление было приятным бонусом, на который выделялось меньше трети фондирования. Но команда термоядерщиков LLNL продолжала совершенствовать режимы работы лазеров, конструкцию хольраума и капсулы. Вместе это позволило поднять симметричность и стабильность сжатия капсулы, побороть лазерно-плазменные неустойчивости на хольрауме, увеличить эффективность передачи энергии от лазеров на хольраум и от хольраума на сжатие капсулы. Как работает NIF Специально профилированный во времени затравочный импульс «мастер-лазера» расщепляется на 192 луча, каждый из которых проходит 4 раза через 192 усилителя лазерного излучения и направляется на систему преобразования частоты, где исходное инфракрасное превращается в рабочий ультрафиолет. Через систему фокусировки 192 луча с точностью в 10 микрон проходят через окна в хольрауме, попадая на его внутренние стенки, за 10 наносекунд разогревая их до 3 миллионов градусов.

Сфера с топливом, «купаясь» в излучаемом хольраумом рентгеновском излучении начинает испаряться снаружи, а реактивная сила отдачи начинает сжимать внутренние слои к центру симметрии капсулы. Примерно за 2 наносекунды при давлении в 200 миллиардов атмосфер размер сферы уменьшается в 30 раз, а плотность топлива возрастает до 1000-1300 грамм на кубический сантиметр — примерно в 100 раз плотнее свинца. В момент максимального сжатия, в разогретой центральной части начинается термоядерная реакция, которая, как пожар, распространяется от центра к периферии. Всего несколько десятков пикосекунд продолжается горение, мощность которого в этот короткий миг сравнимо с потоком солнечной энергии на всю планету Земля и в десятки тысяч раз превосходит всю остальную мощность человеческой цивилизации. Как итог — в 2019-2020 году выход термоядерной энергии в экспериментах NIF начал заметно расти, перешагнул порог 100 килоджоулей, а весной 2021 года несколько выстрелов дали энергии от 400 до 700 килоджоулей и наконец 8 августа 2021 года — 1350 килоджоулей. Эта энергия в 2-5 раз превосходила энергию рентгеновского излучения от стенок хольраума и в 10-20 раз — энергию, переданную топливной сфере и свидетельствовала о том, что зажженная термоядерная реакция в маленькой точке в центре сжатой сферы успевает прогреть и поджечь окружающий ее относительно холодный топливный материал. Теперь ученые, работающие в NIF провели пресс-конференцию, где рассказали, что 5 декабря 2022 года, при мощности лазера в 114 процентов от номинальной командой было получено заметное превышение выхода термоядерной энергии 3,15 мегаджоулей над вложенной энергией лазера 2,05 мегаджоулей , что является рекордным достижением для всех установок термоядерного синтеза.

Журнал Science добавляет несколько деталей про выстрел 5 декабря. Рекордный эксперимент потребовал заметных усилий от команды экспериментаторов. Для корпуса топливной капсулы использовался искусственный алмаз, который давал наиболее гладкую сферическую поверхность без пор. Было максимально уменьшено отверстие, через которое капсула заполняется топливом. Лазер был настроен на максимальную мощность и энергию, что позволило придать испаренной оболочке капсулы больше ускорения и сжать топливо чуть больше. За три месяца до рекорда, команда NIF уже опробовала эти улучшения, получив энерговыход в 1,2 мегаджоуля. Проблема, как оказалась, лежала в недостаточно симметричном обжатии, на последнем этапе капсула превратилась скорее в блин, чем в плотный шарик.

Путем подстройки мощности каждого из 192 лучей удалось улучшить сферичность сжатия и как итог — получить рекордную термоядерную энергию.

Чтобы ядерный синтез стал жизнеспособным источником энергии, необходимы десятилетия исследований. Ядерный синтез — естественная реакция в звездах, но его крайне сложно воспроизвести на Земле. Исследователи все еще сталкиваются с рядом технических проблем, чтобы собрать воедино условия, необходимые для контролируемого и экономически эффективного ядерного синтеза. Плотность плазмы — одно из важнейших условий для воспроизведения реакции. Чем плотнее материал, тем большее количество горючих частиц он содержит, что повышает вероятность термоядерного синтеза.

В ядерных реакторах типа токамак эта плотность ограничена. Однако в ходе недавнего эксперимента ученым из General Atomics компании, специализирующейся на ядерной физике удалось увеличить плотность плазмы, как никогда ранее, без ущерба для ее удержания.

Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика

Здесь катастрофы, сравнимые с Чернобылем, невозможны, но в результате работы таких устройств происходит активация, то есть становятся радиоактивными элементы конструкции», — подчеркнул Ожаровский. Он пояснил, что при активации то, что было нерадиоактивным, становится радиоактивным из-за нейтронного облучения. Этот процесс уже изучен по предшественникам современных токамаков. Даже если китайцы добьются успеха, то у них не получится получить чистую и дешевую энергию. Инженер-физик добавил, что токамаками занимается уже не первый год целая отрасль ученых.

Они зарабатывают на этом проекте, поэтому только выигрывают от экспериментов. Ученые могут преуспеть, но от экспериментальной установки до промышленной еще очень далеко. Плюс нужно будет придумать, как превратить термоядерную энергию, например, в электричество. До того, как это стало бы технологией, которая начала бы приносить пользу человечеству, еще пройдет довольно много времени.

Даже если эта технология состоится, у меня огромное ощущение зря потраченных ресурсов и зря потраченных денег», — заявил Ожаровский.

В Китае уже утвержден проект постройки нового испытательного реактора следующего поколения Fusion Engineering. Воспроизвести процессы, идущие в сердцах звезд, — непростая задача. Наиболее распространенная конструкция термоядерных реакторов — токамаков — работает за счет перегрева плазмы. Термоядерным реакторам требуются температуры во много раз выше, чем на Солнце, потому что они должны работать при гораздо более низком давлении.

Например, в Хиросиме США взорвали только относительно небольшую атомную бомбу, и последствия были ужасающие. Понять я это не могу. Может быть, если на какой-то огромной высоте, если взорвать, то людей массово сразу не убьет, но всё равно радиоактивные осадки будут перемещаться в атмосфере по Земле и в конце концов выпадут вместе с дождями, с пылью на головы всех людей, — отметил физик. Заражение может распространиться по всей Земле и выпасть осадками в другом регионе, стране — это негативные последствия, которые возможны повсеместно. А катастрофические — локальны, — ответили на запрос корреспондента NGS. RU в институте. От такого взрыва могут погибнуть миллионы людей. Просчитать точно все последствия просто невозможно. Но вопрос об угрозе ядерной зимы всё же остается открытым. Электронику отрубит, а вот со спутниками — вопрос У любого взрыва есть свой радиус. RU Вероятность выхода из строя электроприборов после термоядерного взрыва очень высока, так как даже большая вспышка на солнце может оставить людей без гаджетов и электричества. Всё вырубилось вообще из-за сильной вспышки на Солнце. Но опять же это локальные вещи, — отметил физик. И это всё равно что подключить неожиданно к проводу колоссальный источник с огромным напряжением, на которое вся система не рассчитана. И всё это просто вырубается, если не сгорает. Все чипы могут сгореть навсегда. Но есть важное уточнение — влияние на весь мир, а тем более на спутники, термоядерный взрыв над Сибирью не окажет. Валерий Христофоров в свою очередь добавил, что страшно представить, что может сделать взрыв с людьми, а не только гаджетами. Выпадения радиоактивных осадков избежать точно не получится. Никто не может и гарантировать, что они выпадут над Сибирью, а не переместятся, например, в Москву, где живет и не дает своим детям гаджеты, а еще записывает эфиры Маргарита Симоньян. Кто-то сгорел мгновенно — полностью превратились в атомы, только тень осталась на мосту, кто-то позже умер в муках, — объяснил ученый. Думаете, в этот раз по-другому будет?

Но самый, пожалуй, главный вопрос заключается в том, действительно ли термоядерный реактор поможет нам вырабатывать дешевую электроэнергию? То есть, условно, на мишень попал 1 мегаджоуль, а выделилось 1,2 мегаджоуля. Но на самом деле надо смотреть, сколько установка потребила энергии из розетки. Это будут совсем другие цифры. Все это пока сильно охлаждает мысль о том, что завтра у нас будут фабрики с термоядерными управляемыми реакторами. И там тоже будет использоваться рентгеновский диапазон излучения для обжатия мишени, как и американцев, но есть свои интересные наработки. Работы пока проводятся на уровне энергии в несколько десятков килоджоулей.. На полный уровень энергии 2. Первая — это проблема устойчивости плазмы. На бумаге все было красиво, но жизнь внесла свои коррективы. Оказалось, что в реальности добиться сферического обжатия мишени очень сложно. Второе — не хватало мощности лазеров. По сравнению с первыми экспериментами они сегодня в несколько сотен раз мощнее. Им придется восстанавливать установку еще довольно долго. Но если коротко, многим, чем мы сегодня обладаем, мы обязаны этому человеку.

Искусственное солнце: как первый в мире термоядерный реактор изменит мир

Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии. Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии. Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного. Американские физики утроили энергетическую эффективность экспериментального термоядерного реактора NIF.

Похожие новости:

Оцените статью
Добавить комментарий