Новости процессор амд а10

Готовящиеся процессоры AMD на Zen 5 получат от 6 до 16 ядер, некоторые модели оснастят поддержкой 3D V-Cache. 127 объявлений по запросу «amd a10 Socket FM2» доступны на Авито во всех регионах. Профессиональный обзор процессора AMD A10-5700 в бенчмарках. Корпорация AMD анонсирует процессор AMD Alchemy Au1550.

Вершина технологий Intel: анонсированы процессоры 10-го поколения и убийцы AMD Ryzen

AMD представляет процессор Alchemy Au1550 с интегрированной поддержкой безопасной сетевой обработки AMD Radeon R7 series.
Мобильные процессоры Intel 10 поколения обгоняют последние чипы AMD А также процессоры AMD Epyc поколения Milan-X с 64 ядрами и более чем 800 МБ кэш-памяти. Компания AMD представила первые в мире видеокарты на основе двухчипового графического процессора.
AMD A10-7300 Бывшая президент Intel Рене Джеймс создала 128-ядерный серверный процессор Altra Max с техпроцессом 7 нм, тогда как у самой.
Обзор и тестирование процессора AMD A10-7800 Страница 1 Очередное достижение для центральных процессоров сделал финский оверклокер, установив частоту процессора AMD A10-6800K на отметке едва превышающей 8,0 ГГц.

Процессор AMD A10-4600M – подробности о мобильном представителе Trinity

В базе данных популярного бенчмарка Geekbench появились результаты тестирования новейших процессоров Intel 10 поколения. AMD представила новый графический процессор Instinct MI100 на базе 7-нм архитектуры CDNA, предназначенный для вычислений и работы с алгоритмами ИИ. В итоге пользователи, которые приобретут процессор AMD FX-8350, всего за 195 долларов (аналог от компании Intel – i5 3570K, стоимостью 235 долларов), получат 8 процессорных ядер, работающих с частотой до 4,2 ГГц!!! и 8 Мбайт кеш-памяти уровня L3. частота, температура, socket, TDP, цена, где купить. Обозреваемый процессор AMD A10-7800 формально является вторым по производительности решением в линейке после разблокированного AMD A10-7850К.

Свежие комментарии

  • Процессоры AMD A10
  • Тесты на производительность
  • AMD APU - Wikipedia
  • Сравнение в бенчмарках

Обзор и рейтинг Amd a10-7800

Модель FX-6300 имеет шесть ядер, работающих с тактовой частотой до 4,1 ГГц, и доступна по цене 132 доллара. За четырехъядерный процессор FX-4300 3,8 — 4,0 ГГц придется выложить 122 доллара.

Память 2133 8 гигов. Шустро работает даже с весьма тяжелой графикой. Хорошо распределяет нагрузку между GPU и видеокартой.

Но греется сильно.

На самом деле я так не считаю, и поэтому.. Обе компании производят высококачественные процессоры, и обе имеют свои уникальные преимущества и недостатки. Процессоры AMD часто имеют большее количество ядер, что делает их более подходящими для задач, требующих параллельной обработки данных, таких как рендеринг 3D-графики и научные вычисления. Они также часто имеют более высокую частоту работы, что может обеспечить более высокую производительность в некоторых приложениях.

Кэш второго уровня составляет 2048 КБ. Встроенное графическое ядро AMD Radeon R5, представляет собой интегрированную графику среднего уровня которая имеет в своем составе 384 шейдерных ядра с тактовой частотой 758 МГц. В зависимости от настраиваемого TDP и используемой оперативной памяти, уровень производительности интегрированного графического ядра может отличаться.

AMD и NVIDIA представили мощнейшие графические процессоры для ИИ

Сегодня мы можем предложить вашему вниманию результаты тестирования чипа A10-5800K, относящегося к верхнему сегменту линейки Trinity, в различных бенчмарках. Известные на текущий момент характеристики A10-5800K включают в себя четыре x86-ядра с номинальной частотой 3,8 ГГц до 4,2 ГГц с функцией Turbo Core , а также графику Radeon HD 7660D с 384 потоковыми процессорами и разблокированный множитель.

Обработка фото и видео, 3D-рендеринг, CAD-проекты, да даже игры — все они давно научились работать с многоядерными процессорами. Конечно, все 20 потоков могут оказаться не загружены, но половина из них точно будет нормально утилизироваться, а значит никаких 5. Вот и получается, что цифра 5.

Аналогично и с другими процессорами — например, для «народного» 6-ядерного Core i5-10400 указана частота в 4. Тут, в общем и целом, нет ничего нового, Intel — да и AMD — уже не первый раз так мухлюют с частотами, так что это стоит помнить при выборе процессора. Что касается ручного разгона, то из-за старого 14 нм техпроцесса и огромного тепловыделения чуда ожидать не стоит: 6- и 8-ядерные процессоры скорее всего остановятся в районе 5-5. Впрочем, с разгоном все плохо не только у Intel: у AMD Ryzen 3000, особенно топовых, из-за различий в качестве используемых кристаллов с покорением даже 4.

Старое охлаждение и улучшенный теплоотвод — и на том спасибо У многих, скорее всего, назрел вопрос — а что насчет систем охлаждения? К счастью, тут Intel ничего менять не стала — отверстия остались те же, так что кулеры для LGA115X отлично подойдут. Более того, компания приняла к сведению проблемы с припоем у топовых Intel Core 9-ого поколения, так что теперь сам кремниевый кристалл стал тоньше, а медная крышка наоборот, толще: Сильно ли это поможет? Как показывают тесты, стачивание лишнего кремния с кристалла Core i9-9900K уменьшает температуру на пару градусов.

Возможно, еще столько же даст улучшенный припой. Короче говоря, чуда ожидать не стоит, но временами и 4-5 градусов является весомой разницей. Производительность и цены — лучше, чем было, но до AMD далеко Разумеется, в современном мире что-то удержать в тайне нереально, и тесты новинок уже есть в интернете. А теперь самое интересное — цены.

С учетом того, что такой младший Ryzen без проблем разгонится до 4. И даже без разгона решения от AMD оказываются все же выгоднее. И это при том, что Z390-A Pro сейчас можно найти за 10 тысяч. Конечно, никто не будет брать такие платы для простеньких Core i3, но тенденция понятна, и платы на чипсете H410 также подорожают относительно плат на H310.

А вот в случае с Ryzen таких проблем нет — с вышеуказанными процессорами без проблем справятся платы на AMD A320, которые стоят от трех тысяч рублей. А доплатив еще 500-700 рублей, вы получите уже плату на чипсете B350 с возможностью разгона. Вот и получается, что в бюджетном сегменте решения от Intel опять не выглядят интересной покупкой: да, если не брать разгон, они аналогичны по производительности конкурентам из стана «красных». Но при этом сами CPU от «синих» стоят дороже, и вам придется брать более дорогую плату, так что при сборке с нуля покупать процессоры от Intel смысла нет.

Что касается апгрейда, то тут и так все понятно — у «синих» его нет, а вот у AMD он максимально прост: вытащили из свой платы Athlon, поставили Ryzen 3 и продолжили работать. Ладно, но может в топовом сегменте 10-ядерный Core i9-10900K играет мускулами? Не совсем. Да, с учетом максимально поднятой с завода частоты он догоняет 12-ядерный Ryzen 9 3900X, правда ценой жуткого тепловыделения: Одноядерный результат лучше, чем у Ryzen 9 3900X, многоядерный на уровне.

Но вот с ценой опять те же проблемы. Так, решение от AMD можно найти на Amazon за 430-440 долларов. И опять же стоит помнить, что вам потребуется мощный суперкулер или СВО для отвода 200-250 Вт под нагрузкой, и вам придется купить достаточно дорогую материнскую плату. Ну и под конец — конкурента 16-ядерному Ryzen 9 3950X у Intel среди десктопов до сих пор нет, и вряд ли появится в ближайшее время.

Планируете собрать ПК на Comet Lake?

В микроархитектуре AMD K10 предвыборка данных осуществляется непосредственно в кэш L1, что, по утверждению представителей компании AMD, способствует повышению производительности, несмотря на вероятность засорения кэша L1 ненужными данными. Кроме того, в блоках предвыборки процессоров с микроархитектурой K10 реализован механизм адаптивной предвыборки данных, позволяющий динамически изменять глубину предвыборки, что позволяет избежать засорения кэша L1 ненужными данными. Ну и последнее новшество, связанное с предвыборкой данных и инструкций, — это, как уже отмечалось, наличие нового блока предвыборки, расположенного в контроллере памяти. Такой блок анализирует запросы к памяти, предсказывает, какие данные понадобятся процессору, и извлекает их в собственный буфер, не занимая кэш процессора.

Выборка из кэша Итак, в соответствии со схемой классического процессора процедура исполнения кода процессором начинается с выборки инструкций в формате X86 и данных из кэша L1. Инструкции X86 имеют переменную длину, причем информация о длине инструкций сохраняется в специальных полях в кэше инструкций L1. Загрузка инструкций переменной длины Х86 из кэша L1 происходит блоками определенной длины, из которых в дальнейшем выделяются инструкции, которые подвергаются декодированию. В процессорах на базе микроархитектуры K8 инструкции из кэша L1 загружаются блоками длиной 16 байт 128 бит , а в микроархитектуре K10 длина блока увеличена вдвое, то есть составляет 32 байта 256 бит. При выборке 16-байтного блока инструкции за такт процессоры на базе микроархитектуры K8 могут выбирать и соответственно отправлять на декодирование до четырех инструкций средней длиной 4 байта.

В принципе, нельзя утверждать, что использование увеличенного вдвое размера блока выборки инструкций в микроархитектуре AMD K10 позволяет выбирать за такт вдвое больше инструкций. Просто в архитектуре AMD K8 длина блока выборки инструкций была согласована с возможностями декодера. В архитектуре AMD K10 возможности декодера изменились, в результате чего потребовалось изменить и размер блока выборки, чтобы темп выборки инструкций был сбалансирован со скоростью работы декодера. Предсказание переходов и ветвлений Когда в потоке инструкций встречаются ветвления или переходы, выборка очередного блока инструкций производится с использованием механизма предсказания переходов. Предсказание переходов в процессорах на базе микроархитектуры K8 осуществляется по адаптивному алгоритму на основе анализа истории восьми предыдущих переходов.

Основным недостатком механизма предсказания переходов в микроархитектуре K8 было отсутствие предсказания косвенных переходов с динамически чередующимися адресами, то есть переходов, которые производятся по указателю, динамически вычисляемому при выполнении кода программы. В микроархитектуре AMD K10 предсказание переходов существенно улучшено. Во-первых, появился механизм предсказания косвенных переходов. Во-вторых, оно выполняется на основе анализа 12 предыдущих переходов, что повышает точность предсказания. В-третьих, вдвое с 12 до 24 элементов увеличена глубина стека возврата.

Процесс декодирования После этапа выборки инструкций X86 из кэша L1 в полном соответствии со схемой классического процессора наступает этап декодирования трансляции в машинные команды. Этап декодирования присущ любому современному х86-совместимому процессору, имеющему внутреннюю RISC-архитектуру. Процесс декодирования состоит из двух этапов. В нем из 32-байтных блоков выделяются отдельные инструкции, которые затем сортируются и распределяются по различным каналам декодера. Декодер транслирует x86-инструкции в простейшие машинные команды микрооперации , называемые micro-ops.

Сами х86-команды могут быть переменной длины, а вот длина микроопераций уже фиксированная. Инструкции x86 разделяются на простые Small x86 Instruction и сложные Large x86 Instruction. Простые инструкции при декодировании представляются с помощью одной-двух микроопераций, а сложные команды — тремя и более микрооперациями. Простые инструкции отсылаются в аппаратный декодер, построенный на логических схемах и называемый DirectPath, а сложные — в микропрограммный Microcode Engine декодер, называемый VectorPath. Этот декодер представляет собой своеобразный программный процессор.

Он содержит программный код, хранящийся в MIS Microcode Instruction Sequencer , на основе которого воспроизводится последовательность микроопераций. Аппаратный декодер DirectPath является трехканальным и может декодировать за один такт три простые инструкции, если каждая из них транслируется в одну микрооперацию, либо одну простую инструкцию, транслируемую в две микрооперации, и одну простую инструкцию, транслируемую в одну микрооперацию, либо две простые инструкции за два такта, если каждая инструкция транслируется в две микрооперации полторы инструкции за такт. Таким образом, за каждый такт аппаратный декодер DirectPath выдает три микрооперации. Микропрограммный декодер VectorPath также способен выдавать по три микрооперации за такт при декодировании сложных инструкций. При этом сложные инструкции не могут декодироваться одновременно с простыми, то есть при работе трехканального аппаратного декодера микропрограммный декодер не используется, а при декодировании сложных инструкций, наоборот, бездействует аппаратный декодер.

Микрооперации, полученные в результате декодирования инструкций в декодерах DirectPath и VectorPath, поступают в буфер Pack Buffer, где они объединяются в группы по три микрооперации. В том случае, когда за один такт в буфер поступает не три, а одна или две микрооперации в результате задержек с выбором инструкций , группы заполняются пустыми микрооперациями, но так, чтобы в каждой группе было ровно три микрооперации. Далее группы микроинструкций отправляются на исполнение. Если посмотреть на схему декодера в микроархитектурах K8 и K10, то видимых различий, казалось бы, нет рис. Действительно, принципиальная схема работы декодера осталась без изменений.

Разница в данном случае заключается в том, какие инструкции считаются сложными, а какие — простыми, а также в том, как декодируются различные инструкции.

Всего GPU содержит 512 потоковых процессоров. Они работают на частоте 866 МГц. По меркам чипов для настольных компьютеров это хороший результат. К тому же следует помнить, что перед нами гибридный процессор, а не просто CPU.

Для того чтобы вписать новинку в установленный TDP, инженерам AMD пришлось пойти на хитрость: если какая-то игра со сложной 3D-графикой начинает на полную катушку загружать GPU, вследствие чего существенно возрастает энергопотребление, то управляющий модуль может немного снизить частоту основных вычислительных ядер. В результате APU сохранит высокую игровую производительность, но при этом не будет чересчур прожорливым. Производитель называет новинку самым мощным гибридным процессором на рынке.

AMD A10 Richland — Отзывы от реальных покупателей

Видеокарта в подарок. Обзор нового процессора AMD A10 5800K Trinity низковольтный процессор, основанный на архитектуре Kaveri.
AMD представила Ryzen 8040: серию процессоров с упором на искусственный интеллект For averaged performance of A10-Series processors please see AMD A-Series multi-threading and single-threading performance pages.
AMD продолжит внедрять ИИ-ускорители в процессоры Ryzen, но не в настольном сегменте Процессор AMD A10-6700 Richland AD67000KA44HL FM2. Тип: Процессор Линейка процессора: A10 Архитектура: Richland Сокет процессора: FM2 Базовая частота, ГГц: 3.7.

AMD продолжит внедрять ИИ-ускорители в процессоры Ryzen, но не в настольном сегменте

Процессоры AMD A-серии 6-го поколения превосходят их по весу, используя до 12 вычислительных ядер (4 ЦП + 8 ГП)*, что позволяет вдвое повысить производительность по сравнению с конкурентными решениями при выполнении ресурсоемких рабочих нагрузок.10. AMD A10-5600K номинально является четырехъядерным процессором, однако «честных» модулей у него всего два, зато каждый оснащен парой вычислительных блоков. Стандартная частота — 3,8 ГГц, при автоматическом разгоне — до 4,2 ГГц. A10-7800, новейший CPU / GPU от AMD, не может быть разогнан, но в сочетании с быстрой оперативной памятью он вполне может справиться с играми 1080p и может работать в режиме пониженного энергопотребления без значительного снижения производительности. А также процессоры AMD Epyc поколения Milan-X с 64 ядрами и более чем 800 МБ кэш-памяти. Компания AMD представила первые в мире видеокарты на основе двухчипового графического процессора.

Новости про AMD, APU и гибридные процессоры

Выход новой архитектуры процессоров от AMD под кодовым названием K10 (aka Barcelona) ждали уже очень долго, учитывая практически тотальное превосходство процессорной архитектуры Intel Core 2. Сегодня, 10 сентября, AMD, наконец, представила первый, увы. Летом этого года компания AMD официально представила новые гибридные APU, которые пополнили семейство Kaveri. В этой статье мы подробно рассмотрим APU AMD A10-7800. Процессор AMD a10-4600m для ноутбука. Линейка процессора: A10 Тип: Процессор Архитектура: Trinity Сокет процессора: Socket FS1 Базовая частота, ГГц: 2.3.

Процессор AMD A10-6800K

Цены на игры Требования Процессоры Видеокарты. Обзор процессора для ноутбуков AMD A10-9620P тестирование в последних компьютерных играх и синтетических тестах. Готовящиеся процессоры AMD на Zen 5 получат от 6 до 16 ядер, некоторые модели оснастят поддержкой 3D V-Cache. Новейший четырехъядерный процессор AMD A10-5750M с тактовой частотой 2.5 ГГц и передовая видеокарта AMD Radeon HD 8970 обеспечивают высокую производительность и полноценный игровой опыт.

AMD Adrenalin 21.10.4 Windows 10 VS Windows 11 Benchmark RX 570 Ryzen 5 3600

Знаете, какое тепловыделение Core i9-10900 — даже без K, то есть без разгона и на частоте «всего» 4. До 220 Вт: А теперь представьте тепловыделение Core i9-10900K на 4. Скорее всего, оно будет на уровне 250-280 Вт. Для понимания глубины той дыры, в которую загнала себя Intel — тепловыделение в 280 Вт имеет 64-ядерный Ryzen Threadripper 3990X, работающий на частоте около 3 ГГц.

Думаю, сравнивать производительность тут бессмысленно — и так очевидно, кто быстрее и во сколько раз. Новый сокет LGA1200 — суровая необходимость И да, снова новый сокет. Уже третий для решений на архитектуре Skylake.

Да, отличие от предыдущего LGA1151 минимально, но хотя бы теперь отсутствие электрической совместимости легко объяснить. Почему — ответ выше: если раньше около 200 Вт потребляла только одна линейка, Core i9, то теперь их стало две. И, дабы очень умные пользователи, желая сэкономить, не ставили 10-ядерный Core i9 на плату с H310 чипсетом и парой фаз питания, устраивая красочные фейерверки в корпусе, Intel и заменила сокет, а производители стали делать усиленные VRM, которые способны справиться с такой нагрузкой.

Однако это слабое оправдание, если посмотреть на AMD: компания на одном и том же сокете AM4 выпустила уже три архитектуры, и будет еще четвертая. Причем есть полная обратная совместимость. Конечно, пихать в дешевую плату на A320 чипсете топовый 16-ядерный Ryzen 3950X смысла нет, но даже простые платы на B350 чипсете без особых проблем могут справиться с 8-ядерным Ryzen 7 3700X, ибо последний под нагрузкой потребляет всего порядка 100-120 Вт.

Intel учится на своих ошибках, и теперь не будет способа заставить работать новые CPU на старых платах или наоборот. Разбираем линейку процессоров — а где новинки-то, Intel? Итак, ниже — полный перечень процессоров Comet Lake с рекомендованными ценами: И лично у меня появляется стойкое чувство дежавю.

То, что Celeron и Pentium остались двухядерными, не удивляет: Intel уже пару лет просто наращивает их частоты на пару сотен мегагерц, так что очередным таким «бустом» компания не удивила. Но посмотрим на тот же Core i3-10100. Да это же Core i7-7700 собственной персоной!

Ладно, а что насчет Core i5-10600K? Угу, вы правильно подумали — это реинкарнация Core i7-8700K. А 8-ядерный Core i7-10700K — это вылитый Core i9-9900K.

Единственные действительно новые процессоры в этой линейке — это 10-ядерные Core i9-10900 и Core i9-10900K. Все остальные — это по сути аналоги топовых или предтоповых решений предыдущих поколений, продающихся по сниженным ценам. Почему компания так делает я уже объяснил выше: 10 нм техпроцессс еще не готов, новая архитектура тоже.

Поэтому единственное, что остается делать Intel — это перемаркировывать свои процессоры, снижая при этом удельную цену на ядро или поток. Поможет ли это компании на равных конкурировать с Ryzen 3000? Об этом поговорим ниже.

В оправдании Intel можно сказать, что новый интерфейс пока что нигде не нужен, но только «пока» — очевидно, что пользователь, покупающий топовый 10-ядерный Core i9, явно не планирует его менять через год и даже два. И никто не даст вам гарантии, что годика через три PCIe 4. Неплохо, кроме двух «но»: у конкурентов в лице Ryzen 3000 есть гарантированная поддержка DDR4-3200, и память с возможностью разгона до 3400-3600 МГц стоит сейчас уже достаточно дешево.

При этом в стиле Intel разгон поддерживает только старший чипсет Z490: более младшим типа H410 или B460 придется довольствоваться 2933 МГц.

Процесс декодирования состоит из двух этапов. В нем из 32-байтных блоков выделяются отдельные инструкции, которые затем сортируются и распределяются по различным каналам декодера. Декодер транслирует x86-инструкции в простейшие машинные команды микрооперации , называемые micro-ops. Сами х86-команды могут быть переменной длины, а вот длина микроопераций уже фиксированная. Инструкции x86 разделяются на простые Small x86 Instruction и сложные Large x86 Instruction. Простые инструкции при декодировании представляются с помощью одной-двух микроопераций, а сложные команды — тремя и более микрооперациями. Простые инструкции отсылаются в аппаратный декодер, построенный на логических схемах и называемый DirectPath, а сложные — в микропрограммный Microcode Engine декодер, называемый VectorPath. Этот декодер представляет собой своеобразный программный процессор.

Он содержит программный код, хранящийся в MIS Microcode Instruction Sequencer , на основе которого воспроизводится последовательность микроопераций. Аппаратный декодер DirectPath является трехканальным и может декодировать за один такт три простые инструкции, если каждая из них транслируется в одну микрооперацию, либо одну простую инструкцию, транслируемую в две микрооперации, и одну простую инструкцию, транслируемую в одну микрооперацию, либо две простые инструкции за два такта, если каждая инструкция транслируется в две микрооперации полторы инструкции за такт. Таким образом, за каждый такт аппаратный декодер DirectPath выдает три микрооперации. Микропрограммный декодер VectorPath также способен выдавать по три микрооперации за такт при декодировании сложных инструкций. При этом сложные инструкции не могут декодироваться одновременно с простыми, то есть при работе трехканального аппаратного декодера микропрограммный декодер не используется, а при декодировании сложных инструкций, наоборот, бездействует аппаратный декодер. Микрооперации, полученные в результате декодирования инструкций в декодерах DirectPath и VectorPath, поступают в буфер Pack Buffer, где они объединяются в группы по три микрооперации. В том случае, когда за один такт в буфер поступает не три, а одна или две микрооперации в результате задержек с выбором инструкций , группы заполняются пустыми микрооперациями, но так, чтобы в каждой группе было ровно три микрооперации. Далее группы микроинструкций отправляются на исполнение. Если посмотреть на схему декодера в микроархитектурах K8 и K10, то видимых различий, казалось бы, нет рис.

Действительно, принципиальная схема работы декодера осталась без изменений. Разница в данном случае заключается в том, какие инструкции считаются сложными, а какие — простыми, а также в том, как декодируются различные инструкции. Так, в микроархитектуре K8 128-битные SSE-инструкции разбиваются на две микрооперации, а в микроархитектуре K10 большинство SSE-инструкций декодируется в аппаратном декодере как одна микрооперация. Кроме того, часть SSE-инструкций, которые в микроархитектуре K8 декодируются через микропрограммный VectorPath-декодер, в микроархитектуре K10 декодируются через аппаратный DirectPath-декодер. Декодирование команд в микроархитектурах K8 и K10 Кроме того, в микроархитектуре K10 в декодер добавлен специальный блок, называемый Sideband Stack Optimizer. Не вникая в подробности, отметим, что он повышает эффективность декодирования инструкций работы со стеком и, таким образом, позволяет переупорядочить микрооперации, получаемые в результате декодирования, чтобы они могли выполняться параллельно. Диспетчеризация и переупорядочивание микроопераций После прохождения декодера микрооперации по три за каждый такт поступают в блок управления командами, называемый Instruction Control Unit ICU. Главная задача ICU заключается в диспетчеризации трех микроопераций за такт по функциональным устройствам, то есть ICU распределяет инструкции в зависимости от их назначения. Для этого используется буфер переупорядочивания ReOrder Buffer, ROB , который рассчитан на хранение 72 микроопераций 24 линии по три микрооперации , — рис.

Каждая группа из трех микроопераций записывается в свою линию. Из буфера переупорядочивания микрооперации поступают в очереди планировщиков целочисленных Int Scheduler и вещественных FPU Scheduler исполнительных устройств в том порядке, в котором они вышли из декодера. Планировщик для работы с вещественными числами FPU Scheduler рассчитан на 36 инструкций, и его основная задача заключается в том, чтобы распределять команды по исполнительным блокам по мере их готовности. Просматривая все 36 поступающих инструкций, FPU-планировщик переупорядочивает следование команд, строя спекулятивные предположения о дальнейшем ходе программы, чтобы создать несколько полностью независимых друг от друга очередей инструкций, которые можно выполнять параллельно. Диспетчеризация и переупорядочивание микроопераций Планировщик инструкций для работы с целыми числами Int Scheduler образован тремя станциями резервирования RES , каждая из которых рассчитана на восемь инструкций. Все три станции, таким образом, образуют планировщик на 24 инструкции. Этот планировщик выполняет те же функции, что и FPU-планировщик. Различие между ними заключается в том, что в процессоре имеется семь функциональных исполнительных блоков для работы с целыми числами три устройства ALU, три устройства AGU и одно устройство MULT. Выполнение микроопераций После того как все микрооперации прошли диспетчеризацию и переупорядочивание в соответствующих планировщиках, они могут быть выполнены в соответствующих исполнительных устройствах рис.

Выполнение микроопераций Блок операций с целыми числами состоит из трех распараллеленных частей. По мере готовности данных планировщик может запускать на исполнение из каждой очереди одну целочисленную операцию в устройство ALU и одну адресную операцию в устройство AGU. Количество одновременных обращений к памяти ограничено двумя. Таким образом, за каждый такт может запускаться на исполнение три целочисленных операции, обрабатываемые в устройствах ALU, и две операции с памятью, обрабатываемые в устройствах AGU. Отметим, что в микроархитектуре K8 при выполнении операций с памятью имеется одно существенное ограничение.

В то же время в бенчмарке 3DMark 06 преимущество A10-5800K над A8-3850 оказалось куда более заметным 9396 очков против 6223 очков и, вероятно, реализовано за счет гораздо более быстрой графики в APU Trinity.

Впрочем, помимо интерфейса памяти, GPU из процессоров Kaveri по сравнению со своими дискретными собратьями не имеет никаких других архитектурных ограничений. Так, Spectre обрабатывает и растеризует до одного геометрического примитива за каждый такт, имеет увеличенную кэш-память для хранения параметров примитивов и улучшенную производительность геометрических шейдеров и аппаратной тесселяции, для чего в GCN сделаны улучшения в буферизации данных. Однако главная особенность Kaveri, на которую особенно напирает AMD, это — возможность использования ресурсов графического ядра для вычислений с поддержкой модели разделяемой с x86-ядрами оперативной памяти. Для этой цели в видеоядре в полном объёме присутствует пул из восьми независимых движков асинхронных вычислений, которые могут работать параллельно с графическим командным процессором и обслуживать до восьми очередей команд каждый. Эти движки имеют прямой доступ к кеш-памяти и контроллеру памяти процессора, за счёт чего и реализуется набор технологий, упрощающий организацию гетерогенных вычислений HSA. Фактически, движки асинхронных вычислений способны работать как отдельные вычислители, и это позволяет AMD на полном серьёзе представлять Spectre как дополнительные восемь процессорных ядер. Для этого компания оперирует собственным определением вычислительного ядра — AMD представляет его как программируемый аппаратный блок, способный выполнять в своём собственном контексте независимо от других ядер по крайней мере один процесс в виртуальной памяти. Но тут, конечно, нужно понимать, что такие вычислительные квазиядра из GPU требуют собственный программный код и могут быть задействованы лишь в специально разработанном программном обеспечении, осуществляющим параллельную обработку данных. Говоря о смежных возможностях графического ядра Kaveri, нельзя не упомянуть и о том, что в нём, как и в современных видеокартах, присутствует звуковой сопроцессор TrueAudio, предназначенный для создания аппаратно ускоряемых динамических пространственных звуковых эффектов. Кроме того, как и раньше, в процессоре сохранились выделенные движки VCE и UVD для кодирования и декодирования видеоконтента высокого разрешения. При этом их возможности в очередной раз расширены. А номер версии UVD возрос до четвёртого: здесь улучшилась устойчивость при обработке видеопотока с ошибками. Немного о маркетинге: HSA Раньше было принято ругать маркетинговый департамент компании AMD, который из рук вон плохо справлялся с продвижением новинок и новых технологий. Теперь же ситуация кардинально изменилась, маркетинг AMD умудряется даже пробуждать в пользователях интерес к тем возможностям, которых ещё нет в реальности. Именно такая история произошла и с HSA: в процессоры Kaveri всего лишь заложена аппаратная база для общего доступа к памяти всех типов ядер и вычислительных, и графического , но AMD взялась рьяно продвигать новую технологию, демонстрируя впечатляющие графики и обещая гигантский рывок в производительности. Однако на самом деле никакого HSA пока нет. Для внедрения и использования HSA-возможностей помимо аппаратной совместимости требуется создание программной инфраструктуры, а её не существует даже в самом минимальном виде. В первую очередь, AMD пока не выпустила HSA-совместимый драйвер, и поэтому говорить о каком-то общедоступном программном обеспечении сильно преждевременно. Конечно, программы, использующие HSA-возможности, в конце концов, появятся, но произойдёт это, очевидно, не завтра или послезавтра, а значительно позже — тогда, когда процессоры семейства Kaveri, скорее всего, будут уже неактуальны. Сейчас же поддержка HSA в Kaveri может быть интересна лишь разработчикам программ, которые могут получить в своё распоряжение аппаратное средство для отладки своих перспективных продуктов. Все же существующие на данный момент приложения с поддержкой гетерогенных вычислений пользуются программным интерфейсом OpenCL 1. Поэтому с точки зрения обычного пользователя Kaveri — это ровно такой же по возможностям гибридный процессор, как и его предшественники поколения Richland. Тем не менее, учитывая заложенную в Kaveri аппаратную поддержку HSA, пару слов о ней всё-таки следует сказать. Однако не забывайте, здесь мы говорим лишь о том, как всё должно будет работать в отдалённой перспективе. Итак, основная идея гетерогенных вычислений заключается в том, что многие задачи могут выполняться на параллельных потоковых процессорах графических ядер быстрее и с меньшими затратами энергии, нежели на скалярных x86-ядрах. Комбинируя и те, и другие ресурсы, можно получить универсальную аппаратную базу для эффективного выполнения широкого спектра задач. Однако на ранних стадиях процессоры с гетерогенным дизайном не могли завоевать широкую популярность. Проблема заключалась в том, что для их использования нужны были специальные программы, создание которых вызывало у разработчиков большие трудности. Технологии же семейства HSA способны с одной стороны существенно упростить программирование алгоритмов, работающих в гетерогенной среде, а с другой — увеличить их производительность. В её рамках новые гибридные процессоры могут получить простой путь доступа ко всей системной памяти вне зависимости от того, какой частью APU сгенерирован соответствующий запрос. Иными словами, любое из ядер Kaveri вне зависимости от того, ядро ли это с x86-архитектурой или графическое ядро имеет равноценный и простой доступ непосредственно в кэш и системную память. Аппаратная реализация hUMA в Kaveri обеспечивает когерентность кеш-памяти и даёт графическому ядру возможность работать не только с физической, но и с виртуальной памятью в рамках 32-гигабайтного адресного пространства. Иными словами, hUMA убирает любые ограничения и любое разделение памяти на системную и видеопамять. Сейчас вся вычислительная нагрузка так или иначе проходит через процессорные ядра, в том числе и та, которая предназначена для решения на графическом ядре. За отправку задач на GPU и контроль их исполнения в любом случае отвечают x86-ядра, что вносит дополнительные задержки. Новый же подход к организации вычислений, hQ, разрешает графическому ядру взаимодействовать с приложением и другими ядрами не под управлением CPU, а напрямую, уравнивая ядра с различной природой в своих правах. Иными словами, hQ стирает грани между ролями CPU и GPU, уменьшает задержки и упрощает параллельную обработку данных разнородными ядрами. С теоретических позиций HSA выглядит многообещающе. AMD рассчитывает, что использование этой технологии станет обычным делом в приложениях для воспроизведения и обработки изображений и видео; в интерфейсах нового поколения, основанных на распознавании голоса, жестов и лиц; а также в играх, где HSA-возможности могут задействоваться при физических расчётах или при моделировании искусственного интеллекта. Осталось только дождаться появления соответствующих программ, использующих оптимизированный под HSA интерфейс OpenCL 2. Полупроводниковый кристалл Kaveri и новый техпроцесс Рассмотрев составные части CPU и GPU гибридного процессора Kaveri, логично перейти к комплексному знакомству с ним. И вот на этом уровне, к сожалению, AMD может порадовать своих поклонников не слишком многим. Kaveri, как и их предшественники Trinity и Richland, собраны на базе двух двухъядерных процессорных модулей Steamroller и GPU. Иными словами, гибридные процессоры нового поколения сохраняют в максимальной конфигурации четырёхъядерный дизайн и принципиально превосходят предшественников лишь по оснащённости интегрированного графического ядра Radeon R7. Оно не только несёт новую архитектуру GCN 1. На фоне того, что улучшений в микроархитектуре Steamroller не так много, процессоры Kaveri стали ещё более графически-ориентированными. Если в Richland на долю x86-части приходилось 58 процентов транзисторного бюджета, то в новом Kaveri эта доля снизилась до 53 процентов. Но в целом новый APU стал гораздо сложнее своего предшественника. Прошлые версии гибридных процессоров AMD состояли из примерно 1,3 млрд. А это даже больше количества транзисторов в процессорах Intel Haswell с графикой GT3, которое ограничивается величиной 1,8 млрд. Так что Kaveri выступают прекрасной иллюстрацией того, что высокая сложность полупроводникового кристалла не обязательно конвертируется в высокую производительность, а вот производственные проблемы создаёт заметные. Для массового выпуска Kaveri компания AMD прибегла к более современному техпроцессу с 28-нм нормами. Производственным партнёром была выбрана GlobalFoundries, сумевшая перенастроить своё оборудование для выпуска APU. Новый техпроцесс был специально оптимизирован для сверхплотного размещения транзисторов на кристалле и получил название SHP Super High Performance. При этом от технологии SOI было решено отказаться. В результате полупроводниковый кристалл Kaveri удалось разместить на площади 245 мм2, то есть по физическому размеру он почти эквивалентен 32-нм кристаллу процессоров Richland. Полупроводниковый кристалл Kaveri Однако обратной стороной сверхплотного размещения транзисторов стала необходимость снижения их рабочей частоты. То есть были выше примерно на 10-15 процентов. Впрочем, как показывает практика, с выпуском энергоэффективных Kaveri всё оказалось тоже не так просто, и пока модели с типичным тепловыделением меньше 95 Вт остаются недоступны. Обе модели имеют по четыре x86-ядра, но различаются частотами. Технология Turbo Core способна при низкой нагрузке повышать эти величины до 4,0 ГГц в первом случае и до 3,8 ГГц — во втором. Кроме того, процессоры различаются и количеством шейдерных процессоров. Их максимальное количество заложено лишь в модели A10-7850K, которая обладает 512 шейдерами. Во второй же модели из ряда A10, A10-7700K, возможности GPU урезаны на четверть: число шейдерных процессоров сокращено до 384, то есть до уровня Richland. Частота графического ядра у обеих моделей Kaveri установлена в 720 МГц. Поэтому на деле получилось так, что новый процессорный разъём введён в употребление лишь с целью искусственного обновления парка материнских плат. Все такие платы основываются на новых наборах логики семейства Bolton A88X и A78 , которые по спецификациям практически не отличаются от своих предшественников Hudson A85X и A75. Но и то и другое, на самом деле, идёт от самих процессоров Kaveri, в которых AMD обновила контроллер шины PCI Express и подтянула параметры контроллера памяти. Есть лишь одна новая возможность, появившаяся непосредственно в наборах логики A88X и A78. Его характеристики в сравнении с флагманским гибридным процессором Richland выглядят следующим образом: Как видно из таблицы, старшая модель линейки Kaveri дороже A10-6800K, но при этом предлагает не слишком много преимуществ. Фактически, она лучше лишь с точки зрения мощности GPU, который не только переведён на новую архитектуру, но и располагает увеличенным количеством шейдерных процессоров. Правда, ограничивать графическую производительность A10-7850K будет не мощность графического ядра, а пропускная способность памяти. С производительностью же вычислительной части, очевидно, дело будет обстоять несколько хуже. Мало того, что новая микроархитектура Steamroller даёт лишь совсем небольшое улучшение в количестве исполняемых за такт инструкций, так ещё и частоты A10-7850K ощутимо ниже, чем у его предшественника. При этом AMD не стесняется устанавливать на свою новинку цену на уровне младших моделей Core i5, что, исходя из всего сказанного выше, кажется слишком много. Впрочем, может быть мы что-то упускаем из вида? Согласно показаниям диагностической утилиты CPU-Z, A10-7850K при полной нагрузке на все ядра работает с частотой 3,7 ГГц при номинальном напряжении 1,328 В, которое почти не отличается от привычного напряжения питания гибридных процессоров AMD прошлых поколений. Технология Turbo Core работает у Kaveri вполне ожидаемо, поднимая его частоту до 4,0 ГГц при нагрузке на один из двух модулей Steamroller. Приятно, что AMD в Kaveri смогла окончательно разобраться с формулой частоты CPU, и в процессе тестирования при реальной процессорной нагрузке мы не сталкивались со снижением частоты ниже штатных 3,7 ГГц — раньше, как вы помните, такие ситуации возникали. В моменты же простоя при работе энергосберегающих технологий частота A10-7850K падает до 1,7 ГГц. Интегрированный северный мост процессора работает на более низкой, нежели сам CPU, частоте. Она у рассматриваемой модели составляет 1,8 ГГц. На коробке обозначено, что процессор относится к серии Black Edition, и это правда — коэффициенты умножения у него разблокированы, так что простой разгон как CPU-, так и GPU-части вполне возможен. К сожалению, кулер этот нельзя назвать сколь-нибудь подходящим для серьёзных нагрузок. На максимальной скорости, достигающей 4100 оборотов в минуту, его вентилятор ведёт себя шумновато, да и вся эта конструкция справляется с охлаждением A10-7850K только при его работе в штатном режиме. Как мы тестировали Процессор AMD A10-7850K, выступающий главным героем настоящего обзора, мы сравнивали не только с его предшественником, но и с конкурирующими предложениями компании Intel, продающимися за сравнимый бюджет. А из интеловских CPU нам пришлось выбрать сразу два варианта Haswell: самый быстрый на данный момент двухъядерник Core i3-4340 и младший четырёхъядерник Core i5-4430. Имейте в виду: по своей стоимости A10-7850K близок к четырёхъядерным процессорам конкурента, но с точки зрения производительности вычислительных ядер мы ожидаем, что он сможет тягаться лишь с Haswell двухъядерной конфигурации. Во время тестирования графических возможностей A10-7850K нам также пришлось прибегнуть к использованию набора из дискретных видеоускорителей. Операционная система: Microsoft Windows 8. Что же касается тестов со встроенной в процессоры графикой, то им посвящены отдельные разделы данной статьи. Производительность CPU Общая производительность Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тест Bapco SYSmark 2012, моделирующий работу пользователя в распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера. С выходом Windows 8 бенчмарк SYSmark 2012 обновился до версии 1. А вы ждали чего-то другого? Как было показано выше, микроархитектурные улучшения в x86-ядрах процессоров Kaveri дают крайне незначительное улучшение удельной производительности по сравнению с их предшественниками. А вот частота у A10-7850K заметно ниже, чем у A10-6800K. Говорить при таком положении дел хоть о каком-то соперничестве с современными Core i3 и Core i5 совершенно невозможно. Более глубокое понимание результатов SYSmark 2012 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Web Development — сценарий, в рамках которого моделируется создание web-сайта.

Рецепт миниатюрного компьютера для современных игр!

  • Общая информация
  • Процессор AMD A10-4600M – подробности о мобильном представителе Trinity
  • Похожие статьи
  • Новые процессоры AMD действительно будут без штырьков
  • AMD представила Ryzen 8040: серию процессоров с упором на искусственный интеллект

128 ядер и ARM

  • Обзор процессора AMD A10-7850K (Kaveri): шаг вперёд, два шага назад? - Статьи
  • AMD продолжит внедрять ИИ-ускорители в процессоры Ryzen, но не в настольном сегменте
  • AMD A10 7860K | AMD news
  • HP OMEN 17 (2024) получил процессоры AMD Ryzen 8040 HS и графику RTX 40
  • AMD представила «самые быстрые в мире» игровые процессоры

Обзор: amd a10

Модель A10-7800, является самым передовым гибридным процессором от AMD с заблокированным множителем, что автоматически лишает нас возможности подвергать данную модель разгону путем простого изменения множителя тактовой частоты. Если вы готовитесь повторить скальпирование процессора AMD A10-5800K, рекомендуем обратить особое внимание на фотографию ниже. Обзор процессора для ноутбуков AMD A10-9620P тестирование в последних компьютерных играх и синтетических тестах. низковольтный процессор, основанный на архитектуре Kaveri. Очередное достижение для центральных процессоров сделал финский оверклокер, установив частоту процессора AMD A10-6800K на отметке едва превышающей 8,0 ГГц. Обзор нового процессора AMD A10 5800K Trinity. В то время как компания Intel стабильно шла по пути увеличения вычислительной производительности, AMD сделала небольшой, но важный для себя и всех пользователей шаг в сторону, создав первые APU.

Похожие новости:

Оцените статью
Добавить комментарий