Новости нильс бор открытия

В 1910 году Нильс Бор был удостоен степени магистра, а в мае 1911 года защитил докторскую диссертацию по классической электронной теории металлов. В 1943 году Нильс Бор с семьей эвакуировался сперва в Великобританию, а затем в США, где работал над созданием ядерной бомбы.

Бор Нильс. Книги онлайн

Нильс Бор, биография, история жизни, факты из жизни Все свои открытия в этой отрасли Бор озвучит на открытой лекции перед студентами в конце того де года в Стокгольме.
Нейтрино доносят до нас сообщения о том, что происходит в глубинах космоса Его главное физическое открытие — догадка о квантовании действия в атомах, модель атома Бора (1912).
НИЛЬС БОР: БИОГРАФИЯ И ВКЛАД - НАУКА - 2024 Нильс Бор применил квантовую теорию Макса Планка к модели Резерфорда и создал свою знаменитую модель атома.
Какое величайшее научное открытие всех времен? / Хабр В 1916 году Нильс Бор возвращается в Данию, и уже на следующий год его избирают членом Датского королевского общества.

100 лет атому Бора, отмеченные на родине знаменитой теории

Нильс Бор с женой Маргарет, 30-е годыВ год празднования столетия теории атома, с которой, как принято считать, началась квантовая механика, мне довелось. Текст научной работы на тему «Бор нильс 1885–1962 датский физик-теоретик, иностранный член АН СССР, лауреат Нобелевской премии». Прежде чем перейти непосредственно к биографии Нильса Бора, хотелось бы описать вкратце его научные открытия и достижения. Они помогают клетке двигаться к бактериям и в то же время действуют как сенсорные щупальца, которые определяют бактерию как добычу”, — говорит Мартин Бендикс, руководитель лаборатории экспериментальной биофизики Института Нильса Бора.

2. Электричество

  • Какое величайшее научное открытие всех времен? / Хабр
  • Нильс Бор: молчание о главном | Granite of science
  • Нильс Бор, рокфеллеровские постдоки и рождение квантовой механики
  • Статьи по теме «Нильс Бор» — Naked Science

103 года назад Нильс Бор предложил планетарную модель строения атома

Но работать под чьим-либо руководством Бор не хотел, поэтому обратился к правительству с просьбой выделить денег на строительство отдельного института для себя и своих единомышленников. Через четыре года состоялось торжественное открыли Института теоретической физики в наше время он носит имя Бора. В 1918 выходит его статья «О квантовой теории линейчатых спектров», в ней он формулирует принцип соответствия и выводит взаимосвязь между квантовой теорией и классической физикой. В 1922 Бору присудили Нобелевскую премию по физике за его изучение строения атома. Все свои открытия в этой отрасли Бор озвучит на открытой лекции перед студентами в конце того де года в Стокгольме. Ещё один Эйнштейн В 1925 возникает такое понятие как «квантовая механика». В результате многолетних опытов и опровержения нескольких теорий, Бор формулирует принцип дополнительности.

В его основа лежит теория о том, что микрочастица получает свои динамические характеристики в зависимости от того, во взаимосвязи с какими объектами она пребывает. Этот принцип некоторые учёные считали настолько важным, что даже предлагали всю квантовую механику называть в его честь, проведя аналогию с теорией относительности Эйнштейна. В 1930-х годах Бор чрезвычайно увлёкся темой ядерной физики. Настолько, что весь его институт полностью изменил направление своих разработок. В 1936 году сформулировал процесс ядерной реакции, Через несколько лет он доказал, что у различных микроэлементов ядра делятся по-разному, в зависимости от того, какие нейтроны вызывают этот процесс. Вторая мировая и ядерное оружие Когда в Германии ко власти пришёл Гитлер, многие учёные бежали из страны.

Вместе с братом Бор помогал им обустроиться в Копенгагене. Под угрозой оказался и сам физик, ведь его мать имела еврейские корни. Но он решил оставаться в городе до последнего и защищать свой институт. В 1941 у него состоялась встреча с Вернером Гейзенбергом, этот физик в то время сотрудничал в нацистской Германией по вопросам разработки ядерного оружия. Но Бор помогать не согласился. В 1943 они вместе с сыном бежали в США, где до конца войны жили под другими именами и разрабатывали атомную бомбу.

Уже работая над проектом, он осознал опасность такого оружия, поэтому написал не одно письмо Черчиллю и Рузвельту, чтобы те с осторожностью относились к атомной энергии.

Но прежде всего надо уяснить себе, что в религии язык используется совершенно иначе, чем в науке. Язык религии родственнее скорее языку поэзии, чем языку науки. Люди слишком склонны думать, что если дело науки — информация об объективном положении вещей, а поэзии —пробуждение субъективных чувств, то религия, раз она говорит об объективной истине, должна подлежать научным критериям истинности. Однако мне все это разделение на объективную и субъективную стороны мира кажется здесь слишком насильственным. Если религии всех эпох говорят образами, символами и парадоксами, то это, видимо, потому, что просто не существует никаких других возможностей охватить ту действительность, которая здесь имеется в виду. Но отсюда еще вовсе не следует, что она не подлинная действительность. И расщепляя эту действительность на объективную и субъективную стороны, мы вряд ли здесь далеко продвинемся. А далее Бор затронул и этический аспект: «Необходимо осознать, что существует отношение дополнительности между критическим анализом вероучительного содержания той или иной религии и поведением, предпосылкой которого является решительное принятие духовной структуры данной религии.

Такое сознательно принятое решение придает индивиду силу, которая руководит его поступками, помогает преодолеть моменты неуверенности, а когда ему приходится страдать, дарит ему утешение, порождаемое чувством укрытости внутри великого миропорядка. Таким путем религия помогает гармонизации жизни в обществе, и в число ее важнейших задач входит напоминание о великом миропорядке на языке образов и символов. Но в отличие от Канта, Бор предпочитал о Боге молчать. В том же самом разговоре с Гейзенбергом, Бор упоминает Витгенштейна, с его знаменитой заповедью молчать, если нельзя сказать ясно: «представляется замечательным, как бескомпромиссно Поль Дирак относится к вещам, допускающим ясное выражение на логическом языке; то, что вообще может быть сказано, считает он, может быть также и ясно сказано, а о чем нельзя говорить, о том, по выражению Витгенштейна, нужно молчать. Так что представляется разумным понять боровскую отсылку к Витгенштейну как пояснение позиции самого Бора — позиции апофатического молчания. Эта гипотеза представляется согласующейся со всем тем, что о Боре известно. Она весьма органична сочетанию двух дополнительных качеств великого физика: неустанного, вдохновляющего стремления к полной ясности и, в то же время, глубокого понимания недостижимости последних истин о «вещах в себе». Как писал Бор, «Наша задача — не проникать в суть вещей, смысла которых мы не знаем в любом случае, а разрабатывать концепции, которые позволят нам продуктивно рассуждать о явлениях природы».

Это выразилось в создании под руководством Н. Бора Копенгагенской школы физики. В 1923 году Бор начал осознавать, что квантовая прерывность в мире бесконечно малого взаимообмен энергией является дискретным была первым сигналом невозможности представить мир бесконечно малого в виде простой миниатюры, что послужило дальнейшим толчком в развитии квантовой механики. А теперь обратимся непосредственно к истории ученого. Нильс Бор родился в Копенгагене 7 октября 1885 года. Там Эллен познакомилась с преподавателем физиологии Кристианом Бором. Он и стал впоследствии ее мужем. Стоит отметить — Эллен Адлер происходила из состоятельной еврейской семьи с многочисленными связями в политической и банковской сферах. В этом браке Нильс был вторым ребенком. Между Нильсом и Харольдом установилась дружба, остававшаяся неизменной всю жизнь. Харольд был прекрасным математиком и блестящим футболистом. Он был в составе сборной Дании на Олимпийских играх в Лондоне 1908 года.

Тем не менее с помощью изощренных детекторов, улавливающих свет излучения, генерируемого при прохождении частиц через большие баки с водой или в земных глубинах, можно зафиксировать их следы. Есть нейтринный детектор и в Антарктиде — Ice Cube говоря упрощенно, кубокилометр чистейшего льда. Все эти физические приборы позволили говорить о свойствах нейтрино. А это, в свою очередь, поставило на повестку дня вопрос точного определения «веса» частицы, что очень важно для физиков-теоретиков и космологов. В китайской провинции Сычуань, что у границ с Тибетом, в январе объявили об открытии подземной лаборатории, в которой наряду с темной материей будут искать и нейтрино, порождаемые в глубинах космоса. С его помощью ученые попытаются с максимальной точностью взвесить нейтрино вернее, антинейтрино , образующееся при бета-распаде трития. Количество выделенной энергии, уносимой электроном и нейтроном, хорошо известно, поэтому остаток будет равен массе нейтрино. Точность определения составляет 0,2 электрон-вольт еV. Предполагается строительство детектора NuMass, в котором будет использоваться электронный захват в ядро редкоземельного металла гольмия электрона. Еще одно предложение касается детектора «Птолемей», в котором будет использоваться не газообразный, а твердый тритий на графене. Это позволит фиксировать большее число распадов. Чувствительность такого эксперимента оценивается в 0,04 eV. Одна из сложностей, связанных с квантовой физикой, заключается в том, что ее феномены проявляют себя при сверхнизких температурах и на очень малых расстояниях.

Так рождалась квантовая физика. Hильс Бор в Институте физических проблем Академии наук СССР

Свет, таким образом, поддается описанию с помощью двух классических образов, но только абсолютно несовместимых! И Бор возводит это в принцип: явление должно быть описано с разных сторон, пусть и противоречивым с точки зрения привычных представлений образом. Ведь «как бы далеко за пределами возможностей классического анализа ни лежали квантовые события... Для описания истинной реальности нужен образный язык особой силы, работу физика над его созданием Бор сравнивает с творчеством поэта — и тот и другой ищут образы, отражающие реальность: «Поэт тоже озабочен не столько точным изображением вещей, сколько созданием образов и закреплением мысленных ассоциаций в головах своих слушателей». Но физическая реальность у Бора отличается от поэтической. Это не внутренний мир поэта, а единство взаимосвязанных фактов и явлений природы, для его описания нужны понятия, взаимно дополняющие друг друга. Размышляя о принципах квантовой теории как о единой системе представлений, он пишет: «Для меня это вовсе не вопрос о пустяковых дидактических уловках, но проблема серьезных попыток достичь такой внутренней согласованности в этих представлениях, которая позволила бы надеяться на создание незыблемой основы для последующей конструктивной работы». Институт Нильса Бора при Копенгагенском университете Возможно, это самое важное открытие науки ХХ века — открытие того, что мир природных явлений не может быть описан простыми понятиями, полученными нами из опыта, и закреплен в терминах классической науки. Мир, находящийся за гранью привычных масштабов, сложен для понимания: «Мы столкнулись с трудностями, которые лежат так глубоко, что у нас нет представления о пути, ведущем к их преодолению; в согласии с моим взглядом на вещи эти трудности по природе своей таковы, что они едва ли оставляют нам право надеяться, будто мы сумеем и в атомном мире строить описание событий во времени и пространстве на тот же лад, на какой это делалось нами обычно до сих пор».

Чтобы его постичь, нужно уйти от привычек и стереотипов и постараться видеть мир незамутненным взором, взором ребенка. И Нильс Бор успешно справляется с этим. Ему помогает прекрасно развитое чувство юмора. Напомню, например, его суждение о своем ученике, потерпевшем неудачу в науке: «Он стал поэтом — для физики у него было слишком мало воображения». Не менее известно и высказывание Бора об одной из физических теорий: «Нет сомнения, что перед нами безумная теория, но весь вопрос в том, достаточно ли она безумна, чтобы оказаться еще и верной!

Для описания истинной реальности нужен образный язык особой силы, работу физика над его созданием Бор сравнивает с творчеством поэта — и тот и другой ищут образы, отражающие реальность: «Поэт тоже озабочен не столько точным изображением вещей, сколько созданием образов и закреплением мысленных ассоциаций в головах своих слушателей». Но физическая реальность у Бора отличается от поэтической. Это не внутренний мир поэта, а единство взаимосвязанных фактов и явлений природы, для его описания нужны понятия, взаимно дополняющие друг друга. Размышляя о принципах квантовой теории как о единой системе представлений, он пишет: «Для меня это вовсе не вопрос о пустяковых дидактических уловках, но проблема серьезных попыток достичь такой внутренней согласованности в этих представлениях, которая позволила бы надеяться на создание незыблемой основы для последующей конструктивной работы». Институт Нильса Бора при Копенгагенском университете Возможно, это самое важное открытие науки ХХ века — открытие того, что мир природных явлений не может быть описан простыми понятиями, полученными нами из опыта, и закреплен в терминах классической науки. Мир, находящийся за гранью привычных масштабов, сложен для понимания: «Мы столкнулись с трудностями, которые лежат так глубоко, что у нас нет представления о пути, ведущем к их преодолению; в согласии с моим взглядом на вещи эти трудности по природе своей таковы, что они едва ли оставляют нам право надеяться, будто мы сумеем и в атомном мире строить описание событий во времени и пространстве на тот же лад, на какой это делалось нами обычно до сих пор». Чтобы его постичь, нужно уйти от привычек и стереотипов и постараться видеть мир незамутненным взором, взором ребенка. И Нильс Бор успешно справляется с этим. Ему помогает прекрасно развитое чувство юмора. Напомню, например, его суждение о своем ученике, потерпевшем неудачу в науке: «Он стал поэтом — для физики у него было слишком мало воображения». Не менее известно и высказывание Бора об одной из физических теорий: «Нет сомнения, что перед нами безумная теория, но весь вопрос в том, достаточно ли она безумна, чтобы оказаться еще и верной! Нильс Бор парировал: «Но, право же, не наша печаль — предписывать Господу Богу, как ему следовало бы управлять этим миром! Нильс Бор и Альберт Эйнштейн на праздновании 50-летия присвоения докторской степени Хендрику Лоренцу. Так, соотношение неопределенностей Гейзенберга виделось ему физической основой ответа на вопрос, интересовавший его еще во времена «Эклиптики», — вопрос о свободе воли.

По протекции отца оба брата Бора Нильс и Харальд оказались в престижном вузе, но шкафчик в раздевалке первым получил младший сын Харальд. Талант старшего брата не впечатлил тренеров «Академиска». Только спустя 2 года в 1905 братья воссоединились. К тому времени Харальд стал ключевым полузащитником в команде. А вот Нильс Бор так и не сумел побороть в себе истинного ученого. Большая карьера вратаря прожила меньше года. В одной игре с немецкой командой инициатива всю игру была на стороне датского клуба. Однако во время неожиданной контратаки соперники забили гол. В этот момент Нильс Бор... Естественно, матч был очень важен и, разумеется, «Академиск» проиграл. Судьба — штука коварная: та игра поставила жирный крест на футбольной карьере студента и заставила будущего лауреата Нобелевской премии оставить спорт. Шансом Харальд воспользовался на все сто. В составе родной команде младший брат не останавливался феерить и вскоре получил приглашение в сборную страны.

Например, того, кто доказал существование в атомах положительно заряженного ядра и отрицательно заряженных электронов вокруг него или кто открыл закон плавания тел, ставший основой гидростатики. Датский физик Нильс Бор внес весомый вклад в развитие теории атомного ядра и ядерных реакций. Именно он в 1913 году предложил модель строения атома, в которой электроны могут двигаться только по определенным орбитам, не излучая энергию, а ее излучение или поглощение происходит лишь в момент перехода с одной орбиты на другую. Повторить тему строения атома и атомного ядра поможет одноименное интерактивное приложение.

Датский физик Бор Нильс: биография, открытия

В этом Бору помог его вес в научном сообществе. Нильс Бор прожил 77 лет и умер от сердечного приступа в 1962 году. Он был похоронен в своём родном городе, на городском муниципальном кладбище Ассистенс. Интересные факты о характере и жизни Нильса Бора Нобелевскую премию Бор получил за революционное открытие: именно он оповестил мир о том, что в атоме электроны вращаются вокруг ядра, а значит, атом имеет планетарную модель строения. Можно сказать, что датский физик повторил научный успех Николая Коперника, жившего в далёком XVI веке. Бора за грандиозное открытие удостоили высшей академической награды — Нобелевской премии. Интересный факт: 1922 год стал для молодого датчанина, возможно, самым удачным в его жизни. В тот год он не только получил Нобелевскую премию, но и обзавёлся своим первым ребёнком, Оге, который спустя десятки лет тоже получил Нобелевскую премию по физике.

Нильс Бор был эксцентричным человеком с неординарным характером. Этот датчанин был увлечён не только точными науками. Его главной страстью был футбол, в который он играл в молодом возрасте, исполняя на поле роль вратаря небольшого любительского клуба. Он играл в одной команде со своим родным братом Харальдом, который впоследствии тоже стал академиком — в сфере математики. Больше всего датчанин любил вестерны. Бывало, что по вечерам Бор сетовал своим ученикам на утомлённость, с которыми, между прочим, знаменитый академик до самой старости был в тёплых дружеских отношениях. В такие дни юные студенты заботливо водили своего профессора в кино на сеансы американских кинолент.

Вообще, неуважительное отношение к людям, ставшим жертвами гонений и репрессий, со стороны проживших свою жизнь в разведке в качестве чиновников и журналистов, не удивляет. Чиков, проконсультировавшись у меня по неизвестным ему эпизодам, присвоил себе уникальный экземпляр отчета комиссии Смита по атомной проблеме и до сих пор не желает вернуть эту библиографическую редкость. Вместе с Василевским я должен был подобрать физи-ков-ядерщиков для поездок в США, Англию и Канаду, чтобы привлечь западных специалистов из ядерных центров для работы в Советском Союзе. В этот же период Василевский несколько раз выезжал в Швейцарию и Италию на встречу с Бруно Понтекорво. Для прикрытия этих поездок он использовал визиты советской делегации деятелей культуры во главе с известным кинорежиссером Григорием Александровым и кинозвездой Любовью Орловой. Василевский встречался также с Жолио-Кюри. Оставаясь на Западе, Жолио-Кюри был более полезен, потому что влиял на формирование выгодной для нас пацифистской позиции видных уче-ных-атомщиков. За успешные акции в Дании, Швейцарии и Италии Василевский был поощрен солидной по тем временам денежной премией в размере тысячи долларов и отдельной квартирой в центре Москвы, что тогда было большой редкостью.

Наши активные операции в Западной Европе совпали с началом «холодной войны». Мы отдавали себе отчет, что американская контрразведка подобралась довольно близко к нашим источникам информации и агентуре, обслуживающей их. Оперативная обстановка резко осложнилась. Когда был запущен наш первый реактор в 1946 году, Берия приказал прекратить все контакты с американскими источниками. На встрече со мной он предложил обдумать, как можно воспользоваться авторитетом Оппенгеймера, Ферми, Сциларда и других близких к ним ученых в антивоенном движении. Мы считали, что антивоенная кампания и борьба за ядерное разоружение может помешать американцам шантажировать нас атомной бомбой, и начали широкомасштабную политическую кампанию против ядерного превосходства США. Мы хотели связать американские правящие круги политическими ограничениями в использовании ядерного оружия — у нас атомной бомбы еще не было. Берия категорически приказал не допустить компрометации видных западных ученых связями с нашей разведкой: для нас было важно, чтобы западные ученые представляли самостоятельную, имеющую авторитет и влияние политическую силу, дружественную по отношению к Советскому Союзу.

Через Фукса идея о роли и политической ответственности ученых в ядерную эпоху была доведена до Ферми, Оппенгеймера и Сциларда, которые решительно выступили против создания водородной бомбы. В своих доводах они были совершенно искренни и не подозревали, что Фукс под нашим влиянием логически подвел их к этому решению. Действуя как антифашисты, они объективно превратились в политических союзников СССР. Директива Берии основывалась на информации, полученной от Фукса в 1946 году, о серьезных разногласиях между американскими физиками по вопросам совершенствования атомного оружия и создания водородной бомбы. На совещании, состоявшемся в конце 1945 или в начале 1946 года, ученые вместе с Фуксом выступили против разработки «сверхбомбы» и столкнулись с резкими возражениями Теллера. Клаус Фукс отклонил предложение Оппенгеймера продолжить работу с ним в Принстоне, возвратился в Англию и продолжал снабжать нас исключительно важной информацией. С осени 1947 года по май 1949-го Фукс передал нашему оперативному работнику Феклисову основные теоретические разработки по созданию водородной бомбы и планы начала работ, к реализации которых приступили в США и Англии в 1948 году. Особенно ценной была полученная от Фукса информация о результатах испытаний плутониевой и урановой атомных бомб на атолле Эниветок.

Фукс встречался с Феклисовым в Лондоне один раз в 3—4 месяца. Каждая встреча тщательно готовилась и продолжалась не более сорока минут. Феклисова сопровождали три оперативных работника, чтобы исключить возможность фиксации встречи службой наружного наблюдения британской контрразведки. Фукс и Феклисов так и не были зафиксированы английской контрразведкой. Фукс сам невольно способствовал своему провалу, сообщив службе безопасности, курировавшей английские атомные разработки, что его отец получил место преподавателя теологии в Лейпцигском университете в Восточной Германии. В это время американские спецслужбы разоблачили нашего агента, курьера Фукса, Голда, он опознал Фукса на фотографии, и американцы сообщили об этом английской контрразведке. В 1950 году Фукса арестовали. После напряженных допросов Фукс признал, что передавал секретные сведения Советскому Союзу.

Его судили, и в обвинительном заключении по его делу упоминалась лишь одна встреча с советским агентом в 1947 году, и то целиком на основе его личного признания. О сотрудничестве Фукса с нашей разведкой и обстоятельствах его ареста рассказал Феклисов в упоминавшемся мною очерке «Героический подвиг Клауса Фукса» и в своей книге «За океаном и на острове». Сведения о развитии атомных исследований в Англии и реальных запасах ядерного оружия в США, переданные Фуксом в 1948 году, совпали с исключительно важной информацией из Вашингтона, полученной от Маклина, который с 1944 года занимал должность секретаря английского посольства в США и контролировал всю канцелярию этого ведомства. Так, например, Оппенгеймер напоминает мне в значительной мере наших ученых академического типа — Вернадского, Капицу, Сахарова. Они всегда стремились сохранить собственное лицо, стремились жить в мире, созданном их воображением, с иллюзией независимости. Но независимость ученого, вовлеченного в работы громадной государственной важности, всегда остается иллюзией.

Тсрлецкий сказал Бору, что его тепло вспоминают в Московском университете, передал ему рекомендательное письмо и подарки от Капицы, привет от Иоффе и других советских ученых, поблагодарил за готовность проконсультировать советских специалистов по атомной программе. Бор ответил на вопросы о методах получения в США урана, диффузионном и масс-спектрографическом, о комбинации этих методов, каким образом достигается большая производительность при масс-спектрографическом методе. Он сообщил, что в США все котлы работают с графитовыми модераторами, так как производство тяжелой воды требует колоссального количества электроэнергии. Терлецкий получил ответы на целый ряд принципиально важных вопросов, в том числе о плутонии-240, о нем в официальном докладе Смита, полученном нами от Бора и из США, не было ни слова. Встреча, по мнению Курчатова, имела важное значение для верификации нашими специалистами имевшихся у разведки нескольких сотен отчетов и трудов Ферми, Сциларда, Бете, Оппенгеймера и других зарубежных ученых. Было рассмотрено, как вспоминает Квасников, 690 научных материалов. Джек Сарфатти, физик-теоретик, ученик одного из создателей атомной бомбы Х. Бете, также считает, что ответы Бора содержали важную стратегическую информацию по созданию ядерного оружия. Знаменательно, что Бор формально поставил в известность английскую спецслужбу о встрече и беседе с советскими специалистами по атомной программе, передаче русским доклада комиссии Смита, но вместе с тем он умолчал о характере заданных ему вопросов. Таким образом, западные спецслужбы до ареста Фукса не имели представления о том, что принципиально важные вопросы создания атомного оружия нам уже известны. Между прочим, Сцилард сразу же после атомных взрывов в Японии предсказал, что Советский Союз через 2—3 года создаст свое ядерное оружие. А Бор тогда же выступил за установление международного контроля за использованием атомной энергии. После успешной поездки Терлецкого у меня сложились дружеские отношения с Курчатовым, Алихановым и Кикоиным. Мы с женой провели несколько выходных дней с ними и их женами в правительственном доме отдыха. В нашей квартире недалеко от Лубянки мы устроили несколько обедов для ученых. В ряде публикаций по истории создания атомного оружия в нашей стране участие в решении этой проблемы наших органов госбезопасности, а также работа отдела «С» искажаются. Например, В. Барковский, ветеран нашей внешней разведки, учавствовавший под руководством резидента Горского в агентурных операциях в Англии 1941—1945 годов, утверждает, что отдел «С» вообще никакой полезной работы не выполнял как внутри страны, так и за рубежом. Между тем, наш аппарат еще до испытания атомного оружия американцами в июне 1945 года вывез с семьями из Германии видных немецких ученых: Нобельского лауреата Г. Герца, профессоров Р. До-пеля, М. Вольмера, Г. Позе, П. Тиссена — всего около двухсот специалистов, включая 33 докторов наук и 77 инженеров. С виднейшими немецкими физиками в течение нескольких лет работали такие ассы советской разведки, как нелегал Парпаров, исключительно результативный разведчик в тылу немцев полковник Михеев. Под Москвой, в Малоярославце-10 — сейчас Обнинск — под нашим контролем был создан укомплектованный немецкими специалистами секретный центр по разработке, добыче и обогащению урановой руды и металлургии урана. Наши оперативные работники доставили на север Челябинской области немецких физиков-ядерщиков, имевших международную известность: Г. Борна, Р. Ром-пе, К. Циммера и других. Важная работа выполнялась Нобелевским лауреатом Г. Герцем и его группой в Сухуми по технологии разделения изотопов урана-235 и урана-238. Сотрудники отдела «С» помогли поисковой группе Ю. Харитона в Германии обнаружить и доставить в Советский Союз сто тонн окиси урана прямо под носом американских оккупационных властей в Германии. По предложению возглавлявшегося мною Второго бюро спецкомитета по атомной проблеме все вывезенные в Союз немецкие физики были разбиты на группы для работы по всем трем вариантам технологии обогащения урана, разработанным американцами: газодиффузионному, электромагнитному и центрифужному. Немецкий профессор Стейнбек стал руководителем исследований по центрифужной технологии разделения изотопов урана. Конечно, громаден был вклад в ту работу контролировавшего немцев академика Кикоина. Важное значение для Курчатова имели организованные нами специальные консультации с вывезенными из Германии нашей разведкой Нобелевским лауреатом Николсом Рилем.

Второй опыт был куда более удачным. Операция «Ганнерсайд» была организована обстоятельнее. В течение января — февраля 1943 года в Норвегию были заброшены сразу несколько групп диверсантов, которые в ночь с 27 на 28 февраля в тяжелейших условиях смогли проникнуть на территорию предприятия Norsk Hydro, установить взрывные устройства и произвести их подрыв. В результате саботажа завод на несколько месяцев был вынужден остановить производство. В ноябре 1943-го британцы произвели и две массированные бомбардировки объекта. В итоге немцы решили эвакуировать его оборудование и оставшиеся запасы тяжелой воды в рейх, но и здесь норвежское сопротивление показало себя самым достойным образом. Таким образом, нацисты окончательно лишились ключевого компонента для своей ядерной программы, что поставило на ней крест. Все это время в Берлине Гейзенберг продолжал свои эксперименты по получению цепной реакции. Параллельно в городе строился специальный бункер для «урановой машины», но тяжелейшая для рейха ситуация на фронтах, нехватка финансов и материалов существенно тормозили работу ученых. В январе 1945 года группу Гейзенберга и уже практически законченный ею реактор B VIII эвакуировали из германской столицы вглубь страны, в деревню Хайгерлох недалеко от швейцарской границы. Работа не останавливалась даже в условиях уже проигранной войны. Последнюю попытку запустить цепную реакцию немцы предприняли 23 марта 1945 года, она вновь закончилась неудачей из-за недостаточного количества урана и тяжелой воды. В мае — июне 1945 года Гейзенберг и 9 соратников были арестованы американцами и в ходе операции «Эпсилон» вывезены на территорию Великобритании. Нацистский реактор в Хайгерлохе. Их поселили в поместье Фарм-Холл недалеко от Кембриджа. Здание, где жили германские физики, было буквально напичкано подслушивающей аппаратурой. Задачей «Эпсилона» было определить, насколько близко немцы подобрались к созданию атомной бомбы. Для обеих сторон результат оказался удивительным. Американцы поняли, что никакой угрозы нацистского ядерного гриба и близко не существовало, а Гейзенберг с коллегами были буквально шокированы бомбардировками Хиросимы и Нагасаки. Они были уверены, что опережают конкурентов, и даже представить себе не могли, насколько на самом деле в США ушли вперед. Поместье Фарм-Холл. Почему Гитлер не получил ядерной бомбы Вопрос, реально ли было создание Третьим рейхом атомного оружия, волнует не только любителей альтернативной истории Второй мировой войны. Действительно, еще в начале 1940-х нацисты опережали своих противников. Возможно, при определенных обстоятельствах например, если бы Гитлер не ввязался бы в войну с Советским Союзом Германия смогла бы с помощью концентрации ресурсов всей Европы, лежащей у ее ног, в течение нескольких лет подойти к созданию ядерной бомбы. Другой вопрос, насколько реальным был продолжительный мир с СССР и сколь трезво оценивали потенциал «уранового проекта» в высшем руководстве Третьего рейха. В конце концов, среди историков, изучавших проблему, сложилось три точки зрения на причины немецкого атомного провала. Послевоенные статьи и выступления Вернера Гейзенберга и его соратников настойчиво проталкивали мысль о пассивном саботаже учеными своей работы. Мол, германские физики понимали, чем грозит их успех человечеству, поэтому сознательно тормозили свою работу. В общем-то, в такой позиции ничего удивительного нет.

135 лет со дня рождения Нильса Бора: лучшие приложения «МЭШ» по физике

Нильс Хенрик Давид Бор (дат – Самые лучшие и интересные новости по теме: Истории, факты, физики на развлекательном портале 2 Вклад и открытия Нильс Бор. 3. Датский физик Нильс Бор в 1922 году был удостоен Нобелевской премии «за заслуги в изучении строения атома». Нильс Хендрик Давид Бор Родился 7 октября 1885 года, Копенгаген, Дания Умер 18 ноября 1962 года, Копенгаген, Дания. Нильс Бор прожил 77 лет и умер от сердечного приступа в 1962 году.

Институт Нильса Бора опубликовал снимок с черной дырой, пожирающей звезду

Нильс Бор писал, что этому открытию он обязан сну. Нильс Бор применил квантовую теорию Макса Планка к модели Резерфорда и создал свою знаменитую модель атома. Нильс Бор, открытия которого, безусловно, изменили физику, пользовался огромным научным и нравственным авторитетом. Нильс Хе́нрик Дави́д Бор — датский физик-теоретик и общественный деятель, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1922).

Новость детально

Нильс Бор всемирно известен как один из самых важных учёных 20-го века за его инновационное открытие структуры атомов. Нильса Бора уже на студенческой скамье считали гением, но в противоположность этому титулу карьера его развивалась удивительно гладко. Во втором томе помещены работы Нильса Бора, опубликованные после 1925 г. Они охватывают в основном вопросы квантовой механики, квантовой электродинамики и теории атомного ядра. Главная» Новости» Наследный принц Дании Фредерик отмечает столетие Института Нильса Бора, вручая награды.

Нейтрино доносят до нас сообщения о том, что происходит в глубинах космоса

Лауреатов по литературе обычно награждают в целом за их творчество, а не за конкретное недавно написанное произведение. Премия может быть присуждена группе ученых, но не более чем трем лауреатам за одно научное открытие. Сумма вознаграждения делится между всеми участниками группы поровну. Лишить лауреата Нобелевской премии невозможно. Нобелевские лауреаты 2022 года Физика Нобелевская премия по физике в 2022 году присуждена группе исследователей: французу Алену Аспе, австрийцу Антону Цайлингеру и американцу Джону Ф. Ученые провели эксперименты с запутанными фотонами и открыли путь для новых технологий на основе квантовой механики. В частности, продемонстрировали квантовую телепортацию — когда квантовое состояние одной частицы передается другой на расстоянии. Первым Нобелевским лауреатом по физике был Вильям Рентген.

В 1901 году немецкий ученый получил премию за открытие излучения, которое носит его имя. Имена номинантов по физике, их исследования и мнения, связанные с присуждением им премии, по правилам Фонда Нобеля не раскрываются в течение 50 лет.

Ученый его семья, родственники и гости могли бесплатно пить пиво напрямую с завода. Возможно эта цитата великого датского физика, появилась когда он наливал в кружки пиво, из своего кухонного крана. В 1961 году, уже в почтенном возрасте, физик посетил Советский Союз, где впервые попробовал «Жигулевское».

Уже в сентябре 1914 года он писал: Для систем, состоящих из более чем двух частиц, нет простого соотношения между энергией и числом обращений, и по этой причине соображения, подобные тем, которые я использовал ранее, не могут быть применены для определения «стационарных состояний» системы.

Я склонен полагать, что в этой проблеме скрыты очень значительные трудности, которые могут быть преодолены лишь путём отказа от обычных представлений в ещё большей степени, чем это требовалось до сих пор, и что единственной причиной достигнутых успехов является простота рассмотренных систем [27]. В 1914 году Бор сумел частично объяснить расщепление спектральных линий в эффектах Штарка и Зеемана , однако ему не удалось получить расщепление более чем на два компонента. В этом проявилась ограниченность круговых орбит, рассматриваемых в его теории. Преодолеть её стало возможно лишь после того, как в начале 1916 года Арнольд Зоммерфельд сформулировал обобщённые квантовые условия, ввёл три квантовых числа для орбиты электрона и объяснил тонкую структуру спектральных линий , учтя релятивистские поправки. Бор сразу же занялся коренным пересмотром своих результатов в свете этого нового подхода [28]. Дальнейшее развитие модели.

Принцип соответствия 1916—1923 [ править править код ] Летом 1916 года Бор окончательно вернулся на родину и возглавил кафедру теоретической физики в Копенгагенском университете. В апреле 1917 года он обратился к датским властям с просьбой о выделении финансов на строительство нового института для себя и своих сотрудников. Несмотря на большую занятость административными делами, Бор продолжал развивать свою модель, пытаясь обобщить её на случай более сложных атомов, например, гелия. В 1918 году в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия , связывающий квантовую теорию с классической физикой. Впервые идея соответствия возникла ещё в 1913 году , когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона [30]. Начиная с 1918 года, принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна , определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора в частности, для гармонического осциллятора ; дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений [31].

Впоследствии Бор дал чёткую формулировку принципу соответствия: …"принцип соответствия", согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних. Именно из него исходил в 1925 году Вернер Гейзенберг при построении своей матричной механики [33]. В общефилософском смысле этот принцип, связывающий новые знания с достижениями прошлого, является одним из основных методологических принципов современной науки [33]. В 1921 — 1923 годах в ряде работ Бору впервые удалось дать на основе своей модели атома, спектроскопических данных и общих соображений о свойствах элементов объяснение периодической системы Менделеева , представив схему заполнения электронных орбит оболочек , согласно современной терминологии [34]. Правильность интерпретации периодической таблицы была подтверждена открытием в 1922 году нового элемента гафния Дирком Костером и Георгом Хевеши , работавшими в то время в Копенгагене [35].

Как и предсказывал Бор, этот элемент оказался близок по своим свойствам к цирконию , а не к редкоземельным элементам , как думали ранее [36]. Однако было очевидно, что теория Бора в своей основе содержала внутреннее противоречие, поскольку она механически объединяла классические понятия и законы с квантовыми условиями. Кроме того, она была неполной, недостаточно универсальной, так как не могла быть использована для количественного объяснения всего многообразия явлений атомного мира. Например, Бору совместно с его ассистентом Хендриком Крамерсом так и не удалось решить задачу о движении электронов в атоме гелия простейшей двухэлектронной системе , которой они занимались с 1916 года. Бор отчётливо понимал ограниченность существующих подходов так называемой «старой квантовой теории» и необходимость построения теории, основанной на совершенно новых принципах: …весь подход к проблеме в целом носил ещё в высшей степени полуэмпирический характер, и вскоре стало совершенно ясно, что для исчерпывающего описания физических и химических свойств элементов необходим новый радикальный отход от классической механики, чтобы соединить квантовые постулаты в логически непротиворечивую схему [26]. Нобелевская премия[ править править код ] В 1922 году по по вкладу в изучение ядерных реакций Бору была присуждена Нобелевская премия по физике «за заслуги в изучении строения атома» [37].

В своей лекции «О строении атомов» [38] , прочитанной в Стокгольме 11 декабря 1922 года , Бор подвёл итоги десятилетней работы. Альберт Эйнштейн и Нильс Бор. Брюссель 1930 Новой теорией стала квантовая механика , которая была создана в 1925 — 1927 годах в работах Вернера Гейзенберга , Эрвина Шрёдингера , Макса Борна , Поля Дирака [39]. Вместе с тем, основные идеи квантовой механики, несмотря на её формальные успехи, в первые годы оставались во многом неясными. Для полного понимания физических основ квантовой механики было необходимо связать её с опытом, выявить смысл используемых в ней понятий ибо использование классической терминологии уже не было правомерным , то есть дать интерпретацию её формализма. Именно над этими вопросами физической интерпретации квантовой механики размышлял в это время Бор.

Итогом стала концепция дополнительности , которая была представлена на конгрессе памяти Алессандро Вольты в Комо в сентябре 1927 года [40]. Исходным пунктом в эволюции взглядов Бора стало принятие им в 1925 году дуализма волна — частица. До этого Бор отказывался признавать реальность эйнштейновских квантов света фотонов , которые было трудно согласовать с принципом соответствия [41] , что вылилось в совместную с Крамерсом и Джоном Слейтером статью, в которой было сделано неожиданное предположение о несохранении энергии и импульса в индивидуальных микроскопических процессах законы сохранения принимали статистический характер. Однако эти взгляды вскоре были опровергнуты опытами Вальтера Боте и Ханса Гейгера [42]. Именно корпускулярно-волновой дуализм был положен Бором в основу интерпретации теории. Идея дополнительности, развитая в начале 1927 года во время отпуска в Норвегии [43] , отражает логическое соотношение между двумя способами описания или наборами представлений, которые, хотя и исключают друг друга, оба необходимы для исчерпывающего описания положения дел.

Сущность принципа неопределённости состоит в том, что не может возникнуть такой физической ситуации, в которой оба дополнительные аспекта явления проявились бы одновременно и одинаково отчётливо [44]. Иными словами, в микромире нет состояний, в которых объект имел бы одновременно точные динамические характеристики, принадлежащие двум определённым классам, взаимно исключающим друг друга, что находит выражение в соотношении неопределённостей Гейзенберга. Данные измерений объектов микромира, полученные при помощи различных экспериментальных установок, в условиях, когда взаимодействие между измерительным прибором и объектом составляет неотъемлемую часть процесса измерений, находятся в своеобразном дополнительном отношении друг к другу. Согласно этой интерпретации, заимствованные из классической физики динамические характеристики микрочастицы её координата , импульс , энергия и др. Смысл и определённое значение той или иной характеристики электрона, например, его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определённый смысл и все одновременно могут иметь определённое значение такой классический объект условно называется измерительным прибором.

Летом 1916 года Бор вернулся в Данию и возглавил кафедру теоретической физики в Копенгагенском университете. В апреле 1917 года он отправил обращение к властям с просьбой о выделении финансов на строительство нового института для себя и своих сотрудников. В марте 1921 года, после преодоления множества организационных и административных трудностей, в Копенгагене был открыт Институт теоретической физики, носящий ныне имя своего первого руководителя институт Нильса Бора.

В 1918 году в статье «О квантовой теории линейчатых спектров» Бор сформулировал так называемый принцип соответствия, связывающий квантовую теорию с классической физикой. В 1921—1923 годах в ряде работ Бору впервые удалось дать на основе своей модели атома, спектроскопических данных и общих соображений о свойствах элементов, объяснение периодической системы Менделеева, представив схему заполнения электронных орбит. В 1922 году знаменитому учёному была присуждена Нобелевская премия по физике «за заслуги в изучении строения атома». В своей лекции «О строении атомов» Бор подвёл итоги десятилетней работы. Идея дополнительности, развитая в начале 1927 года во время отпуска в Норвегии, отражает логическое соотношение между двумя способами описания или наборами представлений, которые, хотя и исключают друг друга, оба необходимы для исчерпывающего описания положения дел. Альберт Эйнштейн и Нильс Бор В 1932 году Бор с семьёй переехал в так называемый «Дом чести» — резиденцию самого уважаемого гражданина Дании.

История Бора

Не только таблица Менделеева: 6 великих открытий, сделанных во сне С критикой этого парадокса выступил Нильс Бор, который привел свои аргументы в поддержку квантовой механики.
Нильс Бор (7 октября 1885 - 18 ноября 1962) , датский ученый, физик, Нобелевский лауреат Во время исследований Нильс Бор узнал, что уран-235 может расщепляться, высвобождая невиданную энергию.
Помощь Нильса Бора . Спецоперации. Лубянка и Кремль 1930–1950 годы В 1903 году Нильс Бор поступил в Копенгагенский университет, где изучал физику, химию, астрономию, математику.

Бор Нильс. Книги онлайн

Голкипер с Нобелевской премией. 12 фактов о гениальном физике Нильсе Боре 18 ноября 1962 года скончался датский физик-теоретик Нильс Бор, один из создателей современной физики.
Нильс Бор: деятельность физика – лауреата нобелевской премии Нильс Бор начал с открытий, сделанных Резерфордом, и продолжал развивать их, пока не смог наложить на них свой отпечаток.
Нильс Бор, биография, история жизни, факты из жизни Бор Нильс (1885–1962), датский физик, создатель первой квантовой теории атома, президент Датской королевской АН (с 1939).

Нильс Бор: гений, который не боялся называть себя дураком

Прежде чем перейти непосредственно к биографии Нильса Бора, хотелось бы описать вкратце его научные открытия и достижения. Нильс Хенрик Давид Бор родился в датской столице поздней осенью 1885-го. Bor_1 Нильс Бор относится к тем выдающимся людям, великим ученым, которые повлияли на судьбы мира. Нильс Бор неоднократно подчеркивал параллель между гносеологическими проблемами квантовой физики и теории относительности. В Копенгагене Нильс Бор, постулировавший квантовые скачки электронов, для обсуждения проблем новой физики собирал молодых физиков, среди которых был тогда еще советский физик-теоретик Георгий Гамов.

Похожие новости:

Оцените статью
Добавить комментарий