В прямоугольном треугольнике ABC A=90 градусам AB= 5 см высота AD равна 3 ее AC. Опубликовано 4 года назад по предмету Геометрия от Аккаунт удален. в цилиндрический сосуд налили 2000см кубических воды. уровень воды при этом достигает высоты 12 см. в жидкость полностью погрузили деталь. при этом уровень жидкости с сосуде поднялся на 9 см. Уровень жидкости в сосуде поднялся на 6 см. Чему равен объем детали? Найди верный ответ на вопрос«в цилиндрический сосуд налили 2000 см куб. воды.
Как решить задачу: в цилиндрический сосуд налили 2000 см3 воды?
Консультацию по вопросам и домашним заданиям может получить любой школьник или студент. Вопросы-ответы » Математика В цилиндрический сосуд положили чугунную деталь и налили 2000 см3 воды. В цилиндрический сосуд положили чугунную деталь и налили 2000 см3 воды. Уровень воды оказался одинаковым 21 см.
В сосуд, имеющий форму правильной треугольной призмы, налили 1000 см3 воды и полностью в нее погрузили деталь. При этом уровень жидкости в сосуде поднялся с отметки 20 см до отметки 22 см. Объем куба равен 8.
Найдите площадь его поверхности. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 10 и 9. Объем параллелепипеда равен 450. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 10, а высота — 12. Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 96. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 20.
Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна 1760. Через среднюю линию основания треугольной призмы, площадь боковой поверхности которой равна 96, проведена плоскость, параллельная боковому ребру. Стороны основания правильной четырёхугольной пирамиды равны 36, боковые рёбра равны 82. Стороны основания правильной шестиугольной пирамиды равны 72, боковые рёбра равны 60.
Как найти объем детали погруженной в жидкость цилиндра формула. В цилиндрический сосуд налили 500 см3 воды в воду полностью в 1.
В сосуде было 5 куб. Объем жидкости в цилиндрическом сосуде. Три сосуда. Три сосуда с водой. Площадь дна сосуда. Три сосуда с одинаковой площадью дна налита вода.
В первом цилиндрическом сосуде 16 см эту жидкость перелили во второй. В первом цилиндрическом сосуде. В сосуд имеющий форму правильной треугольной Призмы. Форму правильной треугольной Призмы. В сосуд имеющий форму правильной треугольной Призмы налили. В сосуд имеющий форму правильной.
Цилиндрический металлический сосуд. Уровень жидкости в сосуде. Диаметр сосудов. В цилиндрическом сосуде уровень жидкости достигает. Сосуд емкость. Цилиндр с водой.
Сосуд с водой. Опыт цилиндрические сосуды с водой. Давление керосина на дно сосуда. Давление керосина и воды на дно сосуда. В цилиндрический сосуд налиты ртуть вода и керосин. В цилиндрический сосуд налиты ртуть и вода.
Объём Призмы трехугольной. Объём треугольной призив. Обьемпризмы треугольной.
В этой задаче в отличие от предыдущей ничего не сказано о том, какая это работа, чему равен ее объем. Значит, работу можем принять за единицу. А что же обозначить за переменные? Мы уже говорили, что за переменную удобно обозначить производительность.
Пусть — производительность первого рабочего. Но тогда производительность второго нам тоже понадобится, и ее мы обозначим за. По условию, первый рабочий за два дня делает такую же часть работы, какую второй — за три дня. Работая вместе, эти двое сделали всю работу за дней. При совместной работе производительности складываются, значит, Итак, первый рабочий за день выполняет всей работы. Значит, на всю работу ему понадобится дней. Первая труба пропускает на литр воды в минуту меньше, чем вторая.
Сколько литров воды в минуту пропускает первая труба, если резервуар объемом литров она заполняет на минуты дольше, чем вторая труба заполняет резервуар объемом литров? Всевозможные задачи про две трубы, которые наполняют какой-либо резервуар для воды — это тоже задачи на работу. В них также фигурируют известные вам величины — производительность, время и работа. Примем производительность первой трубы за.
ЕГЭ математика. Профильный уровень
- Андрей Андреевич
- В цилиндрический сосуд налили 2000
- В цилиндрический сосуд налили 2800 см воды
- ЕГЭ профильный уровень. №3 Цилиндр, конус, шар. Задача 1 —
- "Делай добро, бросай его в воду...": 26. Цилиндр
Геометрия. Задание В13
Также нужно знать объем воды, который нужно налить в сосуд. При решении задачи можно использовать простые математические формулы и логику. Для примера, возьмем сосуд с радиусом 5 см и высотой 10 см. После того, как мы знаем объем сосуда, нам нужно узнать, сколько воды уже налито в сосуд. Таким образом, чтобы решить задачу о наливе воды в цилиндрический сосуд, необходимо вычислить объем сосуда и определить разницу между этим объемом и объемом уже налитой воды. Далее можно использовать полученные данные для решения конкретных задач. Используя данную формулу, можно вычислять объемы различных цилиндров, например, цилиндров, используемых в жизни, таких как бутылки для напитков, цилиндры автомобильных двигателей или емкости для хранения жидкостей.
Когда деталь вытащили из сосуда, уровень воды понизился на 11 см. Чему равен объем детали? Ответ выразите в см3.
Ответ: 4900 3 Объём одного шара в 27 раз больше объёма второго. Ответ: 4 Площадь большого круга шара равна 1. Найдите площадь поверхности шара. Ответ: 5 Площадь поверхности шара равна 12.
Найдите площадь большого круга шара. Найдите объём куба. Ответ: 7 Прямоугольный параллелепипед описан около сферы радиуса 6. Найдите его объём. Ответ: 1728 Циллиндр 8 Дано два цилиндра.
Объём первого цилиндра равен 81. У второго цилиндра высота в 4 раза больше, а радиус основания в 3 раза меньше, чем у первого.
Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 54.
Найдите ребро куба. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10. Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 10, а площадь поверхности равна 880.
Через среднюю линию основания треугольной призмы, площадь боковой поверхности которой равна 24, проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсеченной треугольной призмы. Стороны основания правильной четырёхугольной пирамиды равны 72, боковые рёбра равны 164.
Найдите площадь поверхности этой пирамиды. Стороны основания правильной шестиугольной пирамиды равны 72, боковые рёбра равны 85. Найдите площадь боковой поверхности этой пирамиды.
Площадь поверхности тетраэдра равна 100. Найдите площадь поверхности многогранника, вершинами которого являются середины рёбер данного тетраэдра. Задание 9 из ОБЗ Вариант 2 10 класс 1.
Задание 5 № 27045 В цилиндрический сосуд налили 2000 см 3 воды
Пусть р — радиус основания цилиндра после погружения детали, и h — искомая высота воды до погружения детали. Поэтому нам не хватает информации для определения уровня воды до погружения детали. Если бы мы знали радиус основания цилиндра, мы могли бы определить искомую высоту h.
Первый вопрос помогите пожалуйста? Лилён 26 апр. JuliJuliSh 26 апр. Kaxa229 26 апр. Объяснение : во вложении... VladasK1434 26 апр.
Чаша6 26 апр. Объяснение : 1.
Уровень жидкости в цилиндрическом сосуде. Высота уровня жидкости в цилиндрическом сосуде.
Объем воды в сосуде. В цилиндрический сосуд налили 1700. Высота жидкости в сосуде. Цилиндрический сосуд.
Объем жидкости в сосуде. Объем цилиндрического сосуда. Сосуд с жидкостью. В цилиндрический сосуд налили 1700 см3 воды.
Жидкость налитая в конический сосуд. В цилиндрическом сосуд налиои2000. В цилиндрический сосуд налили 2000. Уровень воды в сосуде.
Объем цилиндра 2000 см3 в. В цилиндрический сосуд налили 2000 см3 воды уровень воды. Объем детали погруженной в цилиндр. Как найти объем цилиндрического сосуда.
Объем цилиндрического сосуда формула. Цилиндрический сосуд с водой. Воду наливают в сосуд. Сосуд в который вливают.
Объем детали погруженной в воду. Объем детали формула. Как найти объем детали погруженной в воду. Объем детали погруженной в воду цилиндр.
В цилиндрический цилиндрический сосуд налили 1200 см. Объем воды v1 см3 объем воды v2 см3. Объем детали погруженной в воду цилиндр объем 2000.
В задаче спрашивается, сколько деталей в час делает второй рабочий, то есть какова его производительность. Примем ее за. Тогда производительность первого рабочего равна он делает на одну деталь в час больше. Первый рабочий Первый рабочий выполнил заказ на час быстрее. Следовательно, на меньше, чем, то есть Мы уже решали такие уравнения. Оно легко сводится к квадратному: Дискриминант равен. Корни уравнения: ,.
Очевидно, производительность рабочего не может быть отрицательной — ведь он производит детали, а не уничтожает их? Значит, отрицательный корень не подходит. Двое рабочих, работая вместе, могут выполнить работу за дней. За сколько дней, работая отдельно, выполнит эту работу первый рабочий, если он за два дня выполняет такую же часть работы, какую второй — за три дня? В этой задаче в отличие от предыдущей ничего не сказано о том, какая это работа, чему равен ее объем. Значит, работу можем принять за единицу. А что же обозначить за переменные? Мы уже говорили, что за переменную удобно обозначить производительность.
Задание 5 № 27045 В цилиндрический сосуд налили 2000 см 3 воды
В цилиндрический сосуд налили 2000 см 3 воды. Уровень воды при этом достигает высоты 12 см. В жидкость полностью погрузили деталь. Видео: Геометрия В цилиндрический сосуд налили 2000 см3 воды. Уровень жидкости оказался равным 12 см. При этом уровень жидкости в сосуде поднялся на 5 см. Найдите объём детали? При этом уровень жидкости в сосуде поднялся на 6 см. Чему равен объём детали?
Решение №4266 В цилиндрический сосуд налили 2100 см3 воды.
Он относится к категории Геометрия, для 10 - 11 классов. Здесь размещен ответ по заданным параметрам. Если этот вариант ответа не полностью вас удовлетворяет, то с помощью автоматического умного поиска можно найти другие вопросы по этой же теме, в категории Геометрия. В случае если ответы на похожие вопросы не раскрывают в полном объеме необходимую информацию, то воспользуйтесь кнопкой в верхней части сайта и сформулируйте свой вопрос иначе. Также на этой странице вы сможете ознакомиться с вариантами ответов пользователей. Последние ответы SobakraDruga 27 апр. Высоты прямоугольного треугольника пересекаются в вершине С. В прямоугольнике - два катета являются двумя высотами, а третья высота выходит из прямого угл..
По принципу Архимеда, эта часть объема воды должна быть равна объему детали. Для определения уровня воды до погружения детали, найдем объем воды без учета детали. Мы знаем, что объем воды без учета детали составляет 512 см3.
Цилиндрический сосуд с водой. Воду наливают в сосуд. Сосуд в который вливают. Объем детали погруженной в воду. Объем детали формула. Как найти объем детали погруженной в воду. Объем детали погруженной в воду цилиндр. В цилиндрический цилиндрический сосуд налили 1200 см. Объем воды v1 см3 объем воды v2 см3. Объем детали погруженной в воду цилиндр объем 2000. Задачи на цилиндры с водой. В цилиндрический сосуд налили 5000. Стеклянный цилиндрический сосуд. Цилиндрический сосуд рисунок. Объем воды в цилиндрическом сосуде. В цилиндрический сосуд налили 2200 см3 воды. Объем детали в жидкости. Объем детали погруженной в жидкость. В цилиндрический сосуд налили 2000 см3 воды уровень жидкости 12 см. Диаметр цилиндрического сосуда. Высота уровня жидкости в сосуде. В первом цилиндрическом сосуде уровень жидкости. В сосуд налили 240 г воды и положили. В сосуд налили 240 г воды. В сосуд налили 240 г воды и положили 10 г. В сосуд налили одну кружку воды при температуре 52. Объем детали. Как найти объем детали. В цилиндрический сосуд налили 3000 см3 воды уровень.
В сосуд имеющий форму правильной треугольной Призмы 15 60 45. Цилиндр задачи с решением. Сообщающиеся сосуды физика задачи. Задачи на сообщающиеся сосуды. Физика 7 класс давление жидкости в сообщающихся сосудах одинаково. Физика 7 класс задания сообщающиеся сосуды. В цилиндрический сосуд налили 500 куб см воды 1. Как найти объем детали погруженной в жидкость цилиндра формула. В цилиндрический сосуд налили 500 см3 воды в воду полностью в 1. В сосуде было 5 куб. Объем жидкости в цилиндрическом сосуде. Три сосуда. Три сосуда с водой. Площадь дна сосуда. Три сосуда с одинаковой площадью дна налита вода. В первом цилиндрическом сосуде 16 см эту жидкость перелили во второй. В первом цилиндрическом сосуде. В сосуд имеющий форму правильной треугольной Призмы. Форму правильной треугольной Призмы. В сосуд имеющий форму правильной треугольной Призмы налили. В сосуд имеющий форму правильной. Цилиндрический металлический сосуд. Уровень жидкости в сосуде. Диаметр сосудов. В цилиндрическом сосуде уровень жидкости достигает. Сосуд емкость. Цилиндр с водой. Сосуд с водой. Опыт цилиндрические сосуды с водой.
Геометрия. Задание В13
В цилиндрический сосуд налили 2000 см. куб. воды. Уровень воды при этом достигает высоты 12 см. В жидкость полностью погрузили деталь. ТРЕУГОЛЬНИКИ АВС И МВС ПРАВИЛЬНЫЕ ВС =2корня из3 СМ ПЛОСКОСТЬ МВС ПЕРПЕНДИКУЛЯРНА. Уровень воды оказался одинаковым 21 см. Когда деталь вытащили из сосуда, уровень воды понизился на 11 см. Чему равен объем детали?
В цилиндрический сосуд налили 200 куб.см воды. В воду полностью погрузили деталь. При этом урове…
При этом уровень жидкости в сосуде поднялся на 9 см. Найдите объём детали. Хотя рисунка как такового тут не требуется, но рас просишь, пожалуйста Дано: h = 12 cm V = 2000 cm^3 h1 = 9 cm V1. В цилиндрический сосуд налили 2000 см3 воды. Уровень жидкости оказался равным 12 см. В воду. Объем детали = объему вытесненной ею жидкости объем вытесненной жидкости = 9/12 исходного объема. V дет. Отв: 1500 см^3. ответ от NSN_zn Одаренный (2.6k баллов) 17 Март, 18.
В цилиндрический сосуд налили 200 куб.см воды. В воду полностью погрузили деталь. При этом урове…
А что же обозначить за переменные? Мы уже говорили, что за переменную удобно обозначить производительность. Пусть — производительность первого рабочего. Но тогда производительность второго нам тоже понадобится, и ее мы обозначим за. По условию, первый рабочий за два дня делает такую же часть работы, какую второй — за три дня. Работая вместе, эти двое сделали всю работу за дней. При совместной работе производительности складываются, значит, Итак, первый рабочий за день выполняет всей работы. Значит, на всю работу ему понадобится дней. Первая труба пропускает на литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом литров она заполняет на минуты дольше, чем вторая труба заполняет резервуар объемом литров? Всевозможные задачи про две трубы, которые наполняют какой-либо резервуар для воды — это тоже задачи на работу.
В них также фигурируют известные вам величины — производительность, время и работа. Примем производительность первой трубы за. Именно эту величину и требуется найти в задаче. Тогда производительность второй трубы равна, поскольку она пропускает на один литр в минуту больше, чем первая.
Покажем, как все это применяется на практике. Заказ на деталей первый рабочий выполняет на час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на деталь больше?
Так же, как и в задачах на движение, заполним таблицу. В колонке «работа» и для первого, и для второго рабочего запишем:. В задаче спрашивается, сколько деталей в час делает второй рабочий, то есть какова его производительность. Примем ее за. Тогда производительность первого рабочего равна он делает на одну деталь в час больше. Первый рабочий Первый рабочий выполнил заказ на час быстрее. Следовательно, на меньше, чем, то есть Мы уже решали такие уравнения.
Оно легко сводится к квадратному: Дискриминант равен. Корни уравнения: ,. Очевидно, производительность рабочего не может быть отрицательной — ведь он производит детали, а не уничтожает их? Значит, отрицательный корень не подходит. Двое рабочих, работая вместе, могут выполнить работу за дней.
В цилиндрический сосуд налили 1700 см3 воды. Жидкость налитая в конический сосуд.
В цилиндрическом сосуд налиои2000. В цилиндрический сосуд налили 2000. Уровень воды в сосуде. Объем цилиндра 2000 см3 в. В цилиндрический сосуд налили 2000 см3 воды уровень воды. Объем детали погруженной в цилиндр. Как найти объем цилиндрического сосуда.
Объем цилиндрического сосуда формула. Цилиндрический сосуд с водой. Воду наливают в сосуд. Сосуд в который вливают. Объем детали погруженной в воду. Объем детали формула. Как найти объем детали погруженной в воду.
Объем детали погруженной в воду цилиндр. В цилиндрический цилиндрический сосуд налили 1200 см. Объем воды v1 см3 объем воды v2 см3. Объем детали погруженной в воду цилиндр объем 2000. Задачи на цилиндры с водой. В цилиндрический сосуд налили 5000. Стеклянный цилиндрический сосуд.
Цилиндрический сосуд рисунок. Объем воды в цилиндрическом сосуде. В цилиндрический сосуд налили 2200 см3 воды. Объем детали в жидкости. Объем детали погруженной в жидкость. В цилиндрический сосуд налили 2000 см3 воды уровень жидкости 12 см.
Мы уже говорили, что за переменную удобно обозначить производительность. Пусть — производительность первого рабочего. Но тогда производительность второго нам тоже понадобится, и ее мы обозначим за. По условию, первый рабочий за два дня делает такую же часть работы, какую второй — за три дня. Работая вместе, эти двое сделали всю работу за дней. При совместной работе производительности складываются, значит, Итак, первый рабочий за день выполняет всей работы. Значит, на всю работу ему понадобится дней. Первая труба пропускает на литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом литров она заполняет на минуты дольше, чем вторая труба заполняет резервуар объемом литров? Всевозможные задачи про две трубы, которые наполняют какой-либо резервуар для воды — это тоже задачи на работу. В них также фигурируют известные вам величины — производительность, время и работа. Примем производительность первой трубы за. Именно эту величину и требуется найти в задаче. Тогда производительность второй трубы равна, поскольку она пропускает на один литр в минуту больше, чем первая. Заполним таблицу Первая труба Вторая труба Первая труба заполняет резервуар на две минуты дольше, чем вторая.
Как решить задачу: в цилиндрический сосуд налили 2000 см3 воды?
№ 12 В цилиндрический сосуд налили 2000см3 воды. Уровень воды при этом достигает высоты 12 см. В жидкость полностью погрузили деталь. В цилиндрический сосуд налили 2000 см3 воды. Уровень жидкости оказался равным 12 см. В воду. Объем детали = объему вытесненной ею жидкости объем вытесненной жидкости = 9/12 исходного объема. V дет. Отв: 1500 см^3. ответ от NSN_zn Одаренный (2.6k баллов) 17 Март, 18. В цилиндрический сосуд налили 2100 см3 воды.