Новости искусственный интеллект в медицине и здравоохранении

Искусственный интеллект (ИИ) для диагностики. Искусственный интеллект в медицине.

Применение искусственного интеллекта в медицине

Диагнозы уже ставит искусственный интеллект, мгновенно анализируя все обследования пациента. О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин. Рассматриваем применение ИИ в здравоохранении на примере интеллектуальной системы «Джейн», которая помогает врачам ставить верные диагнозы. Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии. «Электронный доктор» уволен: почему в России приостановили работу искусственного интеллекта в медицине. ИИ невероятно полезен для повышения эффективности обработки информации и принятия решений.

Олия Артемова

Авторы выделили пять основных уровней, где внедрение ИИ за последние годы дало наибольшие результаты: на уровне живой клетки — ИИ применяется в биоинформатике, биотехнологических и медицинских исследованиях, дизайне лекарственных препаратов; на уровне тканей и органов — активно используются технологии компьютерного зрения; на уровне целого организма — интенсивно развивается разработка носимых устройств медицинский интернет вещей , мобильные приложения, цифровые медицинские консьержи, платформы агрегации медицинских данных и др.

Зарубежные компании начали исследования в данной области раньше и уже предлагали готовые решения. В РФ первые решения на рынок пришли в конце 10-х годов, но при этом оказались более чем конкурентоспособны. Искусственный интеллект в рентгенологии: ландшафт рынка к концу 2023 года Однако, если брать ИИ в отрасли здравоохранения, то это всего лишь небольшой процент от всего сектора. На сегодняшний день технология применяется лишь в рентгенографии, анализе медицинских карт, распознавании врачебной речи и наблюдении за пациентами в стационарах. Это было единогласное решение руководства центра Оценка решений на основе ИИ и критерии их выбора Разработка медицинских решений на базе искусственного интеллекта — это коммерческая отрасль.

Вендоры имеют свой взгляд на рынок, создают конкурентоспособные продукты, выполняющие разный спектр задач и различающиеся характеристиками. Не последней в очереди идёт и стоимость решения, а также условия внедрения и поддержки. Гайд для предпринимателей по созданию медицинского приложения Опыт внедрения ИИ в «МеркуриМед» показал, что выбор должен строиться на двух основных критериях. Решения для отрасли здравоохранения должны проходить обязательную процедуру регистрации в Росздравнадзоре с получение удостоверения, а также находиться в реестре Минкомсвязи, то есть изделие должно относится к категории отечественного ПО. Фрагмент реестра медизделий с ИИ, имеющих регистрационное удостоверение Предварительная оценка решения. На него стоит обращать внимание при соблюдение первого критерия можно смотреть и на второй.

По словам специалиста, сегодня среди инвесторов цифрового здравоохранения и сервисов ИИ доминируют не крупнейшие фармацевтические компании и не производители медицинского оборудования. В эту отрасль пришли ИТ-гиганты, телеком и финансовые организации. Еще одна важная сфера применения ИИ - разработка новых лекарственных препаратов. Обычно на этапе ранней разработки в пробирках синтезируют примерно 10 тысяч препаратов, которые прогоняют через серию тестов, чтобы выбрать 250 препаратов, которые затем отправят на доклинические испытания.

Благодаря ИИ большая часть рутинной работы с математическими моделями может быть автоматизирована С ИИ синтезировать все препараты вручную не требуется. А дальше другие программы определяют - правильно ли он их сгенерировал. Из миллиона выбирается 50 самых лучших, и уже эти 50 мы синтезируем и проверяем". По словам специалиста, если раньше этап ранней разработки занимал 36 месяцев, то благодаря ИИ он может сократиться до 10-12 месяцев.

Помимо ускорения процесса ИИ также увеличивает вероятность получения нужного препарата. Третья его задача - уменьшение стоимости разработки. Следующая цель - использовать ИИ на самом продолжительном и дорогом этапе разработки: клинических исследованиях.

Такой доступ обычно есть у государственных организаций, клиник, больниц. И в дни пандемии, когда на базе «НМЦ-Томографии» была сделана не одна тысяча снимков для определения эффекта «матового стекла» и процента поражения лёгких, одна компания, специализирующаяся на исследованиях снимков с помощью AI вышла на нас с предложением запустить пилот анализа результатов КТ для определения патологий и новообразований в лёгких пациентов. Мы наладили процесс передачи обезличенных снимков в эту компанию, и в ответ нам приходили рекомендации о приёме специалистов для ранней диагностики тех или иных пациентов. Примерно из 3000 снимков в 120 были обнаружены подозрения на новообразования, которые потом перепроверял врач. Подтвердили в итоге всего пять. Могу сказать, что если в фармацевтике вполне можно незатратно моделировать химические соединения, экономя время и ресурсы, то в такой консервативной области, как медицина, сотканной из исключительных сценариев с высокими рисками, полностью положиться на ИИ мы сможем нескоро.

В случае наступления осложнений вряд ли можно переложить ответственность на ИИ.

Интервью обзора

  • Будущее здравоохранения с искусственным интеллектом
  • Тайны искусственного интеллекта и сhatGPT в медицине
  • Искусственный интеллект для точной диагностики
  • 2. Индивидуальные схемы лечения
  • Конференция, выставка решений

1. Системы мониторинга за здоровьем

  • Машины лечат людей: как нейросети используют в российской медицине
  • Альманах ИИ №11. ИИ в здравоохранении
  • ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране
  • Виртуальная реальность в медицине
  • Робот со скальпелем

Искусственный интеллект в медицине: главные тренды в мире

«Россия 1» 27.11.2023 «Утро России». «Искусственный интеллект в медицине: достижения и перспективы» Искусственный интеллект в здравоохранении показывает впечатляющие результаты и в решении задачи раннего распознавания рака кожи.
Будущее здравоохранения с искусственным интеллектом Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества.
Росздравнадзор одобрил уже 17 российских медизделий с искусственным интеллектом рассказал он РИА Новости.
Искусственный интеллект в здравоохранении внедряют 70 регионов России Разрабатываем решения для медицины будущего с искусственным интеллектом.
31.10.2023 Искусственный интеллект меняет будущее здравоохранения Технологии искусственного интеллекта для системы здравоохранения.

Олия Артемова

По-видимому, ИИ еще не успел заработать себе «антирейтинг» в этой сфере, в том числе потому, что значимая часть россиян еще не сформировала своей позиции на этот счет. Тогда как в американском обществе вопрос применения ИИ в медицине стоит более остро: здесь есть противоборство мнений, доли оптимистов и скептиков близки. Врачебные ошибки и безопасность данных Внедрение ИИ в систему здравоохранения сопряжено с рядом этических, технологических сложностей, рисков врачебных ошибок и конфиденциальности. Опрос показал, что по одним аспектам применения ИИ в здравоохранении россияне и американцы совпадают, по другим — расходятся во мнениях. Врачи и пациенты Россияне и американцы по-разному оценивают влияние ИИ на взаимоотношения между пациентом и врачом. Такие расхождения могут объясняться целым комплексом причин, различиями в культуре и системе здравоохранения стран. В России здравоохранение — это общественная система, основанная на коллективизме и вере в авторитетность врача. А американские пациенты часто ожидают более тесного взаимодействия с врачом и более персонализированного подхода к лечению.

Еще одним фактором оптимизма россиян может быть восприятие технологий в целом, их применение часто рассматривается как символ прогресса и успеха, поэтому отношение к ИИ и его влиянию может быть более положительным.

Кроме того увеличивается количество проектов, в которых компьютеры не только работают по установленным алгоритмам, но также самообучаются, совершенствуются и решают более сложные задачи. Первые создаются программистами, которым не нужно обладать информацией обо всех зависимостях между входными параметрами и ответом — полученным результатом. Такие программные продукты прекрасно справляются со многими задачами, в том числе медицинскими — системы используются для расчетов статистик, формирования реестров и т.

Искусственный интеллект нужен там, где невозможно задать четкие правила и алгоритмы. К примеру, как простая программа может на рентгенологическом снимке выявить наличие патологии? Для решения такой задачи машина должна не проводить расчет по заданным формулам, а самостоятельно выявить формулу по эмпирическим данным, чтобы научиться распознавать болезни. Разработчики при этом работают в первую очередь над подготовкой данных и обучением системы.

Как работают нейронные сети в медицинской сфере? Нейронные сети сегодня активно применяются в разработке интеллектуальных систем, в том числе и в медицине, благодаря их способности к обучению. Механизм работы искусственных нейросетей повторяет принцип биологических. В цифровом исполнении нейронная сеть представляет собой граф с тремя и более слоями нейронов, которые соединяются между собой.

В процессе обучения входные нейроны получают данные, обрабатывают их на внутреннем слое нейросети, а на выход поступают результаты. Если полученный результат в процессе обучения не устраивает исследователей, они меняют вес соединений и заново обучают сеть. При этом успешность процесса и достоверность результатов зависит от количества входных данных — чем их больше, тем лучше. Нейросети могут применяться в медицине разными способами.

Например, пациент делает запрос «головная боль», «высокая температура», «озноб», а нейронная сеть анализирует тысячи или миллионы карточек других людей и на основе их диагнозов может предположить заболевание у человека, сделавшего запрос. Сегодня на основе нейронных сетей разработано множество технологий для медицины, и некоторые из них уже активно применяются в клиниках по всему миру. Предсказание падения артериального давления с помощью ИИ В 2018 году были опубликованы результаты исследований нескольких ученых, разработавших алгоритм прогнозирования аномального падения давления или гипотонии в процессе хирургического вмешательства. Алгоритм разработан с помощью технологий машинного обучения в медицине.

Исследователи использовали ИИ, который проанализировал данные более 1300 пациентов, у которых во время операции фиксировалось артериальное давление. Общая продолжительность наблюдения составила почти 546 тысяч минут. С помощью этих данных искусственный интеллект помог подготовить алгоритм прогнозирования гипотонии. Алгоритм повторно проверяли на втором наборе данных других 204 пациентов.

Исследователи считают, что алгоритм можно использовать во время операций, чтобы снизить вероятность возникновения осложнений. Распознавание рака кожи Искусственный интеллект в здравоохранении показывает впечатляющие результаты и в решении задачи раннего распознавания рака кожи. Эксперимент провели в 2018 году ученые из США, Франции и Германии, которые обучили нейросети идентифицировать изображения для диагностики онкозаболеваний кожных покровов. Машине предоставили более 100 тысяч снимков безвредных родинок и опасных для жизни меланом, а позднее показали эти же фотографии профессиональным дерматологам, которые попытались выявить рак по снимкам.

Машина справилась с задачей лучше специалистов. ИИ в УЗИ-обследовании беременных Уже сегодня в некоторых британских больницах применяют новый способ тестирования плода на патологии, которые сложно или невозможно выявить другими средствами.

Так, ученые из химико—биологического кластера Санкт—Петербургского ИТМО разработали ИИ—платформу для поиска наночастиц, которые можно будет использовать в терапии онкологических заболеваний. Прорывом в области диагностики можно считать и один из первых в мире видеокапилляроскопов для обнаружения самых ранних стадий всех видов карцином, который был представлен сотрудниками МГМУ им. Также российскими разработчиками были анонсированы появления уникального прибора идиокапилляроскопа, офтальмологического анализатора, сфокусированного ультразвука и т. Почти полувековой опыт применения роботизированных систем в сегменте лабораторной диагностики подтверждает слова эксперта. С помощью лабораторных анализов, сделанных посредством искусственного интеллекта, можно выявить широкий спектр заболеваний, включая инфекционные, воспалительные, онкологические и наследственные. Первые автоматические анализаторы, которые могли проводить измерения одновременно нескольких биохимических параметров и оперативно выполнять комплекс исследований в одном образце биоматериала, появились ещё в 70—х годах прошлого века.

При этом необходимо нивелировать риск ошибок по причине человеческого фактора, а также защитить сотрудников от контакта с потенциально опасным биологическим материалом. Современное оборудование может также исключить из исследования некачественный биоматериал на основе тестирования пробы в процессе постановки, а также выполнять дополнительные исследования по предустановленным правилам и назначениям", — поясняет Ирина Скибо. В соответствии с идентификатором он получает из лабораторной информационной системы ЛИС задание, включающее перечень аналитов, которые нужно в этой пробе определить. Далее анализатор берёт нужный объём крови на исследование, помещает в реакционную ячейку внутри прибора, добавляет необходимые реагенты, проводит реакцию, одновременно записывая в память её протокол, считывает результат исследования и передаёт его в ЛИС.

Искусственный интеллект обучили диагностировать генетические заболевания по фото. И оказалось, что он может делать это даже лучше, чем врачи Благодаря обширным историческим медицинским данным искусственный интеллект может оказаться полезным при постановке диагноза и выборе подходящего лечения, предоставив врачу "третье мнение". При наличии всей имеющейся медицинской информации о конкретном заболевании ИИ сможет проанализировать ее и выяснить, какие методы лечения и препараты были наиболее эффективны за всю историю врачебной практики.

Дополнительный объем информации генерируют также набирающие популярность различные носимые устройства. Сегодня существуют портативные измерители пульса и давления, устройства, способные постоянно контролировать сердечный ритм или уровень сахара в крови. По мере снижения их стоимости и расширения функционала уже ставших популярными фитнес-браслетов системы диагностики на базе ИИ получат еще больше данных о состоянии здоровья каждого конкретного пациента, предоставив врачу возможность точнее и эффективнее назначать план лечения и своевременно корректировать его в процессе. От теории к практике Прорыв в решениях в сфере медицины напрямую связан с развитием алгоритмов ИИ. В 2016 году, к примеру, искусственный интеллект, разработанный Microsoft, достиг уровня человека в распознавании речи, а за последние три года мы совершили несколько исторических прорывов в достижении паритета между компьютерами и людьми в переводе и понимании естественного языка. Алгоритмы и методы обучения ИИ постоянно совершенствуются, и этот прогресс уже находит выражение в конкретных решениях и в медицинской сфере. Уже сегодня ИИ-сервисы могут анализировать медицинские изображения и находить на них настолько ранние признаки заболевания, которые врач пока не может заметить.

К примеру, проект InnerEye помогает онкологам-радиологам повышать эффективность лечения различных типов рака, ускоряя работу со снимками внутренних органов и тканей пациентов. Другой недавний пример — это использование суперкомпьютера IBM Watson в Токио, чтобы уточнить диагноз 60-летнего пациента с лейкемией и назначить успешное лечение, сопоставив генетические данные миллионов исследовательских работ. И таких кейсов становится все больше: так, белорусский стартап DBrain вместе с американской компанией LigoLabs с помощью технологий ИИ и блокчейн повышают точность диагностики онкологических заболеваний.

Искусственный интеллект в медицине: добро или зло?

Решения с использованием искусственного интеллекта (ИИ) в медицине внедряют 70 российских регионов. Искусственный интеллект. Можно ли использовать ИИ в медицине и здравоохранении? Благодаря чудесам искусственного интеллекта медицинские работники получают доступ к беспрецедентным сведениям, основанным на миллиардах точек данных.

Полная роботизация: как искусственный интеллект помогает врачам

В 2024 году технологии искусственного интеллекта будут более глубоко и масштабно внедряться в здравоохранении. Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения. Благодаря возможностям искусственного интеллекта (ИИ) здравоохранение в России постепенно трансформируется по мере того, как передовые технологии меняют медицинскую практику, включая диагностику, лечение пациентов и медицинские операции. 2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями. Напомним, цифровизация здравоохранения происходит благодаря нацпроекту «Здравоохранение», который реализуется по решению президента.

Росздравнадзор одобрил уже 17 российских медизделий с искусственным интеллектом

С врачебной ошибкой все ясно — ответственность несет тот, кто совершил неверное действие, а вот с ИИ зона ответственности непонятна. Обеспечение работы искусственного интеллекта связано с применением вычислительных мощностей, которых нет во многих медицинских учреждениях. Также остается открытым вопрос предоставления и хранения личной информации пациента. Поскольку кибермошенники не дремлют, данный вопрос требует особой проработки. Могу сказать точно, что никакие технологии не смогут заменить человеческого общения. Искусственный интеллект никогда не научится сострадать человеку и морально поддерживать в трудную минуту. Общение врача с пациентами имеет большое значение.

Однажды был случай, когда врач в Калифорнии послал робота в палату к 78-летнему пациенту и его родственникам, чтобы с помощью видеосвязи сообщить им о том, что тот умрет. Конечно же родные пациента, да и сам пациент были в шоке, хотя они и знали, что смерть неминуема. Однако это не означает, что подобные новости можно преподносить таким образом. Искусственный интеллект нельзя научить эмпатии, поэтому он не может работать в одиночку. На мой взгляд, идеальное будущее медицины и здравоохранении заключается в тандеме ИИ и доктора. Понравилась статья?

Несмотря на то, что ИИ сегодня является технологией будущего для здравоохранения и персонализированной медицине, важно правильно оценивать риски его применения и разделять зоны ответственности. Сможет ли ИИ давать рекомендации относительно таких сложных тем, как например, проведение эвтаназии, во многом это будет зависеть и от корректно прописанных алгоритмов нейросетей. Если у компьютера появится возможность исполнения рекомендаций, тогда мы все окажется в огромной опасности, поэтому важнейшими являются вопросы этических и моральных устоев разработчиков, — рассуждает Ян Власов. По его мнению, именно врач и пациент должны указать максимально возможную планку для «очеловечивания» искусственного интеллекта и обозначить ту границу, где необходимо остановиться, чтобы в развитие искусственного интеллекта не имело негативных последствий от неконтролируемого применения и использовалось во благо жизни и здоровья человека. Ещё в этом разделе:.

Но борьба за жизнь пациента, за качество его жизни, избавление от мучений — это выбор, который не всегда экономически обоснован.

Это человеческий выбор. Хочется помочь, и есть надежда. А если не получится? Ухудшим показатели. Это моральные и организационно-методические проблемы людей. Но может ли здесь помочь искусственный интеллект? А это зависит от того, как настроен этот инструмент, на какой результат он нацелен.

И не забываем, что инструмент — просто набор алгоритмов, зависящий от объема и качества данных «на входе», настройки, обучения и целеполагания. В некоторой степени он лишен моральных критериев. Они задаются человеком. Для этого необходимо участие экспертов в наполнении базы, нужны подготовленные с их помощью размеченные выборки данных для обучения нейросетей, оцифрованные порядки и стандарты оказания медпомощи, клинические рекомендации. Сейчас сложно анализировать данные, которые есть в медицинских информационных системах. Как врач на приеме вводит данные в систему? В условиях ограниченного времени на прием нередко встречаются некорректное построение предложений, необщепринятые сокращения, аббревиатуры, использование нестандартных символов, отсутствие разделения слов.

Врач понимает, что он написал, и другой врач поймет или догадается, потому что это их предметная область, которую они научились понимать, но, к сожалению, это большие сложности для систем анализа медицинских данных, негативно влияющие на те результаты, которые формирует нам ИИ. Еще одна сложность — большое количество данных, необходимых для обучения. В идеале все данные из истории заболеваний должны быть оцифрованы, информация структурирована.

Технологии ИИ находят все большее применение в биологических науках, медицине и национальных системах здравоохранения. Авторы выделили пять основных уровней, где внедрение ИИ за последние годы дало наибольшие результаты: на уровне живой клетки — ИИ применяется в биоинформатике, биотехнологических и медицинских исследованиях, дизайне лекарственных препаратов; на уровне тканей и органов — активно используются технологии компьютерного зрения; на уровне целого организма — интенсивно развивается разработка носимых устройств медицинский интернет вещей , мобильные приложения, цифровые медицинские консьержи, платформы агрегации медицинских данных и др.

Искусственный интеллект в медицине

Авторы выделили пять основных уровней, где внедрение ИИ за последние годы дало наибольшие результаты: на уровне живой клетки — ИИ применяется в биоинформатике, биотехнологических и медицинских исследованиях, дизайне лекарственных препаратов; на уровне тканей и органов — активно используются технологии компьютерного зрения; на уровне целого организма — интенсивно развивается разработка носимых устройств медицинский интернет вещей , мобильные приложения, цифровые медицинские консьержи, платформы агрегации медицинских данных и др.

Применение искусственного интеллекта в медицине для разработки новых препаратов Чтобы разработать вакцину или новое лекарственное средство, требуется много времени и средств на дорогостоящие исследования и испытания. ИИ помогает сократить время на разработку новых препаратов в несколько раз. Искусственный интеллект анализирует структуру существующих медикаментов на молекулярном уровне, предлагает новые, с учетом заданных требований. В 2019 году компания Insilico Medicine при помощи ИИ создала несколько препаратов для эффективного лечения мышечного фиброза.

Раньше для этого назначали множество медикаментов, терапия не всегда была эффективной. Искусственный интеллект всего за 3 недели создал нужный алгоритм, ученые выбрали наиболее подходящие варианты, за 25 дней провели тестирование новых лекарств на животных. Для выбора оптимального варианта потребовалось 46 дней. Без ИИ на это потребовалось бы более 8 лет и несколько миллионов долларов. Активное внедрение искусственного интеллекта в медицину — это возможность наконец-то найти лекарства от заболеваний, которые на сегодняшний день считаются неизлечимыми.

Это болезнь Альцгеймера, рассеянный склероз и множество других патологий, которые становятся причиной преждевременной инвалидности или смерти. Использование искусственного интеллекта в медицине для автоматизации данных о пациентах Информация о пациентах обычно хранится в медицинских карточках. У каждого медучреждения своя картотека. Из-за этого процесс сбора анамнеза и постановки диагноза затягивается на неопределенное время. Врачу не всегда удается правильно интерпретировать результаты анализов, тестов и других видов обследований, потому что у него нет полной картины со всеми необходимыми данными.

Технология блокчейн — это новый подход в хранении и управлении данными пациентов. Позволяет сегментировать и защитить информацию, быстро обмениваться всеми необходимыми медицинскими данными. В фармацевтике и медицине блокчейн применяют в следующих направлениях: управление цепочками поставок лекарственных препаратов; борьба с контрафактной продукцией; заполнение электронных медкарт и управление ими; анализ результатов обследования; улучшение процессов страхования и выставление счетов; удаленный мониторинг состояния пациентов; проведение исследований разного характера. Приложение от Google Deepmind Health быстро анализирует все симптомы и результаты диагностики, предлагает несколько диагнозов, соответствующих полученным результатам. ИИ помогает диагностировать даже редкие, плохо изученные патологии.

Сервис MedClueRx может не только проанализировать клинические проявления и диагностировать заболевание. Он также ориентирован на подбор эффективных лекарственных препаратов с учетом индивидуальных особенностей пациента. ИИ для автоматизации процессов в медицине Практически во всех странах наблюдается дисбаланс и нехватка квалифицированного медицинского персонала среднего и высшего звена.

Новый федеральный проект «Цифровые сервисы здравоохранения», в рамках которого предусмотрено внедрение искусственного интеллекта ИИ в медицину, станет частью стратегии развития этой сферы. Планируется, что с 2025 года будут выделены средства для финансирования данного процесса. Однако, несмотря на планы и возможности, внедрению технологий не исключено столкнуться с ограничениями и препятствиями. Изображение сгенерировано нейросетью Midjourney В настоящее время, ИИ в медицине представлен двумя типами решений: медицинскими анализ изображений, данных электронной медкарты, видеопотока и немедицинскими голосовые сервисы оптимизации работы центров обработки звонков, сервисы видеоаналитики для обеспечения безопасности пациента, чат-боты для первичного сбора данных о пациенте перед записью к врачу. Эксперты отмечают, что выбор проектов для внедрения должен базироваться на точности инструмента, измеримом эффекте, качестве информационной защиты и стоимости продукта.

Врачебные ошибки и безопасность данных Внедрение ИИ в систему здравоохранения сопряжено с рядом этических, технологических сложностей, рисков врачебных ошибок и конфиденциальности. Опрос показал, что по одним аспектам применения ИИ в здравоохранении россияне и американцы совпадают, по другим — расходятся во мнениях. Врачи и пациенты Россияне и американцы по-разному оценивают влияние ИИ на взаимоотношения между пациентом и врачом. Такие расхождения могут объясняться целым комплексом причин, различиями в культуре и системе здравоохранения стран. В России здравоохранение — это общественная система, основанная на коллективизме и вере в авторитетность врача. А американские пациенты часто ожидают более тесного взаимодействия с врачом и более персонализированного подхода к лечению. Еще одним фактором оптимизма россиян может быть восприятие технологий в целом, их применение часто рассматривается как символ прогресса и успеха, поэтому отношение к ИИ и его влиянию может быть более положительным. В США же система здравоохранения более коммерциализирована, и пациенты могут опасаться, что внедрение ИИ приведет к уменьшению внимания и заботы со стороны врачей. Также возможно, что американские граждане более скептически относятся к новым технологиям в целом и ожидают от них больших рисков и проблем.

Врачам и пациентам: как искусственный интеллект помогает в медицине

Решения с использованием искусственного интеллекта в медицине внедряют 70 российских регионов, сообщил заместитель министра здравоохранения РФ Павел Пугачев, выступая на форуме "Биотехмед". Искусственный интеллект (ИИ) отлично зарекомендовал себя в отечественной медицине. Искусственный интеллект все активнее применяется в здравоохранении — он помогает в диагностике, принятии клинических решений и управлении данными. О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин. Рассматриваем применение ИИ в здравоохранении на примере интеллектуальной системы «Джейн», которая помогает врачам ставить верные диагнозы. Борис Зингерман — директор Ассоциации разработчиков и пользователей искусственного интеллекта в медицине и его экспертиза в этом вопросе особенна ценна. Применение искусственного интеллекта в медицине уже сегодня позволяет серьезно повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, а с развитием технологий сделает реальным появление сверхэффективных персональных.

Похожие новости:

Оцените статью
Добавить комментарий