Награда присуждается трем физикам–экспериментаторам, чьи новаторские исследования заложили основу квантовой информатики. Мировые новости экономики, финансов и инвестиций. Новости и мероприятия. Актуальные новости и авторские статьи от Rusbase. Независимое издание о технологиях и бизнесе. В Институте физики полупроводников им. А.В. Ржанова СО РАН прошла международная конференция, посвященная 60-летию учреждения.
Квантовая физика
Новости дня от , интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода. В 1964 году физик Джон Белл придумал, как различить в эксперименте две версии квантовой механики — ортодоксальную и со скрытыми параметрами. Главная» Новости» Квантовая физика новости.
Чем занимались физики в 2023 году
Мировые новости экономики, финансов и инвестиций. Новости квантовой физики. 14 августа 2023 года. Главные Заголовки. Массивы квантовых стержней могли бы улучшить телевизоры или устройства виртуальной реальности. Ученые МФТИ совершили прорыв в области квантовой физики. свежие новости дня в Москве, России и мире.
Мнения экспертов
- Нобелевка по физике за изучение квантовой запутанности — что это значит
- Форма успешно отправлена!
- Квантовая механика – Новости науки
- О квантовой коррекции ошибок
Нобелевка по физике за изучение квантовой запутанности — что это значит
Как поступить призеру олимпиад? По итогам Летней смены олимпиадной подготовки ЛСОП с 25 июня по 5 июля — 10-дневного интенсива для подготовки к региональному и заключительному этапам ВсОШ по математике, физике, биологии и химии. Приглашаем на ЛСОП-2024: Участников заключительного этапа, победителей и призеров регионального этапа ВсОШ по математике, физике, химии, биологии, информатике и астрономии; Победителей и призеров заключительного этапа олимпиад из перечня РСОШ по тем же предметам; Победителей и призеров заключительного этапа Всесибирской открытой олимпиады школьников. Не призер, а поступить хочу. Что делать?
Квантовый ключ представляет собой шифр, и передают его при помощи фотонов света — квантов. Если вы знаете шифр, а точнее, не вы, а ваш компьютер или телефон, они автоматически расшифровывают секретное сообщение. Это может быть что угодно: электронная подпись, информация из банка или страховой компании. При этом злоумышленники добраться до них никогда не смогут. Система тут же отреагирует на любую попытку взлома.
Но это не все, на что способны кванты. Два года назад в США сумели перевести в квантовое состояние зеркала антенны массой десять килограммов. Это назвали едва ли не величайшим событием десятилетия — огромные зеркала подобно квантам находились в лаборатории и за ее пределами. И стояли, и двигались, были и в прошлом, и в будущем. Возможно, если мы научимся вводить человека в состояние квантовой гибернации, это с успехом заменит анестезию при операции. А может быть, упростит межпланетные путешествия", — отметил директор лазерно-интерферометрической гравитационно-волновой обсерватории Массачусетского технологического института Дэвид Шумейкер. И выходить из него мы будем абсолютно здоровыми. Путешествия во времени, кстати, тоже могут стать обыденностью, ведь для квантов его не существует. Теперь ясно, о какой квантовой революции шла речь.
Другим важным «квантовым» физическим прорывом года, как добавил директор Международного центра теоретической физики имени Абрикосова Москва Алексей Кавокин, было создание австрийскими физиками первого в мире квантового повторителя сигналов на базе ионов кальция. По его словам, эта разработка значительно приблизила мир к созданию всемирной сети квантовых коммуникаций и к разработке распределенных квантовых вычислительных систем, чьи компоненты удалены друг от друга на очень большие расстояния. Как полагают многие физики в мире, дальнейшее развитие квантовых компьютеров потребует создания систем, способных автоматически находить и корректировать случайные ошибки в их работе.
Подобные сбои неизбежно возникают в работе кубитов, квантовых ячеек памяти и примитивных вычислительных блоков в результате их взаимодействия с объектами окружающего мира. Ученые обнаружили, что эти случайные сбои в работе квантовых компьютеров можно подавить, если использовать для расчетов так называемые логические кубиты, виртуальные квантовые ячейки памяти, состоящие из нескольких соединенных друг с другом физических кубитов.
Это также называют эффектом квантовой телепортации. Для определения системы на наличие скрытых параметров в 60-х годах прошлого века физик Джон Белл предложил мысленный эксперимент, который уже в семидесятые годы поставил Джон Клаузер за что ему, в частности, была присуждена Нобелевская премия по физике за 2022 год. В классической системе нашем с вами мире неравенства Белла соблюдаются всегда, тогда как в квантовом мире они нарушаются. Если применить неравенства Белла к запутанным частицам, то случайное измерение двух запутанных частиц одновременно должно либо удовлетворять неравенствам, либо нарушать их. В последнем случае это будет доказательством, что никаких скрытых параметров нет и частицы «передают информацию» по законам квантовой физики — быстрее скорости света.
Учёные из Швейцарской высшей технической школы Цюриха ETH Zurich создали криогенную установку, в которой фотон путешествует дольше, чем ведутся локальные измерения связанных частиц. Измерения длились на несколько наносекунд быстрее.
Новости квантовой физики
Квантовые вычисления являются принципиально вероятностными, а банки зарабатывают на расчете рисков, то есть возможности наступления негативных событий. Поэтому применение квантовых компьютеров позволит улучшить риск-модели и ускорить обработку больших данных, рассказал квантовый энтузиаст, директор по цифровому развитию Делобанка Антон Семенников. Когда же технология получит широкое распространение, можно ожидать снижения ставок в экономике за счет более качественного расчета рисков, добавил он. Требуется не только создать действующий квантовый компьютер, но и разработать соответствующие алгоритмы и программное обеспечение. У России большой научный потенциал в области математики, программирования, физики и квантовой механики», — считает Семенников.
На квантовый мир мы смотрим с позиции разработчика, рассказал заместитель генерального директора холдинга Т1 по технологическому развитию Антон Якимов. Квантовый объем 100-200 кубитов не кажется недостижимым для 2025 г. Однако, по его мнению, вопрос больше в практической плоскости: через какое время такие облачные вычислительные мощности станут доступны для рынка на понятных условиях по модели Quantum-Computing-as-a-Service. Имеется в виду то, над чем сейчас работает РКЦ.
Как же это работает Какие же свойства так привлекают исследователей со всего света? В классическом компьютере единицей хранения информации является бит, который в зависимости от наличия или отсутствия напряжения принимает значение 0 или 1. В КК роль основной единицы в квантовых вычислениях играют квантовые биты, или кубиты. Они отличаются от обычных битов тем, что могут равняться 0, 1 или находиться в суперпозиции.
Что такое квантовая суперпозиция, чаще всего объясняют на примере подброшенной в воздух монетки. Пока она летит, для бросавшего монета находится в суперпозиции: ее значение и орел, и решка. Суперпозиция сохраняется, пока монетку не поймали и не определили, что выпало. Еще один пример — кот Шредингера.
Суперпозиция — это состояние кота, пока не открыли крышку ящика, то есть кот жив и мертв одновременно. В КК суперпозиция сохраняется, пока не производится вычисление кубита, или измерение его состояния: 0 или 1. Именно благодаря этому свойству расчеты на КК производятся быстрее, чем на классических компьютерах. Однако для выполнения сложных алгоритмов на КК важно, чтобы значения одних кубитов были связаны со значениями других.
Все современные космологические теории также опираются на квантовую механику, которая описывает поведение атомных и субатомных частиц. Квантовая физика сосредоточена только на математическом описании процессов наблюдения и измерения точнее формулы. Знаете, в жизни многих из нас было одно впечатление, которое с детства и надолго определяло способ мышления. Это впечатление можно назвать так: «космос — обалденный». Но время идет, буйный восторг сменяется разумным интересом, эрудиция — научным методом, а звезды больше не падают ведь это болиды.
Поэтому вы читаете эту статью, а я с удовольствием ее пишу. Давайте обсудим, чего мы не знаем о Вселенной. И говоря «мы» я имею в виду, конечно, нас, напичканных научными статьями и открытиями.
Не просто создать квантовый компьютер, а создать квантовый компьютер с алгоритмами и методами, делающими возможным следующий этап его применения. Я думаю, что без вовлечения частных инвесторов и их участия деньгами и экспертизой это так не заработает. Какие препятствия есть у квантовой науки, чтобы перейти из плоскости теории и чисто научных изысканий к созданию реального продукта, меняющего общество? В общем и целом сейчас есть два основных препятствия.
С одной стороны, квантовые технологии развивать сложно, здесь много есть сложных наукоёмких вопросов, на которые ещё предстоит найти ответы. Например, мы до сих пор ищем ту элементную базу, тот физический принцип, на котором квантовые компьютеры будут построены. Если в какой-то момент в микроэлектронике мы стали использовать кремниевые интегральные схемы и пошли по пути их совершенствования и масштабирования, здесь этот аналог ещё не найден. В данный момент мы идём по нескольким направлениям. В Дорожной карте выделены четыре основные направления: атомы, ионы, фотоны и сверхпроводники. Важно отметить, что до конца никто не знает, какое направление станет лидером. Может быть один победитель, а может быть и несколько: например, квантовые компьютеры на различных физических принципах будут решать разные задачи.
При этом ожидания уже очень высоки. Государственные и частные компании по всему миру, заинтересованные люди ждут появления коммерческих квантовых компьютеров. Поэтому область в каком-то смысле находится между двух огней. С одной стороны — необходимость решать сложные задачи, а с другой — завышенные ожидания, которые поторапливают учёных. Как вообще может измениться общество и мир с развитием этих технологий? Что касается изменения жизни, при появлении масштабируемого квантового компьютера станет возможным решение самых разных сложных задач, принципиально недоступных для классических суперкомпьютеров. Искать новые материалы, моделируя их на квантовом уровне, новые типы батарей, лекарств, новые способы получения различных химических соединений.
Очень точно измерять параметры окружающей среды. Решать сложные оптимизационные задачи — для такой страны, как Россия, те же логистические задачи приводят к очень большому эффекту в связи с масштабом. Или построить новые методы долгосрочной защиты информации на основе квантовой и постквантовой криптографии, которые будут устойчивы к широкому классу атак, поскольку их надёжность сводится к фундаментальным законам физики. А это, с учётом тренда на рост количества данных, требующих защиты, очень важно. А не оставит ли широкое внедрение квантовых технологий без работы каких-то специалистов? Пока сложно себе это представить. Пока что это инструмент для решения сложных вычислительных задач, и на этом этапе человек для программирования квантового компьютера будет необходим.
Сможет ли он сделать какие-то рутинные задачи более лёгкими в исполнении — да, как и искусственный интеллект. Но как мы видим на примере ИИ, даже с ним пока не произошло массового высвобождения человеческого ресурса. Люди просто переквалифицируются на более сложные и творческие задачи, с квантовыми технологиями произойдёт нечто похожее. Одной из тем ваших научных изысканий был квантовый блокчейн. В чём преимущества квантового блокчейна перед обычным и где его можно применять? Как раз потому, что технология блокчейн в какой-то момент набрала очень большую популярность, мы обратили на неё внимание. Нам было интересно понять перспективы развития и внедрения этой технологии.
Основной хайп вокруг блокчейна был связан с приписываемой ему большой степенью защищённости данных, прозрачности и т. Но когда мы стали подробно анализировать, стало понятно, что все эти замечательные свойства так или иначе сводятся к определённым криптографическим элементам, например цифровым подписям, механизмам консенсуса. Таким образом блокчейн оказывается устойчив ровно в той мере, в какой устойчива его криптография. А одно из применений квантовых компьютеров — возможность быстрого криптоанализа попросту говоря, взлома , сводящая на нет защищённость многих традиционных криптографических алгоритмов. И многие традиционные блокчейны неустойчивы перед атаками квантовых компьютеров. И мы поняли, что при построении блокчейнов нужно использовать метод с использованием квантовых же технологий, конкретно — квантовых цифровых подписей или постквантовой криптографии, которые делают блокчейн устойчивым перед такими атаками. И вот это сочетание квантов и блокчейна даёт нам эффект, гарантирующий долгосрочную информационную безопасность.
Одна из форм предложенного нами квантового блокчейна в пилотном режиме была развернута на одной межбанковской платформе и использовалась для защиты транзакций. Его индустриальное применение станет возможным, когда появятся квантовые сети достаточного масштаба. Верно ли, что с появлением таких сетей придётся довольно быстро реформировать всю IT-сферу? Нам же потребуется новая безопасность, новая криптография, чтобы существование квантовых компьютеров не становилось глобальной угрозой… Да, это так. Я бы даже сказал более радикально: даже без распространения квантовых компьютеров такая необходимость просматривается. Уже зная о возможности такой угрозы, необходимо уже сейчас принимать её во внимание и думать о соответствующих изменениях принципов построения информационных систем.
Самые известные объекты такого типа — спутанные фотоны, с которыми, по-видимому, сейчас проводят большинство экспериментов.
Квантовую запутанность, хоть и реже, но пробуют реализовать и на других объектах — отдельных атомах. Подчеркнём, что квантовая запутанность — специфическое свойство материи, которое следует из законов квантовой механики и очень непросто объясняется интуитивно. Долгое время теоретиков волновал вопрос о природе такой корреляции частиц в спутанной паре. Одно из возможных объяснений — так называемые скрытые переменные. Теория скрытых переменных предполагает, что парадоксы квантовой механики являются следствием неполноты описания природы — отсюда якобы и следует вероятностный характер квантовых предсказаний. Сторонником такой интерпретации был и Эйнштейн, которому приписывают максиму «Бог не играет в кости». В 1960 году Джон Стьюарт Белл вывел математическое неравенство, носящее теперь его имя.
Оно чётко формализует эту проблему: если существуют скрытые переменные, корреляция между результатами значительного количества измерений не может превысить некоторого предела. А квантовая механика, в свою очередь, утверждает, что в экспериментах определённого типа неравенство Белла нарушается, то есть возможна более сильная корреляция квантовых частиц. Он работал с атомами кальция, которые могут излучать спутанные фотоны при облучении их светом с определёнными свойствами. Сущность экспериментов была в измерении поляризации двух фотонов в спутанной паре при помощи специальных фильтров.
Чем занимались физики в 2023 году
Статья Квантовая физика, Квантовые точки принесли ученому из России Нобелевскую премию, Разработан первый в мире квантовый аналог механического двигателя. Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Новости. квантовая физика — самые актуальные и последние новости сегодня. В данном разделе вы найдете много статей и новостей по теме «квантовая физика». Китайские физики объявили о доказательствах существования новой субатомной частицы, обнаруженной при распаде (J/psi)-мезона на пару положительных и отрицательных пионов. новости России и мира сегодня.
Физика: 10 научных прорывов 2023 года со всего мира
Их новая методика позволяет генерировать определенные запутанные состояния в массиве кубитов — строительных блоков квантовых компьютеров. Изменения в одной из них мгновенно влияют на другую, независимо от расстояния. Понимание запутанности имеет решающее значение для использования истинной силы квантовых компьютеров. Ранее создание и изучение конкретных запутанных состояний в мультикубитных системах было чрезвычайно сложной задачей.
Мы видим, какие невероятно сложные задачи стоят перед современной биологией, шагнувшей далеко за пределы старого миропонимания. Вопрос о происхождении жизни давно перезрел и явно не может быть решен в рамках устаревшей научной парадигмы.
Дальнейшее развитие научного познания немыслимо без качественного скачка во всем, что касается фундаментальной физики. Возрождение категории эфира и адекватное количественное описание его свойств произошли на редкость своевременно — только так можно кардинально разрешить массу накопившихся в науке противоречий, включая аспекты теории относительности и квантовой физики. Само научное достижение наверняка будет положено в основу новых технологий. Далеко ли от теории до практики? Если бы речь шла о начале прошлого века, на этот вопрос можно было бы ответить утвердительно — да, очень далеко.
Но прошла уже почти четверть XXI века и хайтек сегодня развивается фактически в режиме реального времени. От хорошей идеи до ее реализации в наше время один шаг. Учитывая родство новой теории эфира с законами аэрогидромеханики, вполне закономерно ожидать в близком будущем новых технологий движения в физическом вакууме и различных средах. Для меня, руководившего в 90-х годах двигательным подразделением ЦИАМ, высокая практическая значимость открытия россиян очевидна. Например, термин «сверхавиация», предложенный почти столетие назад Ф.
Цандером, приобретает при этом вполне конкретный смысл. В последнее время от российских ученых и инженеров постоянно ждут «срезания углов» и «прыжков через поколения», как средств опережающего развития технологий. Это редкий шанс, упустить который будет непростительно со всех точек зрения. Дополнительно читать по теме:.
Измерения длились на несколько наносекунд быстрее. Никакая информация по классическим законам не могла передаться за это время, тогда как эффект квантовой запутанности частиц себя полностью проявил. До этого применение неравенств Белла предполагало лазейки в постановке экспериментов. Устранить все спорные места мог только эксперимент, в ходе которого измерения должны проводиться за меньшее время, чем требуется свету, чтобы пройти от одного конца к другому — это доказывает, что между ними не было обмена информацией. У поставленного эксперимента была и другая цель — убедиться, что сравнительно большие сверхпроводящие системы могут обладать квантовыми свойствами. В опыте участвовали две сверхпроводящие схемы, которые играли роль связанных частиц, тогда как обычно речь идёт о запутывании элементарных частиц типа электронов, фотонов или атомов. В эксперименте использовались объекты нашего большого мира, и они отыграли по законам квантовой физики.
Историк Марьяна Скуратовская Узнать больше Подпишитесь на ежемесячную рассылку новостей и событий российской науки!
Самые интересные проекты, открытия и исследования, а также информация о конкурсах и мероприятиях в вузах и научных центрах России в одном удобном формате. Будьте в курсе событий Десятилетия науки и технологий!
Навигация по записям
- ЭПР-парадокс
- Достижение физиков - прорыв в квантовой запутанности | Пикабу
- Восторг и ужас Вселенной: Как квантовая физика перевернула мир и почему она наводит жуть
- ЭПР-парадокс
- Первые в мире: ученые МФТИ добились прорыва в области квантовых компьютеров
Смотрите также
- Ученые продолжили попытки понять квантовую запутанность: есть большой прогресс
- Сверхмощный квантовый компьютер
- Все материалы
- В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный - CNews
- Квантовые технологии изменят мир. Новости квантовых компаний.
- Наши проекты
В МФТИ назвали главный прорыв года в квантовой физике
Эфир существует! Российские ученые совершили прорыв в фундаментальной физике | Нобелевскую премию по физике дали за новаторство в квантовой информатике Награды удостоились француз Ален Аспе, американец Джон Клаузер и австриец Антон Цайлингер. |
Новости физики в Интернете | В интервью РИА Новости он объяснил, какие перспективы открывает новый инструмент коммуникаций и что нужно для его квантовой революцией называют период взрывного технологического роста, последовавшего за созданием квантовой физики. |
Квантовые технологии изменят мир. Новости квантовых компаний. | Нобелевскую премию по физике дали за новаторство в квантовой информатике Награды удостоились француз Ален Аспе, американец Джон Клаузер и австриец Антон Цайлингер. |
В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный - CNews | Хроники жизни. Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода. |
Распутать квантовую запутанность: за что дали «Нобеля» по физике
Подобные сбои неизбежно возникают в работе кубитов, квантовых ячеек памяти и примитивных вычислительных блоков, в результате их взаимодействия с объектами окружающего мира. Ученые обнаружили, что эти случайные сбои в работе квантовых компьютеров можно подавить, если использовать для расчетов так называемые логические кубиты, виртуальные квантовые ячейки памяти, состоящие из нескольких соединенных друг с другом физических кубитов. Они устроены таким образом, что ошибки в их работе автоматически корректируются, что позволяет вести сложные и длительные вычисления при их помощи. В 2023 году сразу несколько научных коллективов разработали квантовые процессоры на базе большого числа логических кубитов.
Изменения в одной из них мгновенно влияют на другую, независимо от расстояния. Понимание запутанности имеет решающее значение для использования истинной силы квантовых компьютеров. Ранее создание и изучение конкретных запутанных состояний в мультикубитных системах было чрезвычайно сложной задачей. Однако новая методика предлагает решение.
Ученых волнует несводимость взглядов Альберта Эйнштейна на природу тяготения и постулатов квантовой физики. В частности, в квантовой физике постулируется, что квантовые законы реализуются на сверхмалых расстояниях и в мире сверхмалых частиц. Они могут пребывать в разных локациях и быть в то же время связанными, перепутанными entangled своими квантовыми свойствами-состояниями. Долгие десятилетия споров о природе света привели также к постулированию существования так называемых волновых пакетов распространяющееся волновое поле, занимающее в каждый момент времени ограниченную область пространства. Так символически можно представить с возможным получением колебаний его массы. Иллюстрации Physorg Доказательство квантовой природы света добыл за век до рождения квантовой физики глазной врач Томас Юнг, практиковавший в Лондоне. Однажды он направил свет на пластинку с двумя узкими прорезями. На стене он увидел, к своему удивлению, чередование светлых и темных полос, которое было похоже на картину волн, возникающих на поверхности воды, в которую одновременно бросили два камня. Юнг догадался, что свет есть волны, которые после разделения начинают усиливать и гасить друг друга, «вмешиваться» в распространение. Подобное вмешательство он назвал по латыни «интерференция».
Гениальность Альберта Эйнштейна, создателя общей теории относительности ОТО , постулировавшего неразрывность пространства-времени, подтвердилась через век, когда были зафиксированы гравитационные волны, распространяющиеся подобно «ряби» ripples. В ОТО также предсказывалось существование гравитационных линз. Они образуются из-за искривления пространственно-временного континуума. Наглядная аналогия — прогиб резиновой поверхности под тяжестью положенной на нее гири.
Friedrich и др. Атомы Co были помещены на поверхность меди при температуре 1,4 К и магнитном поле до 12 Т, и измерялся текущий через них туннельный ток как со спиновым усреднением, так и с поляризацией. В последнем случае использовались магнитные кластеры из атомов железа на кончике иглы микроскопа. В спектре туннельного тока были обнаружены признаки сразу нескольких спинаронных состояний, а зависимость от магнитного поля оказалась противоположной той, которая была бы в случае эффекта Кондо. Возможно, что и многие другие явления, ранее интерпретировавшиеся на основе эффекта Кондо, на самом деле объясняются спинаронами. Спинароны могут найти полезные применения в наноэлектронике.
Nature Physics, онлайн-публикация от 26 октября 2023 г. Оптический эффект Штарка в паре квантово запутанных фотонов 1 декабря 2023 Генерация пар фотонов в запутанном квантовом состоянии важна для применения в устройствах квантовой инофрмации. В квантовых точках запутанные по поляризации фотоны рождаются в процессе двухфотонного резонансного возбуждения в биэкситонно-экситонном каскаде, однако эффективность этого метода остается пока ниже, чем в методе параметрической вниз-конверсии. Basso Basset Римский университет Сапиенца, Италия и соавторы исследовали влияние индуцированного лазером эффекта Штарка на спектры излучения квантовых точек и на квантовую запутанность излучаемых фотонных пар [3]. Квантовая точка в GaAs облучалась фемтосекундными лазерными импульсами. Оказалось, что эффективность запутывания зависит от соотношения длительности лазерного импульса и времени жизни верхнего возбужденного состояния точки, ответственного за генерацию каскада.
Нобелевская премия по физике — 2022
В интервью РИА Новости он объяснил, какие перспективы открывает новый инструмент коммуникаций и что нужно для его квантовой революцией называют период взрывного технологического роста, последовавшего за созданием квантовой физики. Знай наших квантовая физика. В НИТУ МИСиС создали алгоритм для моделирования работы полупроводниковых лазеров НОВОСТИ Знай наших. Идея одушевленности мира следует из принципов квантовой механики: фотон каким-то образом «сознательно» выбирает свой путь от лампы до страниц вашей книги. Новости физики в Интернете — раздел журнала Успехи физических наук, ежемесячно публикующего обзоры современного состояния наиболее актуальных проблем физики и смежных с нею наук. В данном обзоре новостей представлены последние открытия в физике. Все новости с тегом. Квантовые технологии. Армия России захватила опорный пункт ВСУ: новости СВО на вечер 16 декабря.
Нобелевская премия по физике — 2022
Нобелевскую премию по физике в 2022 году за «эксперименты с запутанными фотонами, установление нарушения неравенства Белла и новаторскую квантовую информатику» получили Ален Аспект (Франция), Джон Клаузер (США) и Антон Цайлингер (Австрия). Актуальные новости и авторские статьи от Rusbase. Независимое издание о технологиях и бизнесе. Новости квантовой физики. 14 августа 2023 года. Главные Заголовки. Массивы квантовых стержней могли бы улучшить телевизоры или устройства виртуальной реальности. Все самое интересное и актуальное по теме "Квантовая физика". В частности, в квантовой физике постулируется, что квантовые законы реализуются на сверхмалых расстояниях и в мире сверхмалых частиц.
Российские учёные развивают технологии на основе квантовой физики вместо классической
Та же гравитация для Эйнштейна являлась искривлением пространства и времени. Кант же воспринимал ее как некую форму интуиции. Это трансцендентальное знание, нечто, выходящее за пределы чувственного опыта, — подчеркнул доктор Эккарт Штайн. Эйнштейн тоже подвергается критике, ведь возникают дополнительные вопросы. Один из них — являются ли время и пространство реальностью или просто способом калькуляции? Вселенная, по мнению ученого, сегодня куда более взаимосвязана, чем предполагалось. Не исключено, что Эйнштейн ошибался, ведь уже доказано существование темной материи. Появляются мнения, что новая квантовая теория куда более совершенна и уже не вполне соответствует теории относительности.
Здесь появляются так называемые объект и наблюдатель — ключевые фигуры для научного познания. Их взаимодействие как раз и определяет современное развитие физической науки. Объект наблюдения в квантовой физике зависит от наблюдателя.
До этого применение неравенств Белла предполагало лазейки в постановке экспериментов. Устранить все спорные места мог только эксперимент, в ходе которого измерения должны проводиться за меньшее время, чем требуется свету, чтобы пройти от одного конца к другому — это доказывает, что между ними не было обмена информацией. У поставленного эксперимента была и другая цель — убедиться, что сравнительно большие сверхпроводящие системы могут обладать квантовыми свойствами. В опыте участвовали две сверхпроводящие схемы, которые играли роль связанных частиц, тогда как обычно речь идёт о запутывании элементарных частиц типа электронов, фотонов или атомов.
В эксперименте использовались объекты нашего большого мира, и они отыграли по законам квантовой физики. Это означает, что на основе сверхпроводящих макросистем можно строить квантовые компьютеры, осуществлять квантовую связь и делать много другого интересного не углубляясь до таких тонких и пугливых сверхчувствительных материй, как элементарные частицы. В этом скрыт небывалый потенциал, который учёные намерены разрабатывать дальше.
Кот Шредингера — "участник" мысленного эксперимента, который был предложен австрийским физиком Эрвином Шредингером в 1935 году. Во время него в закрытый ящик помещаются кот и механизм, открывающий емкость с ядом в случае распада радиоактивного атома что может случиться или не случиться. В соответствии с принципами квантовой физики кот является одновременно и живым, и мертвым.
Отсюда берет свое начало термин "квантовая суперпозиция" — совокупность всех состояний, в которых может одновременно находиться кот. Сегодня физики активно пытаются создать такого кота Шредингера, которого можно было бы увидеть невооруженным глазом.
Так, недавно в журнале Physical Review Letters вышла статья, авторы которой утверждают что эти космические монстры обладают уникальными и причудливыми квантовыми свойствами. Новое исследование имеет отношение к теории квантовой гравитации — одной из нерешенных загадок современной науки.
В основе работы лежит компьютерное моделирование — с его помощью физики обнаружили что черные дыры обладают свойствами, характерными для квантовых частиц.