Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии. Глеб Курскиев рассказал ПРОСТО о том, что такое термоядерный синтез и почему он так важен! Для той же установки NIF моделирование показывает, что термоядерная реакция вроде бы должна при нынешних параметрах запускаться без проблем, но физикам до сих пор не.
Искусственное солнце: как первый в мире термоядерный реактор изменит мир
В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М. Зачем на самом деле строится самый большой термоядерный реактор. Китайский термоядерный реактор поставил рекорд в ядерной энергетике. Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём.
#термоядерный синтез
В начале 2023 года появилась новость, что сроки запуска Международного экспериментального ядерного реактора (ИТЭР) переносятся с 2025 года на неопределенный срок из-за выявленных. Пара слов о физике плазмы: на волне Волна боянов, Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост. Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР. Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5. — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков.
ядерная физика
Она вспомнила слова Владимира Жириновского о том, что удар нужно нанести по Вашингтону: — По Вашингтону долбить не придется. Мне один умный человек рассказал то, о чем я никогда не догадывалась и не знала. Я же не разбираюсь в этом во всем, я же не военный эксперт. Я, знаете, дура-баба, в футболе ничего не понимаю.
И вот человек, инженер-радиоэлектроник, говорит мне: «Мы еще знали в советское время, что если произвести в сотнях километров на нашей же территории, где-нибудь над Сибирью, термоядерный взрыв, например ядерный взрыв, то ничего не будет на Земле. Ничего такого страшного. Ни ядерной зимы, которую все боятся.
Ни чудовищной радиации, которая убьет всех вокруг, а кого не убьет, то те умрут в течение десяти лет от онкологии. Этого ничего не будет. А что будет — так это будет выведена из строя вся радиоэлектроника».
Вся цифра, все спутники. Вот эта камера, на которую меня сейчас снимают, вот этот телефон, который рядом со мной лежит. Мы вернемся с вами в год этак какой-нибудь 93-й.
Проводные телефоны. Двушечка или не двушечка, я не помню, в телефоне-автомате. Я вам скажу: чудесно же жили.
Вот право. Я даже обрадуюсь. Как минимум мне не придется объяснять своим детям, почему у всех есть гаджеты, а у них нет.
Я запрещаю своим детям иметь гаджеты. Это отдельная тема. Сейчас не об этом.
Преодоление предела Гринвальда Теоретический предел, определяющий максимальную плотность плазмы, достижимую в реакторе токамак, известен как "предел Гринвальда". При превышении этого предела плазма может стать нестабильной, и некоторые заряженные частицы могут выйти из-под контроля ограничивающих их магнитных полей. Другими словами, превышение этой плотности чревато разрушением стенок реактора. Команда вводила дейтерий, чтобы замедлить термоядерную реакцию и контролировать ее поведение. Несмотря на то, что это время было коротким, оно уже показывает, что более плотная плазма может быть управляемой в токамаке. Исследователи использовали метрику под названием H98 y, 2 для оценки эффективности, с которой реактор токамака удерживает плазму. Как объясняют ученые, если значение H98 y, 2 больше 1, это означает, что плазма остается стабильной и хорошо удерживается, что и было сделано в эксперименте.
Но для этого необходимо добиться того, чтобы установка могла стабильно работать при высокой температуре длительное время. Эксперимент китайских ученых продлится до июня. По словам инженера-физика, если речь идет о единичном научном приборе, то его сооружение, эксплуатация и обращение с радиоактивными отходами может осуществляться контролируемо. Здесь катастрофы, сравнимые с Чернобылем, невозможны, но в результате работы таких устройств происходит активация, то есть становятся радиоактивными элементы конструкции», — подчеркнул Ожаровский. Он пояснил, что при активации то, что было нерадиоактивным, становится радиоактивным из-за нейтронного облучения. Этот процесс уже изучен по предшественникам современных токамаков. Даже если китайцы добьются успеха, то у них не получится получить чистую и дешевую энергию. Инженер-физик добавил, что токамаками занимается уже не первый год целая отрасль ученых. Они зарабатывают на этом проекте, поэтому только выигрывают от экспериментов. Ученые могут преуспеть, но от экспериментальной установки до промышленной еще очень далеко.
По замыслу Басова следовало обжать мишень несколькими лазерными пучками с разных сторон. Они бы вызвали нагрев, ударную волну с возникновением плотной плазмы, в которой могут сталкиваться ядра дейтерия и трития. Когда ученые это поняли, скорая идея зажигания мишени с выделением энергии, значительно компенсирующей затраченную, долго грело им душу. Однако эксперименты по сферическому обжатию термоядерной мишени, проводимые в нашей стране они начинались в ФИАНе в начале 70-х годов на установке «Кальмар» и за рубежом долго ни к чему не приводили. Поэтому сейчас, если подтвердятся полученные на установке NIF результаты, их можно будет считать первым экспериментальным подтверждением идеи Н. Г Басова. Это устройство — конвертер - преобразует лазерное излучение в рентгеновское. И мишень симметрично, со всей сторон обжимается именно этим излучением. Идея эта оказалась хорошей, сегодня весь мир пошел по этому пути. Николай Басов. Фото: ru. По сути, это маленький термоядерный взрыв, который отличается от взрыва бомбы тем, что является управляемым. Что дальше? Надо будет полученную энергию как-то собрать, преобразовать в тепло. Хоть термоядерная реакция и считается самой чистой из всех ядерных, но сильные потоки электронов, которые активируют окружающие вещества, никто отменить не может.
«Национальная поджигательная установка» резко повысила эффективность термоядерного синтеза
Все самое интересное и актуальное по теме "Ядерная физика". Европейский токамак обновил рекорд по количеству полученной в ходе термоядерной реакции энергии. Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём. В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы. Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". Ученые Института ядерной физики а СО РАН (ИЯФ, Новосибирск) добились ускорения плазмы в термоядерной установке "СМОЛА", где вещество удерживается.
Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы
Принципиальная схема термоядерного двигателя Основа двигателя камера длиной в 8 метров с магнитными ловушками — в ней будет разогреваться и удерживаться от контакта со стенками термоядерная плазма. Топливо — Дейтерий и Гелий-3. Оно самое перспективное с энергетической точки зрения. Оптимизировать конструкция камеры поможет искусственный интеллект и суперкомпьютеры американцев из Princeton Satellite Systems. Предполагалось, что её агрегат обеспечит скорость в 1,8 миллиона километров в час за счет создания в рабочей камере особых плазмоидов.
Ожидается, что их коллективный световой удар позволит зажечь в микрокапсуле с дейтериево-тритиевым топливом управляемую термоядерную реакцию. Фото с сайта lasers. В двух сеансах работы, проведенных в конце 2013 года, энергетический выход термоядерной реакции в микрокапсуле с дейтериево-тритиевым топливом оказался больше, чем подведенная к топливу энергия. В тех же экспериментах был впервые зарегистрирован сильный самостоятельный разогрев топлива за счет альфа-частиц. Главная цель NIF — зажигание полноценной самоподдерживающейся термоядерной реакции — пока не достигнута, но полученные результаты вновь позволяют NIF с оптимизмом смотреть в будущее. В начале февраля в журналах Nature и Physical Review Letters вышло сразу три статьи, посвященные недавним результатам американской «Национальной поджигательной установки» National Ignition Facility , NIF. Этот исследовательский комплекс, запущенный в 2009 году в Ливерморской национальной лаборатории им. Лоуренса, изучает возможность реализации инерциального управляемого термоядерного синтеза. Главная цель проекта — продемонстрировать, что с помощью мощных лазеров можно запускать управляемую термоядерную реакцию с хорошим энергетическим выходом. При соответствующем развитии технологий в будущем это сделает термоядерный синтез исключительно эффективным и экологически чистым источником энергии. Прежде чем описывать опубликованные NIF результаты, с этого сообщения нужно сдуть некий налет сенсационности. На первый взгляд заголовки статей очень впечатляют: в NIF получен энергетический выход, превышающий поглощенную мишенью энергию. Эта фраза звучит словно объявление о том, что эффективный источник термоядерной энергии заработал и теперь дело переходит в индустриальную плоскость. Увы, всё обстоит совсем не так. Настоящий энергетический выход — то есть сколько получено термоядерной энергии по сравнению с полной затраченной энергией — остается очень низким, не более одного процента. Поэтому ни о каком полезном применении для энергетики ни сейчас, ни в обозримом будущем речи пока не идет. Исследования здесь находятся лишь в стадии доказательства принципиальной работоспособности технологии. Тем не менее полученный NIF результат пусть и не сенсационен, но тоже очень важен. Он на порядок лучше, чем всё то, что на NIF удавалось получить до сих пор, и к тому же заключает в себе первые серьезные намеки на принципиальную осуществимость проекта. Управляемый термоядерный синтез Есть два основных типа ядерных реакций, которые идут с выделением энергии, — это расщепление тяжелых ядер например, урана или плутония и слияние легких ядер обычно дейтерия и трития — тяжелых изотопов водорода, рис. Энергия, получаемая при расщеплении — это то, что обычно называется ядерной энергией, именно на ней работают атомные электростанции. Энергия, получаемая при слиянии, называется термоядерной энергией, а сам процесс — термоядерным синтезом. Энергетический выход термоядерной реакции существенно выше, чем у ядерного топлива, однако приручить этот тип энергии пока не удалось. Конечно, существуют атомные бомбы, работающие по обоим принципам, но их взрыв представляет собой неуправляемую реакцию, и для целей добычи энергии он не подойдет. Классическая реакция термоядерного синтеза: ядра дейтерия и трития сливаются друг с другом с образованием альфа-частицы и свободного нейтрона и с выделением энергии. Рисунок из статьи M. Herrmann, 2014. Plasma physics: A promising advance in nuclear fusion Большинство специалистов связывают основные надежды по достижению управляемого термоядерного синтеза с магнитными ловушками , и прежде всего с международным проектом ITER для первого серьезного знакомства можно порекомендовать лекцию Кристофера Ллуэллин-Смита На пути к термоядерной энергетике. Но параллельно с этим уже давно разрабатывается и другая схема для запуска управляемой термоядерной реакции — инерциальный термоядерный синтез. Она еще не так развита, как термояд с магнитным удержанием, но некоторые специалисты надеются, что именно на этом пути будет получен первый удобный источник термоядерной энергии. Принцип работы инерциального термоядерного синтеза звучит просто. Берем маленькую капсулу с дейтериево-тритиевой смесью и резко сжимаем ее, например, с помощью сверхмощного лазерного импульса. Капсула от такого сжатия сильно нагревается, и в самом ее центре в условиях высоких температур и давлений зажигается термоядерная реакция. Выделяющаяся энергия разогревает остальную часть дейтериево-тритиевого горючего, и термоядерная реакция охватывает всю капсулу.
Установка EAST - это полноценный сверхпроводящий экспериментальный термоядерный токамак, который, по словам Артемьева, как и строящийся во Франции токамак Международного термоядерного экспериментального реактора ИТЭР являются важными шагами к построению установки DEMO. По проекту, электростанция будет запущена в конце 2040-х годов и станет переходным звеном между ITER и первыми коммерческими термоядерными реакторами. Конечной целью проекта является создание почти безгранично чистой энергии, имитирующей естественные реакции, происходящие внутри звезд. Такой реактор не потребует ископаемое топливо и не оставляет опасных отходов.
Ранее сообщалось, что для создания реактивного двигателя достаточно температуры плазмы в 100 тыс. По замыслу ученых, в перспективе термоядерная установка позволит создать двигатели мегаваттной мощности, что значительно превышает расчетные показатели разрабатываемых ядерных электрореактивных двигателей и позволяет использовать ее для межпланетных перелетов. Установка основана на совершенно новом принципе - плазма в так называемой магнитной ловушке удерживается вращающимся магнитным полем, закрученным в спираль винт Архимеда. В зависимости от направления вращения магнитного поля плазма в установке либо "тормозится", в результате чего увеличивается время удержания плазмы, либо, напротив, ускоряется, что, в случае ракетного двигателя, создает реактивную тягу.
Мегаджоули управляемого термоядерного синтеза
К примеру, 55 миллионов километров - расстояние между Землей и Марсом — он мог бы преодолеть меньше, чем за трое суток. В два раза быстрее, чем поезд идущий от Москвы до Владивостока. Принципиальная схема термоядерного двигателя Основа двигателя камера длиной в 8 метров с магнитными ловушками — в ней будет разогреваться и удерживаться от контакта со стенками термоядерная плазма. Топливо — Дейтерий и Гелий-3. Оно самое перспективное с энергетической точки зрения.
Проблемы и решения На самой масштабной инновационной стройке мира не обходится без проблем. Продолжительность ремонта термоэкранов оценивается примерно в два года». Еще одна проблема возникла при сварке секторов вакуумной камеры. При проектировании ИТЭРа первую стенку решили делать из бериллия. Сейчас российское термоядерное сообщество анализирует, насколько оправданна замена материала.
К середине апреля мы выработаем позицию и представим ее на следующем совете ИТЭР. Смею вас заверить, дискуссии будут глубокими, фундаментальными и наше мнение будет учтено».
Так что при одобрении "сверху" сооружение ТРТ к 2030 году - вполне реальная задача.
У "Росатома" есть действующее соглашение с РАН. Как оцениваете участие академических институтов в совместной реализации федерального проекта "Термоядерные и плазменные технологии"? Виктор Ильгисонис: Как абсолютно необходимое.
Дело в том, что все академические институты - участники проекта "Термоядерные и плазменные технологии" - имеют собственные уникальные компетенции, освоение которых в контуре "Росатома" заведомо нецелесообразно, если мы исповедуем государственный подход. О других и не говорим… Виктор Ильгисонис: Так вот: уже упомянутый мною Институт прикладной физики в Нижнем Новгороде разрабатывает и производит лучшие в мире гиротроны - специальные устройства для мощного нагрева электронной компоненты плазмы. Новосибирский ИЯФ создает источники ионов и нейтральных атомов высокой энергии, которые приобретаются всеми ведущими мировыми лабораториями.
Санкт-Петербургский физтех - признанный авторитет в методах высокочастотного нагрева плазмы… Список можно продолжать. И сказанное в полной мере относится не только к институтам РАН, но и к организациям НИЦ "Курчатовский институт", к вовлеченным в проект университетам. Какие риски здесь можно и должно прогнозировать с учетом нарастающих антироссийских санкций?
Виктор Ильгисонис: Вопрос о пользе нашего участия задают уже лет пятнадцать - с того момента, как проект стартовал. Очевидная и главная польза - это ожидаемое появление в мире уникального экспериментального устройства, создание которого оказалось непосильным ни для одной страны. Причем не только в денежном или техническом плане, но и в интеллектуальном.
А практическая польза - это освоение здесь, на родине, новых технологий и производства высочайшего качества. ИТЭР - это легитимная возможность "приземлить" у себя дома современные, в том числе уникальные зарубежные технологии, в создание которых вложились ведущие мировые разработчики. Мы получаем законное право использовать их в национальных целях.
Сегодня ИТЭР - реальный драйвер технологического развития. И я искренне рад, что мировое термоядерное сообщество оказалось способным отделить решение глобальной задачи человечества от сиюминутной политической риторики. Когда говорят о термоядерных исследованиях и пытаются объяснить назначение сложнейших систем того же ИТЭР, приводят для сравнения процессы внутри Солнца и других звезд.
Заголовок в газете "Солнце в морозильнике" - это не сильное преувеличение к тому, что всем миром строят и обещают показать во французском Кадараше? Виктор Ильгисонис: Имеется в виду, полагаю, сравнение температур горячей плазмы внутри токамака и сверхпроводника в его магнитной системе? Если так, то это образное сравнение серьезно не дотягивает до итэровских реалий: плазма ИТЭРа должна быть в десять раз горячее солнечного ядра, а температура в его криостате - в тридцать раз ниже, чем в морозильнике!
Ранее в этом году, в ходе оглашения стратегии развития термоядерной энергии, один из американских конгрессменов заявил, что технология является «святым граалем» чистой энергетики и потенциально способна избавить большее число людей от бедности, чем открытие огня. Большинство исследований пока связаны с т. Если ранее термоядерной энергетикой занимались преимущественно государственные учреждения, то в последнее время инвестиции в соответствующую отрасль потекли и в частные компании, обещающие создать работоспособные технологии к 2030-м годам. Хотя многие учёные считают, что до появления термоядерных электростанций пройдут ещё десятилетия, новости невозможно игнорировать. Термоядерные реакции намного безопаснее с экологической точки зрения, чем обычные ядерные. К тому же даже небольшое количество водорода в теории способно снабжать дом энергией в течение сотен лет.
Прорыв в термоядерном синтезе
Аналогичные разработки ведутся в США и в Великобритании. Гаспарян уточнил, что термоядерный реактор безопаснее, потому что в обычном происходит самоподдерживающаяся реакция деления, которая в случае аварии, как на «Фукусиме», может приводить к нежелательным последствиям. В термоядерном реакторе такого сценария быть не может. А реакция синтеза быстро останавливается при выключении питания. Фактически в качестве топлива используется вода, в которой содержится дейтерий.
Представьте теперь цепочку падающих в лазерное перекрестье шариков с компонентами термоядерного топлива фактически миниатюрных водородных микробомбочек. И, соответственно, непрерывную цепочку микровзрывов… Даже сложно вообразить, как физикам удалось достичь синхронности работы этих лазеров и идеально равномерного обжатия мишени! Совершенно справедливо администратор Нaциoнaльнoй администрации по ядерной безопасности NNSA Джилл Хруби назвала проведенный эксперимент «чудом инженерной мысли». Но вот придумали такую схему… в СССР. Идея инерциального термоядерного синтеза была сформулирована в 1962 году академиком Николаем Геннадьевичем Басовым и тогда еще не академиком Олегом Николаевичем Крохиным. Басов выступал на сессии Академии наук СССР и определил лазерный термояд как одно из направлений управляемого термоядерного синтеза.
Он даже оценил, какая мощность лазера должна быть, чтобы зажечь термоядерную реакцию в этих условиях. Как раз 13 декабря, за день до 100-летнего юбилея Николая Басова, на заседании Президиума Российской академии наук, посвященном этой дате, академик, заместитель директора Российского федерального ядерного центра «ВНИИЭФ» по лазерно-физическому направлению Сергей Гаранин подчеркнул: «Фактически достигнуто зажигание термоядерного горючего. Эти результаты достигнутые на NIF. Михаил Мишустин 18 мая 2021 года принял участие в церемонии физического пуска установки управляемого термоядерного синтеза токамак Т-15МД в Курчатовском институте. Впрочем, не надо переоценивать его немедленную практическую значимость. От этого результата до электростанций, работающих на реакциях термоядерного синтеза, — дистанция огромного размера». Вот и директор LLNL Ким Будил считает, что еще предстоит преодолеть «значительные препятствия» в отношении технологии термоядерного синтеза, прежде чем ее можно будет использовать в глобальных масштабах — или для начала в любом масштабе, если уж на то пошло. Такой процесс может занять годы или даже еще несколько десятилетий. Прежде всего NIF — это неимоверной сложности установка. Например, накопители конденсаторы для питания лазеров — это целое футбольное поле.
Во-вторых, сейчас уже вполне отработана технология реакторов на быстрых нейтронах. Уран, который эти реакторы позволяют вовлечь в ядерно-топливный цикл, дешевый, его много. В общем, физика процесса — интересная: исследование свойств веществ при сверхвысоких давлениях и сверхвысоких температурах. Пусть занимаются. Повторяю, это очень интересная физика. Но коммерческое использование этого достижения — не раньше, чем через несколько десятилетий.
Исследователи классифицирует ее как воспламенение англ. Ignition — самоподдерживающую реакцию термоядерного синтеза, при которой выделяется больше энергии, чем тратится на ее поддержание. Чтобы добиться безубыточной реакции синтеза, физики внесли изменения в ход эксперимента, основываясь на результатах предыдущих исследований. Они увеличились мощность лазеров примерно на восемь процентов, а также изготовили мишень с меньшим количеством дефектов и отрегулировали способ подачи энергии, чтобы взрыв внутрь был более сферическим. До коммерческого получения термоядерной энергии еще далеко Пока что о коммерческом получении термоядерной энергии речь не идет. Дело в том, что воспламенение не компенсирует всю энергию, потраченную на работу лазеров — около 322 мегаджоулей, — а только ту, что была потрачена непосредственно на нагрев мишени. Таким образом, NIF не является установкой для эффективного производства энергии, а служит лишь для экспериментального доказательства самой возможности воспламенения. Многие специалисты сомневаются, что сам подход с использованием лазеров может стать основой для получения термоядерной энергии из-за множества сложных технических проблем. В NIF используется инерциальный управляемый термоядерный синтез ICF , когда реакция инициируется путем теплового сжатия мишеней размером с булавочную головку с помощью лазеров.
Ученый физического факультета Томского госуниверситета Михаил Егоров выясняет, для каких реакций и при каких энергиях и температурах выделяющаяся полезная энергия может превышать энергетические потери, связанные с движением заряженных частиц. С использованием точных методов квантовой механики он вычислит сечения наиболее интересных с прикладной точки зрения термоядерных реакций синтеза.
Главные новости
- Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца
- Главные новости
- Ракетчики начали строить термоядерный двигатель
- Каждая деталь – шаг в неизведанное
- Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца
- ядерная физика
Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя
Самая грандиозная научная стройка современности. Мы закуем Солнце в «бублик» | Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР. |
Российский инженер рассказала о значении термоядерного прорыва американских ученых | Слишком часто разработчики термоядерных реакторов сталкивались с непредсказуемостью, завышенными оценками, новыми неприятными фактами из области физики плазмы. |
Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии | Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. |