«М-теория является единственным «кандидатом» на законченную теорию Вселенной. Научные теории о том, что может находиться за пределами Вселенной основаны, как правило, на предположениях, выводах из известных физических законов и математических моделях. Грохочущую “космическую басовую ноту” гравитационных волн, которые, как полагают, возникают в результате замедленного слияния сверхмассивных черных дыр по всей Вселенной, обнаружили астрономы. Различные теории о функционировании Вселенной зачастую зависят от понимания гравитации — единственной силы в физике, воздействующей на материю в весьма серьезных масштабах. Теория струн Теория струн – физическая теория, объединяющая квантовую механику и общую теорию относительности, и считающаяся главным кандидатом на роль теории квантовой гравитации.
Тёмная сторона Вселенной: что такое тёмная материя и как ее найти
РИА Новости, 19.07.2023. Сам Эйнштейн выдвинул теорию статической Вселенной, она подверглась критике и была потом практически забыта. Тогда в силу вступает общая теория относительности (ОТО), которая объясняет движения материальных тел в общем случае.
М теория вселенной для чайников. Теория струн
Английский физик Мелвин Вопсон заявил, что его новое исследование может подтвердить популярную теорию симуляционной Вселенной. Если теория струн и М-теория таки окажутся верными, то это будет главным достижением науки за последние 2000 лет, с тех самых пор, как древние греки начали поиски единой связной и целостной теории Вселенной. Виттен и стажёр Хофава обнаружили, что для теории E-гетеротической струны существует описание в терминах 11-мерной теории. Если теория струн и М-теория таки окажутся верными, то это будет главным достижением науки за последние 2000 лет, с тех самых пор, как древние греки начали поиски единой связной и целостной теории Вселенной. и новая теория квантовой гравитации показывает, как это возможно. создать единую теорию поля или, попросту говоря, теорию всего, т.е. такую теорию, которая бы на фундаментальном уровне могла объяснить сущность мироздания и законы Вселенной.
М теория вселенной для чайников. Вначале был миф
Конечно, для этого должно было произойти огромное количество процессов связанных с изменением энтропии. Однако если мы подумаем о непрерывном увеличении энтропии, которое происходило на протяжении всех этих лет, то сможем сделать вывод, что энтропия Вселенной сейчас должна быть намного больше. На самом деле, согласно расчетам, энтропия Вселенной сегодня примерно в квадриллион раз больше, чем во время Большого взрыва. По мнению некоторых космологов, это можно объяснить с помощью идеи о существовании энтропии времени. Поскольку второй закон термодинамики гласит, что энтропия изолированной системы может увеличиваться, но не уменьшаться, энтропия требует определенного направления времени, иногда называемого осью времени. Таким образом, измерение энтропии - это способ отличить прошлое от будущего.
Почему энтропия Вселенной растет? Энтропия Вселенной будет продолжать расти, но что именно приводит к этому росту? Остаточные уровни излучения после Большого взрыва, ядерный синтез в звездах... Существует множество процессов, которые поддерживают поток энергии, но считается, что основной вклад в это вносят черные дыры из-за огромного количества частиц, которые они содержат. Черные дыры обладают огромной концентрацией массы, которая обеспечивает им исключительно сильное гравитационное поле.
Поэтому они допускают множественность микросостояний. В связи с этим Стивен Хокинг предположил, что черные дыры выделяют тепловое излучение вблизи своих горизонтов событий. Это излучение Хокинга может привести к потере массы и окончательному испарению черных дыр. Поэтому они будут набирать все большую массу и сливаться с другими черными дырами, превращаясь в сверхмассивные чёрные дыры. А когда они в конце концов распадутся, излучение Хокинга, создаваемое распадающимися чёрными дырами, будет иметь такое же количество возможных состояний, как и сама ранее существовавшая черная дыра.
Согласно этой точке зрения, ранняя Вселенная имела низкую энтропию из-за меньшего количества или гораздо меньших размеров черных дыр. Существует ли предел энтропии во Вселенной? Как бы мы ни говорили о тенденции к увеличению энтропии, законы термодинамики также подразумевают состояние максимальной энтропии. В повседневной жизни мы можем наблюдать это, когда наш кофе остывает в чашке. Когда кофе достигает комнатной температуры, это означает, что он находится в тепловом равновесии с окружающей средой.
В кипящей воде, используемой для приготовления кофе, было много возбужденных атомов, но они замедлились и в конце концов достигли максимальной энтропии для данной системы. Термодинамическое равновесие - это стабильное состояние, которое не обратимо без "помощи" - поступления энергии. Кофе нужно было бы подогреть, добавив энергию, например, поставив его на плиту или в микроволновую печь. Однако у нас нет никакого способа подать энергию во Вселенную после того, как она достигнет теплового равновесия.
Интересный факт: Млечный Путь состоит примерно из 10 миллиардов звезд. Свету, чтобы добраться из одного конца галактики в другой, требуется 100 тысяч лет. Звезды распределены в галактиках неравномерно, в разных частях имеются плотные скопления, напоминающие шар. Также есть пространства, где на протяжении многих световых лет нет ни одного светила. Вокруг большинства звезд находятся планеты, обладающие уникальным внешним видом, атмосферой и другими особенностями.
Также вокруг некоторых имеются спутники — небольшие космические объекты, удерживаемые за счет притяжения. Галактик во Вселенной огромное множество, и многие имеют спиралевидную форму, которую хорошо заметно благодаря расположению светил. Такой тип называется протогалактиками. Ученые предполагают, что во время своего образования они вращались по кругу с большой скоростью, и постепенно замедлились. Другие галактики из-за сильного сжатия водородного газа не начали движение вокруг центральной оси и остались в форме эллипса. Межгалактическое пространство помимо пустоты может содержать различные объекты: пояса астероидов, кометы, карликовые планеты и т. Все вышеперечисленные объекты являются частью необъятной Вселенной. Причем регулярно рождаются новые звезды и планеты, из-за чего космос постоянно меняется. Это настолько понравилось другим мыслителям, что они позаимствовали у него выражение и начали использовать в аналогичном контексте.
И пока римляне придумывали, как охарактеризовать пространство вокруг, греки тоже старались от них не отставать. Со временем оба слова начали использоваться для описания пространства вокруг. Доказательства, что Вселенная имеет возраст Эдвин Хаббл поставил финальную точку в спорах, доказав наличие границ у Вселенной и их увеличение Если верить теории Большого взрыва, то отсчет жизни Вселенной начинается в ту секунду, когда сжатая до микроскопических размеров сингулярность моментально расширилась. Со временем это пространство заполнили галактики и постепенно приняли тот вид, который люди наблюдают из телескопов. Интересно: Созвездия: список, описание, что такое, названия, карта, история, фото и видео Вселенная проделала долгий путь, на который ушли даже не миллионы, а миллиарды лет. Когда Земля была достаточно изучена, они обратили внимание к звездам и начали стремиться узнать как можно больше о них. Средневековая модель Вселенной Изначально полагалось, что Вселенная бесконечна и не имеет возраста, являясь вечной. Но открытие законов термодинамики как минимум опровергло отсутствие возраста. Согласно им, тепло от горячих объектов переходит к более холодным, пока между ними не установится температурное равновесие.
И если бы Вселенная существовала вечно, планеты, звезды и другие космические тела были бы одной температуры. Благодаря таким умозаключениям ученые того времени установили, что пространство вокруг имеет определенный возраст. Интересный факт: ученые не исключают наличие в космосе областей, где объекты имеют одну температуру. Но они должны состоять из одинаковых материалов. Доказать наличие возраста у Вселенной иным способом удалось в XX веке. Астроном Леметр выдвинул гипотезу, что пространство вокруг не бесконечно, имеет границы и постоянно увеличивается. Эдвин Хаббл поддержал его, поскольку заметил, что соседние галактики постепенно отдаляются от Млечного Пути. И если перемещаться назад во времени, можно оказаться во мгновении, когда размеры Вселенной были минимальными и еще не начали расти. Именно в этот момент и произошло ее рождение, соответственно она имеет возраст.
Сколько вселенной лет? Эдвин Хаббл, прекрасно понимая, что пространство вокруг расширяется, вычислил константу, характеризующую скорость этого процесса. В 1958 году ученый Сэндидж использовал эту величину в своих расчетах и установил, что Вселенной должно быть примерно 20 миллиардов лет. Позже астрономы открыли реликтовое излучение — свет от Большого взрыва, который до сих пор заметен на границах пространства. Это помогло выявить более точные размеры космоса. На основе полученных данных ученые смогли подсчитать примерный возраст Вселенной. Он оказался равен 13,824 млрд. Как возникла Вселенная Момент Большого взрыва На данный момент теория Большого взрыва является наиболее логичным предположением о том, как возникла Вселенная.
Значит ли это, что наши шансы найти в этой Вселенной другие цивилизации все уменьшаются и уменьшаются? Во-вторых, даже через 2 трлн лет у нас будет наша Галактика — потому что сами галактики не расширяются. И почему Большой взрыв не происходит сейчас? Именно поэтому я занимаюсь наукой. Что касается второго вопроса. Большие взрывы могут происходить прямо сейчас, в других пространствах. Прямо перед вами может появиться пространство, но оно очень быстро будет отделено от нашей Вселенной. В мультивселенной постоянно могут происходить большие взрывы, появляться и схлопываться вселенные. Если посмотреть на сотни миллионов звезд и галактик, то в них очень много энергии. Но нужно просто добавить в это уравнение гравитационное притяжение, и общая результирующая энергия всей нашей Вселенной, всего вещества, будет равна нулю. Таким образом, энергия сохраняется. Поразительно, да? Я физик-теоретик , я постоянно создаю модели, которые описывают разные вселенные. Нужно понимать, что в большинстве случаев я ошибаюсь. У меня были потрясающе красивые, очень хорошие теории, которые оказались неверными. Но, может быть, раз в жизни я случайно окажусь прав как это было с идеей, что Вселенная расширяется с ускорением. Поиск важнее, чем сама реальность. Наша жизнь похожа на миф о Сизифе, у нас нет выбора. Мы можем впасть в депрессию — а можем наслаждаться поиском. Может быть. Кто знает… Это возможно. В каких-то теориях, например теории струн. Но сейчас нет доказательств. Может быть, там действуют законы математики. Я не знаю, чего ожидать. Но это не доказывает, конечно же, существование какого-либо бога. Как вы считаете, что должно произойти, для того чтобы расстановка сил в мире поменялась? Когда я вижу людей, которые считают, что миру 5 или 6 тысяч лет, я не считаю, что они глупы. Мне кажется, им просто не хватает знаний. Людям старшего поколения уже поздно меняться, но я надеюсь на молодых людей. Я хочу, чтобы молодые люди думали, а не только чувствовали. И дело даже не в фактах, потому что факты вы в большом количестве найдете в своем смартфоне — но они могут быть неверными. Самое важное — научить людей задавать вопросы и отличать истинное от ложного. Я думаю, преподавание наук в школе побуждает молодых людей к этому. Он говорил, что все будут смеяться, если я кого-то спрошу об этом. Но при этом всю лекцию вы только об этом и говорили. Поэтому у меня вопрос: ограниченны ли вообще возможности человеческого познания? Нет никакого «до», потому что само время возникло во время Большого взрыва. Это очень сложно представить. Но вопрос «Что было до Большого взрыва? И нашему сознанию, может быть, не хватает возможностей для того, чтобы понять этот вопрос и ответить на него. Но я бы хотел, чтобы вы продолжали задавать вопросы и поражаться Вселенной такой, какая она есть. Неважно, если вы понимаете не все. Цените ее за то, что она больше, чем вы можете понять. Нужно постоянно смотреть вперед, потому что Вселенная нас может очень многому научить. Литература Краусс Л. Все из ничего. Краусс Л. Страх физики. Сферический конь в вакууме. Почему мы существуем? Величайшая из когда-либо рассказанных историй. Вселенная из ничего. Почему не нужен Бог, чтобы из пустоты создать Вселенную. Благодарим Марию Ломаеву за помощь в подготовке конспекта. Мы публикуем сокращенные записи лекций, вебинаров, подкастов — то есть устных выступлений. Мнение спикера может не совпадать с мнением редакции. Мы запрашиваем ссылки на первоисточники, но их предоставление остается на усмотрение спикера.
Кроме этого узнали, что существует и шестая теория 11-мерная супергравитация , которая связана с М-теорией. Все это можно изобразить таким рисунком 12. Данная картинка является рамочным пространством для всей теории струн. Здесь находятся все шесть теорий в виде полуостровов, которые при малой константе связи указывают на наличие в природе, точнее в математике, одномерных объектов в виде струн. Это, наверное, все-таки понимают математики и поэтому не ставят перед экспериментаторами поиск этих протяженных объектов, также, как и точечных, в ускорителях, интерферометрах и другой аппаратуры. Более того через изменение констант связи и изменение вида свернутых измерений можно переходить от одной точки пространства теории к другой точке. И что интересно, при этих переходах мы тащим за собой двухмерность струны. А это значит, что ни одна из пяти теорий не смогли обнаружить в себе двухмерность струн самостоятельно. Для этого потребовалась М-теория. Конечно, и двухмерная струна чисто математический объект. В природе таких объектов не существует. Даже слой одиночных атомов или электронов имеет определенную толщину. Одно утешение — теория идет дальше и предполагает, что существуют и трехмерные объекты в ее математических образах. Все что только мы наблюдаем и даже представляем, все, все является в виде трехмерных объектов. Кажется, описывай их, представляй взаимодействия между ними, предлагай методы измерений и изменений, в общем изучай. Так нет же — мы будем изучать все в комплексе. К этим точечным, одномерным, двухмерным и трехмерным объектам добавим четырехмерные, пятимерные и так до девятимерных объектов. Как будь то, они у нас под ногами валяются. Их никто не видел, они никак не проявляются в нашей жизни. Они существуют только в виде формул в некоторых головах и передающихся как условный рефлекс другим, обычно студентам. И какая тут уж демократия — всего 9 бран. А как же быть с десятой, сотой или двести первой браной? Вот это будет демократия. Что бран столько, сколько существует измерений? Так измерений действительно бесконечно много. Давайте рассмотрим такую логическую цепочку. Часть ее будет очевидной, а в некоторую ее часть придется поверить. Уже давно никто не сомневается в том, что почти все состоит из атомов. Раньше считали, что атом это мельчайшая неделимая частица. Возьмем любой объект: монитор, карандаш, человека или что угодно. Водрузим возле него декартову систему координат в виде стержней.
60 удивительных фактов о Вселенной, которые вы должны знать
и новая теория квантовой гравитации показывает, как это может работать. Чтобы понять основную идею М-теории, нужно вернуться в 1970-е годы, когда ученые поняли, что вместо того, чтобы описывать вселенную, основываясь на точечных частицах, их лучше было бы описывать в виде осциллирующих струн (энергетических трубочек). 2.0 Теория ДВС: Шары для расточки каналов ГБЦ.
Теории о Вселенной, которые взорвут ваш мозг 💥
Все мы помним, как на уроке физики познакомились со светом. И все мы помним о свете одну его уникальную особенность, скорость. Каждый из нас слышал, «Ничто не может передвигаться со скоростью свыше скорости света в вакууме», помните? Так вот, это неправда. Понимаю, звучит слегка шокирующе, но погодите, дайте мне это объяснить.
Эта формулировка не совсем верна, ее стоит презентовать с большей аккуратностью, как юрист, звучать она должна следующим образом: «Ничто в космосе не может передвигаться со скоростью свыше скорости света в вакууме», так будет правильнее. Но если задуматься над этой фразой, станет понятно, что, действительно, в космосе ничто не может передвигаться свыше этой заветной скорости света, но сам космос может делать что ему вздумается. Космос не подвластен тому, чему учили нас в школах. Как мы уже знаем, космос находится в стадии постоянного расширения и расширение это происходит со скоростью превышающей скорость света, а в некоторых местах в несколько раз.
Чтобы до конца представить модель мультивселенной, позвольте провести аналогию. Все мы хоть раз видели сёрферов, пытающихся прокатиться на волне. В данном примере наш свет и есть этот сёрфер, а вода, является космосом. Так вот, представим, что начался отлив, а наш бедолага не успел вылезти на берег.
Неважно, что наблюдаемая вселенная несимметрична, говорил Рамон, существуют условия, при которых симметрия все же соблюдается. А если по теории струн фермионы и бозоны кодируются одними и теми же объектами, то в этих условиях материя может превращаться в энергию, и наоборот. Это свойство струн назвали суперсимметричностью, а саму теорию струн — суперструнной. В 1974 году Джон Шварц и Джоэль Шерк обнаружили, что некоторые свойства струн удивительно точно совпали со свойствами предполагаемого переносчика гравитации — гравитона. С этого момента теория начала всерьез претендовать на обобщающую. Джон Шварц и Майкл Грин представили математическую модель , которая показывала, что многие противоречия между теорией струн и Стандартной моделью устранимы. Новые уравнения также связывали теорию со всеми видами материи и энергии. Научный мир охватила лихорадка — физики бросали свои исследования и переключались на изучение струн. С 1984 по 1986 года было написано более тысячи работ по теории струн. Они показали, что многие положения Стандартной модели и теории гравитации, которые годами собирались по крупицам, естественным образом вытекают из струнной физики.
Исследования убедили ученых, что объединяющая теория не за горами. На месте решенных проблем возникали новые. Ученые обнаружили, что существует не одна, а пять теорий суперструн. В них струны обладали разными типами суперсимметрии, и не было никакой возможности понять, какая из теорий верна. Математические методы имели свой предел. Физики привыкли к сложным уравнениям, которые не дают точных результатов, однако для теории струн не получалось написать даже точных уравнений. А приближенные результаты приближенных уравнений не давали ответов. Стало ясно, что для изучения теории нужна новая математика, но никто не знал, какая именно. Пыл ученых поутих. Вторая суперструнная революция прогремела в 1995 году.
Конец застою положил доклад Эдварда Виттена на конференции по теории струн в Южной Калифорнии. Виттен показал, что все пять теорий — это частные случаи одной, более общей теории суперструн, в которой не десять измерений, а одиннадцать. Объединяющую теорию Виттен назвал М-теорией, или Матерью всех теорий, от английского слова Mother. Но важнее было другое. М-теория Виттена настолько хорошо описывала эффект гравитации в теории суперструн, что ее назвали суперсимметричной теорией гравитации, или теорией супергравитации. Это воодушевило ученых, и научные журналы вновь заполнили публикации по струнной физике. Могут пройти десятилетия, или даже столетия, прежде чем она будет полностью разработана и осознана» Отголоски этой революции слышны и сегодня. Но несмотря на все усилия ученых, в теории струн больше вопросов, чем ответов. Современная наука пытается построить модели многомерной вселенной и изучает измерения как мембраны пространства. Их называют бранами — помните пустоту, на которой натянуты открытые струны?
Предполагают, что и сами струны могут оказаться двух- или трехмерными. Даже говорят о новой 12-мерной фундаментальной теории — F-теории, Отце всех теорий, от слова Father. История теории струн далека от завершения. Теорию струн пока не доказали — но и не опровергли Главная проблема теории — в отсутствии прямых доказательств. Да, из нее вытекают другие теории, ученые складывают 2 и 2, и получается 4. Но это не значит, что четверка состоит из двоек. Эксперименты на Большой адронном коллайдере пока не обнаружили и суперсимметрию, что подтвердило бы единую структурную основу вселенной и сыграло бы на руку сторонникам струнной физики. Но нет и опровержений. А потому элегантная математика теории струн продолжает будоражить умы ученых, обещая разгадки всех тайн мироздания. Говоря о теории струн, нельзя не упомянуть Брайана Грина, профессора Колумбийского университета и неутомимого популяризатора теории.
Грин выступает с лекциями и снимается на телевидении. В 2000 году его книга «Элегантная вселенная. Суперструны, скрытые размерности и поиск окончательной теории» стала финалистом Пулитцеровской премии. В 2011 он сыграл себя в 83-й серии «Теории Большого Взрыва». В 2013 году посетил Московский политехнический институт и дал интервью «Ленте-ру» Если не хотите становиться знатоком теории струн, но хотите понимать, в каком мире живете, запомните шпаргалку: Вселенная состоит из нитей энергии — квантовых струн, которые вибрируют как струны музыкальных инструментов. Разная частота вибрации превращает струны в разные частицы. Концы струн могут быть свободны, а могут замыкаться друг на друга, образуя петли. Струны все время замыкаются, размыкаются и обмениваются энергией с другими струнами. Квантовые струны существуют в 11-мерной вселенной. Дополнительные 7 измерений свернуты в неуловимо малые формы пространства-времени, поэтому мы их не видим.
Это называется компактификацией измерений. Если бы мы узнали, как именно свернуты измерения в нашей вселенной, то, возможно, смогли бы путешествовать во времени и к другим звездам. Но пока это невозможно — слишком много вариантов нужно перебрать. Их бы хватило на все возможные вселенные.
Просто у камня меньше степеней свободы которые способны обучаться. Когда так поговорим, биологи соглашаются, как правило. Из камня же бабочку не получишь. Мы его называем фенотипом. Это как генотип — признаки, передающиеся по наследству. Но тут не признаки, а знания и навыки.
И не от особи к особи, а, например, от молекулы к молекуле. Как юный львенок учится ловить добычу, так учится вся Вселенная. Что-то усваивает, что-то забывает. Если эти процессы в равновесии, энтропия постоянна. Такого в физике нет. Ни один физик не думал, что протон будет учить протон. Но биологу эта идея понятна. Моменты, когда происходит «изобретение» алгоритма, мы назвали фазовым переходом. Такие прорывы, революции случались не раз. Появление живого в понимании биологов.
Переход от одноклеточных существ к многоклеточным. Быть многоклеточным выгоднее: одна клетка отвечает за одно, другая за другое. Другой пример: люди жили когда-то разрозненными общинами. И «вдруг» стали создавать государства. Государства оказались выгоднее общин — в том числе для познания Вселенной. В этом ее цель. И природа не остановилась, и не остановится никогда. Человек — не вершина эволюции. Будут еще более изощренные существа. И тем не менее, инопланетян не наблюдается.
Куда они делись? Проще всего было бы сослаться на антропный принцип. Чуть иное соотношение масс и сил элементарных частиц, и нас бы не было. Антропный принцип говорит: на самом деле вселенных много, но только в этой могли появиться мы. Поэтому и кажется, что ее словно подготовили для нас. Но еще в 1983 году Джон Уилер сформулировал крайний вариант антропного принципа: Вселенная одна, но она создала себя такой, чтобы ее было кому наблюдать. Она нуждается в наблюдателе. Эта гипотеза близка идее самообучающейся Вселенной Виталия Ванчурина. Эта вселенная годится для человека, а та — для других существ или ни для кого. Все пришельцы сидят по своим вселенным.
Ну а если Вселенная все-таки одна? Других-то мы не видели. Скажем, для теории нейросети гипотеза о множественности вселенных не нужна. Одной достаточно. А если Вселенная одна, то единственный способ объяснить наше существование пока только наше : Вселенная эволюционирует и меняется. Вплоть до того, что меняются законы физики, меняются фундаментальные константы. Квантовая механика не всегда была такой, как сейчас. Или ее не было вовсе. Вселенная шла к тому, чтобы породить жизнь, породить наблюдателя. Она меняла гравитационную постоянную, ядерные взаимодействия так, чтобы появлялись все более сложные формы материи.
И породила нас. Потому что Вселенной это выгодно. Потому что на хочет себя наблюдать. Вселенная хочет, чтобы ее наблюдали повсюду. И на Марсе, и на Луне, и в другой галактике. Она породила множество видов жизни, разных видов. Но здесь как у человека: желаю купить, но не имею возможности. Где-то у нее получилось создать наблюдателей. Где-то они появятся позже. Где-то уже были, но — бац, ядерная война, и они не успели нам сигналы послать.
Однако почти наверняка мы не одиноки. Если вам кажется, что это хорошая новость, то вот плохая: нам придется соревноваться с другими мирами. Потому что эволюция — это борьба. Победить должен тот, кто лучше приспособлен. Кто победит — непонятно, потому что открытое соревнование еще не началось. Соревнование не означает, что они сразу нас убьют. Или мы их. Но это как минимум конкуренция. И это битва за выживание, да. За право стать основой будущих экспериментов природы.
В Библии написано: Бог создал человека, чтобы он воспевал Господа. Я не вижу разницы между этими концепциями. Я думаю, вы обосновали существование Бога. Как я к этому отношусь? Если моему читателю удобно понять меня через Библию, прекрасно. Другому удобнее через дифференциальные уравнения — тоже здорово. Если моя теория может примирить атеистов и верующих, просто супер.
Через многие годы было обнаружено, что, кроме струн, теории необходимы и другие элементы. Их можно рассматривать как листы, или браны. Струны могут крепиться к их одной или обеим сторонам.
Квантовая гравитация Современная физика имеет два основных научных закона: общую теорию относительности ОТО и квантовую. Они представляют совершенно разные области науки. Квантовая физика изучает мельчайшие природные частицы, а ОТО, как правило, описывает природу в масштабах планет, галактик и вселенной в целом. Гипотезы, которые пытаются объединить их, называются теориями квантовой гравитации. Наиболее перспективной из них сегодня является струнная. Замкнутые нити соответствуют поведению силы тяжести. В частности, они обладают свойствами гравитона, частицы, переносящей гравитацию между объектами. Объединение сил Теория струн пытается объединить четыре силы — электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию — в одну. В нашем мире они проявляют себя как четыре различные явления, но струнные теоретики считают, что в ранней Вселенной, когда были невероятно высокие уровни энергии, все эти силы описываются струнами, взаимодействующими друг с другом. Суперсимметрия Все частицы во вселенной можно разделить на два типа: бозоны и фермионы.
Теория струн предсказывает, что между ними существует связь, называемая суперсимметрией. При суперсимметрии для каждого бозона должен существовать фермион и для каждого фермиона — бозон. К сожалению, экспериментально существование таких частиц не подтверждено. Суперсимметрия является математической зависимостью между элементами физических уравнений. Она была обнаружена в другой области физики, а ее применение привело к переименованию в теорию суперсимметричных струн или теория суперструн, популярным языком в середине 1970 годов. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные. Без суперсимметрии уравнения приводят к физическим противоречиям, таким как бесконечные значения и воображаемые энергетические уровни. Поскольку ученые не наблюдали частицы, предсказанные суперсимметрией, она все еще является гипотезой. Эти частицы могли существовать в ранней вселенной, но так как она остыла, и после Большого взрыва энергия распространилась, эти частицы перешли на низкоэнергетические уровни. Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией.
Ученые надеются, что астрономические наблюдения или эксперименты с ускорителями частиц подтвердят теорию, выявив некоторые из суперсимметричных элементов с более высокой энергией. Дополнительные измерения Другим математическим следствием теории струн является то, что она имеет смысл в мире, число измерений которого больше трех. В настоящее время этому существует два объяснения: Дополнительные измерения шесть из них свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся. Мы застряли в 3-мерной бране, а другие измерения простираются вне ее и для нас недоступны. Важным направлением исследований среди теоретиков является математическое моделирование того, как эти дополнительные координаты могут быть связаны с нашими.
Просто невероятно: как устроена Вселенная, почему желания сбываются и зачем смотреть «Матрицу»
Строение и развитие Вселенной для «чайника» | В 1983 году физики Стивен Хокинг и Джеймс Хартл выпустили научную работу, посвященную новой теории возникновения Вселенной. |
Создание М-теории | Английский физик Мелвин Вопсон заявил, что его новое исследование может подтвердить популярную теорию симуляционной Вселенной. |
Что находится за пределами нашей Вселенной: 5 теорий | Теория струн Теория струн – физическая теория, объединяющая квантовую механику и общую теорию относительности, и считающаяся главным кандидатом на роль теории квантовой гравитации. |
Тёмная сторона Вселенной: что такое тёмная материя и как ее найти | «М-теория является единственным «кандидатом» на законченную теорию Вселенной. |
Вселенная: что это такое, описание, строение, происхождение, фото и видео
Впрочем, Бэбкок не стал связывать аномалию с гипотезой тёмной материи, а предположил, что во внешней части М 31 происходят некие мощные процессы, влияющие на её динамику. Астрономы теперь могли регистрировать излучение атомарного водорода, определять его присутствие и скорость движения в межзвёздных облаках. Хендрик ван де Хюлст и Лодевейк Волтьер, два ученика Оорта, наблюдая М 31 в разных диапазонах радиоволн, установили, что в центре галактики суммарная масса более или менее соответствует светимости, а вот на периферии расхождение становится значительным. Возможно, «лишняя» материя приходится на гало из горячего газа? Проблема галактической массы стала значимой и активно обсуждалась в течение 1960-х.
В июне 1970 года австралиец Кен Фримен на основе данных по галактикам M 33 и NGC 300 предположил, что в них содержится значительное количество вещества, которое не регистрируется ни оптически, ни в радиодиапазонах. Причем распределение этого вещества заметно отличается от того, которое характерно для видимой части галактик. Стало ясно, что все ранние гипотезы о природе тёмной материи придётся отбросить — она представляет собой нечто совершенно новое. Копилка доказательств В 1975 году на конференции Американского астрономического общества выступили Вера Рубин и Кент Форд.
Они получили надёжные проверяемые данные, которые указывали на вопиющее расхождение между теорией и практикой в распределении вещества. Учёные использовали самый современный спектрограф и пришли к выводу, что подавляющее большинство звёзд в галактиках движутся по своим орбитам с одинаковой угловой скоростью. Этот вывод подтверждал невероятное допущение, что масса в галактиках распределена равномерно — плотность вещества одинакова и в регионах, где находится большинство видимых звёзд, и там, где звёзд мало. Позднее Рубин установила: чтобы теория соответствовала наблюдениям, темной материи в галактиках должно быть в шесть раз больше, чем видимого вещества.
Что примечательно, она предпочла объяснить феномен через модифицированную механику Ньютона, а не через напрашивающуюся гипотезу о неизвестном виде субъядерных частиц, способных взаимодействовать с «нормальной» материей только посредством гравитации. Например, было выявлено её влияние на динамику системы двойных галактик и на формирование эллиптических галактик. Позднее оказалось, что тёмная материя искривляет свет, как и любые массивные небесные тела, то есть её можно обнаружить с помощью эффекта гравитационного линзирования. За идею тёмной материи ухватились и космологи, когда не сумели выявить предсказанную теорией неоднородность в реликтовом излучении.
Введение в модель тяжёлых частиц, которые не взаимодействуют с обычным веществом, но создают сильное гравитационное поле, позволило объяснить возникновение сложных галактических структур. Хотя в начале 1990-х годов неоднородность реликтового излучения всё-таки была выявлена при участии орбитальной обсерватории COBE Cosmic Background Explorer , к тому времени в существовании тёмной материи уже никто не сомневался.
Предполагалось, что в данные с «Хаббла» закралась ошибка или же погрешность измерений. Однако наблюдения посредством телескопа «Джеймс Уэбб» указывают, что ошибки не было. В надежде снять «напряжённость Хаббла», некоторые ученые предположили, что ошибки в измерениях могут расти и становиться заметными по мере того, как мы будем заглядывать все глубже во Вселенную. В итоге с помощью «Уэбба» были проведены дополнительные наблюдения за объектами, которые являются важнейшими космическими маркерами, известными как переменные звезды Цефеиды, которые теперь можно соотнести с данными Хаббла. В итоге хаббловская напряжённость остаётся для учёных загадкой. Джеймса Уэбба открыли человечеству окно в не известную ранее эпоху младенчества Вселенной. Все предыдущие наблюдения позволили создать определённые модели эволюции звёзд и галактик.
Сейчас «Уэбб» разрушает эти представления, о чём лишний раз напоминает новое открытие — телескоп заметил чрезвычайно быстрое затухание звездообразования в галактике, существовавшей всего через 700 млн лет после Большого взрыва. Тем удивительнее было открыть галактику на рубеже 700 млн лет после Большого взрыва с полностью и, по-видимому, навсегда угасшим звездообразованием. К такому результату могли привести два наиболее вероятных процесса: во-первых, в центре галактики могла образоваться сверхмассивная чёрная дыра, которая своим излучением вынесла бы вещество из галактики-хозяина и, во-вторых, звёзды могли эволюционировать настолько быстро, что израсходовали бы весь запас вещества, после чего процесс замер. Обычно ожидается, что активность звездообразования в галактиках снижается постепенно. Исходя из полученных «Уэббом» данных, эта галактика пережила короткий всплеск звездообразования между 30 и 90 млн лет и прекратила образовывать звёзды за 10—20 млн лет до того момента, как её обнаружил «Уэбб». Теория допускает остановку звездообразования и длительный период затишья, но потом оно обычно возобновляется в том или ином виде звёзды взрываются и из останков образуются новые , чего в данном случае учёные не наблюдают, и это ставит их в тупик. Работа позволила взглянуть как будто бы на Солнечную систему 4,5 млрд лет назад и понять, как и откуда на Земле могла появиться вода в том объёме, в котором мы её видим вокруг себя. Распредление водяного пара в протопланетном диске в данных ALMA. Facchini Существует несколько гипотез появления воды на Земле, а значит, и необходимого компонента для зарождения биологической жизни на нашей планете.
Вода могла появиться вместе с образованием планетарного тела, её могли занести на Землю астероиды и кометы, либо сработали оба источника. Пристальное изучение молодой звезды HL Тельца на удалении 450 световых лет от нас приоткрывает завесу тайны над происхождением воды на нашей и других планетах во Вселенной. Изучение относительно холодного протопланетного диска вокруг звезды возрастом около одного миллиарда лет и массой около 2,1 солнечных показало, что в пределах семи астрономических единиц присутствует достаточно много водяного пара, температура которого постепенно снижается по мере удаления от звезды. Расчёты и данные измерений на двух длинах волн показали, что в области протопланетного диска находится воды примерно в 3,7 раз больше, чем во всех земных океанах. Более того, водяной пар обнаружен также в зазоре между двумя широкими областями протопланетного диска между кольцами. Такие зазоры обычно образуют зародыши планет, сметающие всё на своём орбитальном пути или прибирающие к рукам в процессе формирования будущей планеты. Проделанная работа однозначно указывает, что вода изначально в избытке присутствует в протопланетном диске. Это не опция, а распространённое явление, что позволяет надеяться, что планет земного типа с появившейся там биологической жизнью во Вселенной всё же больше одной. Вся мощь «Уэбба» или «Хаббла» неспособна передать красоту космоса без данных в рентгеновском, радиочастотном и ультрафиолетовом диапазоне.
Поднимая уровень оптических и инфракрасных телескопов на уровень вверх, мы не должны забывать о создании более совершенных инструментов для других частот. Галактика Андромеда в ультрафиолетовом спектре по данным телескопа Swift. Источник изображения: NASA Как стало известно , NASA официально утвердило создание ультрафиолетового телескопа следующего поколения, который должен быть отправлен в космос на рубеже 30-х годов. Перед новым ультрафиолетовым телескопом будет стоять две задачи. Во-первых, он должен будет составить карту неба в ультрафиолетовом диапазоне. Во-вторых, телескоп получит возможность быстро менять ориентацию, чтобы получать изображения переходных процессов: взрывов сверхновых, слияния звёзд, джеты чёрных дыр и нейтронных звёзд и других энергетических явлений. Это станет ценнейшим дополнением к гравитационно-волновым наблюдениям неба, когда крайне сложно выявить источник гравитационной волны. При обзоре неба в ультрафиолете мы сможем увидеть самые горячие объекты в ней. Прежде всего, это молодые и старые звёзды, когда процессы в ядрах находятся на критических стадиях активности.
Также данные в ультрафиолетовом диапазоне позволят увидеть галактики с низким содержанием металлов и ряд других объектов. Телескоп будет рассчитан на два года научной работы. Главные детали миссии уже проработаны, как и есть технико-экономическое обоснование проекта. Через год-два должно стартовать производство аппарата и его научных приборов. Что появилось раньше? Мы видим, как массивные звёзды превращаются в чёрные дыры — это доказанный факт. Одновременно с этим мы замечаем в ранней Вселенной присутствие сверхмассивных чёрных дыр, которые просто не успели бы вырасти до регистрируемых масс. Источник изображения: The Astrophysical Journal Letters На днях в журнале The Astrophysical Journal Letters была опубликована работа , в которой группа учёных из Университета Джона Хопкинса в США и Университета Сорбонны во Франции собрала данные «Уэбба» по обнаруженным в ранней Вселенной чёрным дырам и представила больше доказательств в пользу гипотезы об одновременном рождении звёзд и чёрных дыр. Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой.
Учёные обратили внимание, что «Уэбб» обнаружил одну сверхмассивную чёрную дыру через 470 млн лет после Большого взрыва, а другую — через 400 млн лет. Масса последней была определена на уровне 1,6 млн солнечных. Она находилась в центре галактики, которая была легче, чем дыра в её сердцевине. Чёрная дыра подобной массы не могла вырасти до фиксируемого значения. Из того, что мы наблюдали, чёрные дыры возникали после коллапса умирающих звёзд массой свыше 50 солнечных. Ничего подобного в ранней Вселенной не могло произойти, чтобы проявился наблюдаемый там эффект — крошечная галактика, собранная вокруг СЧД. Исследователи делают вывод, что первичные чёрные дыры образовались одновременно с первыми звёздами или чуть раньше из облаков первичной материи. Центры облаков коллапсировали и возникшая в каждом из них чёрная дыра начинала испускать ветер, запускающий и ускоряющий процесс звездообразования. Фактически первичные чёрные дыры стали тем инструментом, который собрал и превратил галактики в те структуры, которые мы наблюдаем.
Как показало моделирование, иногда это может быть не так и планета на ранних стадиях зарождения вполне может оказаться достаточно плоской формы. Источник изображения: ИИ-генерация Кандинский 3.
Но если не произойдет, кот не пострадает. В чем парадокс? Всё просто — по квантовым правилам кот может находиться в одновременно исключающих друг друга состояниях — живом и мертвом, но только до того момента, пока за ним никто не наблюдает.
Продавец не несет ответственности за сведения, предоставленные Клиентом на Сайте в общедоступной форме. Продавец при обработке персональных данных принимает необходимые и достаточные организационные и технические меры для защиты персональных данных от неправомерного доступа к ним, а также от иных неправомерных действий в отношении персональных данных. Хранение и использование информации Клиентом Клиент обязуется не сообщать третьим лицам логин и пароль, используемые им для идентификации в интернет-магазине «Альпина Диджитал» Клиент обязуется обеспечить должную осмотрительность при хранении и использовании логина и пароля в том числе, но не ограничиваясь: использовать лицензионные антивирусные программы, использовать сложные буквенно-цифровые сочетания при создании пароля, не предоставлять в распоряжение третьих лиц компьютер или иное оборудование с введенными на нем логином и паролем Клиента и т. В случае возникновения у Продавца подозрений относительно использования учетной записи Клиента третьим лицом или вредоносным программным обеспечением Продавец вправе в одностороннем порядке изменить пароль Клиента. Обратная связь.
Теория Большого Взрыва
- Новая теория: Вселенная могла начаться с темного Большого взрыва
- Содержание
- Хокинг, математика и струны: три ключевых теории о параллельных мирах
- Астрономы оказались на пороге открытия неразгаданных тайн Вселенной: «Огромная новость» - МК
- Создание М-теории
Как наш разум связан со Вселенной и какие возможности открывает квантовая психология?
Происхождение Вселенной. Какие новые версии предлагает наука и религия? | Капитал страны | Молодой астроном Эдвин Хаббл навсегда изменил представление о Вселенной. |
Об устройстве Вселенной – простыми словами. Поймет даже ребенок | Приверженцов первой теории было намного больше, нежели второй, утверждающей, что всего во Вселенной 11 измерений. |