Новости фрактал в природе

Посмотрите больше идей на темы «фракталы, природа, закономерности в природе».

Фракталы – Красота Повтора

дробленый) - термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком. Природа зачастую. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам. Фракталы — это математические модели, которые появляются снова и снова, повторяясь в разных размерах. Анимация фракталов, изменение фракталов в пространстве, медитация, фрактальная графика. Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек. В данном разделе вы найдете много статей и новостей по теме «фрактал». Все статьи перед публикацией проверяются, а новости публикуются только на основе статей из рецензируемых журналов.

Фракталы: что это такое и какие они бывают

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и т. Именно с их помощью современная кинемотография стала столь красочной и приблизилась к естественно-природному изображению. Фракталы нашли свое применение в медицине, поскольку после многократных исследований было замечено, что у здорового человека линии электрокардиограммы сердца и головного мозга представляют собой правильную фрактальную фигуру, а у больного - неправильную, заметную лишь при многократном увеличении. В ходе работы было: - проанализировано построение фрактальных фигур различных типов; - исследовано, что данные способы отличаются простотой практического применения в любой программной среде; - выявлено огромное практическое применение фракталов в современном мире. Данная работа может быть использована учащимися начальных курсов для самостоятельного изучения фракталов, компьютерной графики. Современные исследователи должны не только овладевать материалом даваемых им программ, но и расширять свой кругозор, а главное - находить практическое применение своим навыкам и умениям.

Вы всегда можете отключить рекламу.

Является самоподобным или приближённо самоподобным. Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую. Многие объекты в природе обладают свойствами фрактала, например: побережья, облака, кроны деревьев, снежинки, система кровообращения, альвеолы. Слайд 4 Описание слайда: Природные объекты, обладающие фрактальными свойствами Природные объекты отличаются от идеальных абстрактных фракталов неполнотой и неточностью повторений структуры. Большинство встречающихся в природе фракталоподобных структур границы облаков, линия берега, деревья, листья растений, кораллы, … являются квазифракталами, поскольку на некотором малом масштабе фрактальная структура исчезает.

Построение триадной кривой Коха Для получения другого фрактального объекта рис.

Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. Предельная фрактальная кривая при n стремящемся к бесконечности называется драконом Хартера-Хейтуэя. Построение "дракона" Хартера-Хейтуэя Для построения треугольника Серпинского начальный элемент — треугольник со всеми внутренними точками. Образующий элемент исключает из него центральный треугольник.

Фрактальное множество получается в пределе при бесконечно большом числе. Построение треугольника Серпинского Представленные примеры геометрических фракталов не являются единственными, существует огромное количество других, еще более сложных и интересных фракталов. Геометрические фракталы имеют огромное практическое значение. Применяя их в компьютерной графике, ученые научились получать сложные объекты, похожие на природные: изображения снежинок, горных вершин, искусственных облаков, деревьев, кустов, веток, береговой линии и так далее. Двухмерные геометрические фракталы используются для создания объемных текстур. Алгебраические фракталы Эти фракталы могут быть описаны с помощью алгебраических уравнений или рекурсивных формул. Эти уравнения и формулы определяют правила, по которым точки или фигуры повторяются и изменяются на каждой итерации.

Алгебраические фракталы могут иметь сложную и красивую геометрию, которая может быть воспроизведена и визуализирована с помощью компьютерной графики. Они могут быть двухмерными или трехмерными, и их формы могут быть симметричными или случайными. Алгебраические фракталы имеют множество применений в различных областях, включая компьютерную графику, науку, искусство и дизайн. Они могут быть использованы для создания красивых и сложных изображений, моделирования природных явлений, анализа данных и многого другого. Почему мнимой? Комплексные числа можно складывать, вычитать, умножать, делить, возводить в степень и извлекать корень, нельзя только их сравнивать. Комплексное число можно изобразить как точку на плоскости, у которой координата х - это действительная часть a, а y - это коэффициент при мнимой части b.

Расчет данной функции продолжается до выполнения определенного условия. И когда это условие выполнится - на экран выводится точка определенного цвета. Результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются, хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях.

Фракталы популярны благодаря сочетанию красоты с простотой построения при помощи компьютера. Фрактальное изображение - это объемный, завораживающий взгляд взрыв цветов, красок и линий. В интерьере постер-фрактал лучше поместить на самое видное место. Он может являться абсолютной доминатой благодаря своей насыщенной деталями графике.

Онлайн-курсы

  • Фрактал. 5 вопросов
  • Удивительный мир фракталов
  • Фракталы. Чудеса природы. Поиски новых размерностей
  • Фракталы состоят из множества форм и узоров

Фракталы и их дизайн — неопознанные элементы науки

  • Фракталы в природе. Мир вокруг нас. Ч.2 - Vya4esLove — КОНТ
  • Созерцание великого фрактального подобия
  • ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ
  • Историческое развитие фрактального фермента
  • Фракталы в природе и созданные человеком | RATBAG - Дизайн

Статьи по теме

  • Последнее обновление
  • Фракталы в природе
  • Фракталы состоят из множества форм и узоров
  • Фракталы – Красота Повтора
  • Фракталы в природе - презентация онлайн

Бесконечность фракталов. Как устроен мир вокруг нас

В радиотехнике были созданы многодиапазонные и широкополосные фрактальные антенны, которые значительно меньше обычных. Это облегчает работу мобильных сетей, а также применяется при создании новых сотовых телефонов. Британский математик Майкл Барнсли разработал алгоритм создания любой фрактальной формы на основе ее отображения. Это позволило сжимать изображения, тысячи их упаковывать и хранить на компактных дисках.

Фрактальные технологии дали возможность децентрализовать сети интернета, что делает их работу максимально устойчивой. Фрактальные формы в природе Где встречаются фракталы в природе? Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе.

Это — деревья, реки, горы, растения, системы живых организмов и структуры Вселенной. В живой природе каждому известны проявления фракталов: Кроны деревьев разветвляются на все более мелкие и тонкие ветви. Похожи на них сети жилок листьев.

Последнее изменение: 2024-02-27 08:19 Бразильское растение араукария показывает фракталы в природе Когда вы думаете о фракталах, вы можете думать о плакатах и футболках Grateful Dead, пульсирующих всеми цветами радуги и закрученными сходствами. Фракталы, впервые названные математиком Бенуа Мандельбротом в 1975 году, представляют собой специальные математические наборы чисел, которые демонстрируют сходство во всем диапазоне масштабов, то есть они выглядят одинаково независимо от того, насколько они велики или малы. Еще одна характеристика фракталов заключается в том, что они демонстрируют большую сложность, обусловленную простотой - некоторые из самых сложных и красивых фракталов можно создать с помощью уравнения, состоящего всего из нескольких членов. Подробнее об этом позже.

Движение динамической системы можно наглядно изобразить траекторией на фазовой плоскости, где оси X и Y - обобщенные координата и импульс частицы. Примеры систем с хаосом. Панас и С. Старков проводят эксперимент по скоростной прямохаотической передаче данных в СВЧ-диапазоне вверху. Так выглядят хаотические СВЧ-колебания, позволяющие увеличить скорость передачи информации в десятки раз по сравнению с традиционными системами.

Фракталы вокруг нас повсюду, и в очертаниях гор, и в извилистой линии морского берега. Некоторые из фракталов непрерывно меняются, подобно движущимся облакам или мерцающему пламени, в то время как другие, подобно деревьям или нашим сосудистым системам, сохраняют структуру, приобретенную в процессе эволюции. Пайген и П. Геометрия, которую мы изучали в школе и которой пользуемся в повседневной жизни, восходит к Эвклиду примерно 300 лет до нашей эры. Треугольники, квадраты, круги, параллелограммы, параллелепипеды, пирамиды, шары, призмы - типичные объекты, рассматриваемые классической геометрией. Предметы, созданные руками человека, обычно включают эти фигуры или их фрагменты. Однако в природе они встречаются не так уж часто. Действительно, похожи ли, например, лесные красавицы ели на какой-либо из перечисленных предметов или их комбинацию? Легко заметить, что в отличие от форм Эвклида природные объекты не обладают гладкостью, их края изломаны, зазубрены, поверхности шероховаты, изъедены трещинами, ходами и отверстиями.

Одна из причин заключается в ее неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сферы, горы - не конусы, линии берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности", - этими словами начинается "Фрактальная геометрия природы", написанная Бенуа Мандельбротом. Именно он в 1975 году впервые ввел понятие фрактала - от латинского слова fractus, сломанный камень, расколотый и нерегулярный. Оказывается, почти все природные образования имеют фрактальную структуру. Что это значит? Если посмотреть на фрактальный объект в целом, затем на его часть в увеличенном масштабе, потом на часть этой части и т. Фракталы самоподобны - их форма воспроизводится на различных масштабах. Открытие фракталов произвело революцию не только в геометрии, но и в физике, химии, биологии.

Фрактальные алгоритмы нашли применение и в информационных технологиях, например, для синтеза трехмерных компьютерных изображений природных ландшафтов, для сжатия компрессии данных см. Далее мы убедимся, что понятие фрактала тесно связано с еще одним не менее любопытным явлением - хаосом в динамических системах. Детерминированность и хаос ХАОС греч. В переносном смысле - беспорядок, неразбериха. Энциклопедия Кирилла и Мефодия Когда говорят о детерминированности некой системы, имеют в виду, что ее поведение характеризуется однозначной причинно-следственной связью. То есть, зная начальные условия и закон движения системы, можно точно предсказать ее будущее. Именно такое представление о движении во Вселенной характерно для классической, ньютоновской динамики. Хаос же, напротив, подразумевает беспорядочный, случайный процесс, когда ход событий нельзя ни предсказать, ни воспроизвести. Что же представляет собой детермини рованный хаос - казалось бы, невозможное объединение двух противоположных понятий?

Начнем с простого опыта. Шарик, подвешенный на нитке, отклоняют от вертикали и отпускают. Возникают колебания. Если шарик отклонили немного, то его движение описывается линейными уравнениями. Если отклонение сделать достаточно большим - уравнения будут уже нелинейными. Что при этом изменится? В первом случае частота колебаний и, соответственно, период не зависит от степени начального отклонения. Во втором - такая зависимость имеет место. Полный аналог механического маятника как колебательной системы - колебательный контур, или "электрический маятник".

В простейшем случае он состоит из катушки индуктивности, конденсатора емкости и резистора сопротивления. Если все три указанных элемента линейны, то колебания в контуре эквивалентны колебаниям линейного маятника. Но если, к примеру, емкость нелинейна, период колебаний будет зависеть от их амплитуды. Динамика колебательного контура определяется двумя переменными, например током в контуре и напряжением на емкости. Если откладывать эти величины вдоль осей Х и Y, то каждому состоянию системы будет соответствовать определенная точка на полученной координатной плоскости. Такую плоскость называют фазовой. Соответственно, если динамическая система определяется n переменными, то вместо двумерной фазовой плоскости ей можно поставить в соответствие n-мерное фазовое пространство. Теперь начнем воздействовать на наши маятники внешним периодическим сигналом. Реакция линейной и нелинейной систем будет различной.

В первом случае постепенно установятся регулярные периодические колебания с той же частотой, что и частота вынуждающего сигнала. На фазовой плоскости такому движению соответствует замкнутая кривая, называемая аттрактором от английского глагола to attract - притягивать , - множество траекторий, характеризующих установившийся процесс. В случае нелинейного маятника могут возникнуть сложные, непериодические колебания, когда траектория на фазовой плоскости не замкнется за сколь угодно долгое время. При этом поведение детерминирован ной системы будет внешне напоминать совершенно случайный процесс - это и есть явление динамического, или детерминированного, хаоса. Образ хаоса в фазовом пространстве - хаотический аттрактор - имеет очень сложную структуру: это фрактал. В силу необычности свойств его называют также странным аттрактором. Почему же система, развивающаяся по вполне определенным законам, ведет себя хаотически? Влияние посторонних источников шума, а также квантовая вероятность в данном случае ни при чем. Хаос порождается собственной динамикой нелинейной системы - ее свойством экспоненциально быстро разводить сколь угодно близкие траектории.

В результате форма траекторий очень сильно зависит от начальных условий. Поясним, что это значит, на примере нелинейного колебательного контура, находящегося под воздействием внешнего периодического сигнала. Внесем в нашу систему небольшое возмущение - изменим немного начальный заряд конденсатора. Тогда колебания в возмущенном и невозмущенном контурах, первоначально практически синхронные, очень скоро станут совершенно разными. Поскольку в реальном физическом эксперименте задать начальные условия можно лишь с конечной точностью, предсказать поведение хаотических систем на длительное время невозможно. Предсказание будущего - Из-за такой малости! Из-за бабочки! Она упала на пол - изящное маленькое создание, способное нарушить равновесие, повалились маленькие костяшки домино... И грянул гром Насколько упорядочена наша жизнь?

Предопределены ли в ней те или иные события? Что предсказуемо на многие годы вперед, а что не подлежит сколько-нибудь надежному прогнозированию даже на небольшие интервалы времени? Человеку постоянно приходится сталкиваться как с упорядоченными, так и с неупорядоченными процессами, порождаемыми различными динамическими системами. Мы знаем, что Солнце встает и заходит каждые 24 часа, и так будет продолжаться в течение всей нашей жизни. Вслед за зимой всегда наступает весна, и вряд ли когда-нибудь будет наоборот. Более или менее регулярно функционируют коммунальные службы, снабжающие нас светом и теплом, учреждения и магазины, а также транспортные системы автобусы, троллейбусы, метро, самолеты, поезда. Нарушения ритмичной работы этих систем вызывают законное возмущение и негодование граждан. Если сбои возникают неоднократно - говорят о хаосе, выражая отрицательное отношение к подобным явлениям. Но в то же время существуют процессы, хорошо известные своей непредсказуемость ю.

Например, подбрасывая монету, мы никогда точно не знаем, что выпадет - "орел" или "решка".

Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее, даже в хаосе можно найти связь между событиями. И эта связь — фрактал. Сегодня вряд ли можно найти человека, занимающегося или интересующегося наукой, который не слышал бы о фракталах. Глядя на них трудно поверить, что это не творения природы и за ними скрываются математические формулы. Фракталы поразительно напоминают объекты живой и неживой природы вокруг нас. Словом они "как настоящие". Скорее всего, именно поэтому, однажды увидев, человек уже не может их забыть.

Любопытную мысль приводит в своей книге "Фрактальная геометрия природы" американский математик Бенуа Мандельброт: "Почему геометрию часто называют холодной и сухой? Одна из причин заключается в том, что она неспособна достаточно точно описать форму облака, горы, дерева или берега моря. Облака — это не сферы, линии берега — это не окружности, и кора не является гладкой, а молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные — задачи исследования морфологии аморфного. Математики, однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать". Все, что существует в реальном мире, является фракталом — это и есть наша гипотеза, а цель данной работы показать, что математика не бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом. Объектом исследования выступают фракталы в математике и в реальном мире.

В процессе работы нами были выделены следующие задачи исследования: Проанализировать и проработать литературу по теме исследования. Рассмотреть и изучить различные виды фракталов. Дать представление о фракталах, встречающихся в нашей жизни. Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия. Структура исследовательской работы определялась логикой исследования и поставленными задачами. Она включает в себя введение, две главы, заключение, список использованной литературы, приложения. История появления понятия «фрактал» Первые идеи фрактальной геометрии возникли в 19 веке.

Фракталы в природе

Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Фракталы существуют не только в макро мире, но и на поверхности Земли.

ГЕОМЕТРИЯ ПРИРОДЫ. ФРАКТАЛЫ.

Другими словами, просто переключив внимание с негатива на мысли о выздоровлении, человек изменяет настройки своего организма. Состояние духа больного, его доверие или недоверие врачу, глубина его веры и надежды на исцеление или, наоборот, психическая депрессия, вызванная неосторожными разговорами врачей в присутствии больного о серьезности его болезни, глубоко определяют исход болезни. Психотерапия, состоящая в словесном, вернее, духовном воздействии врача на больного — общепризнанный, часто дающий прекрасные результаты метод лечения многих болезней». Новых Заключение Становится очевидным, что фрактальность присуща всей живой и неживой природе, в том числе и телу человеку, как части материального мира. То есть весь мир материи подчинён единым законам. По ним он живёт, развивается, преобразуется. Это как прописанная программа. Например, Молекула ДНК или РНК у вирусов несёт в себе код — программу, согласно которой происходит развитие и функционирование живого организма. Одна маленькая молекула задаёт сложное многообразие форм и жизнедеятельности!

При этом одна лишь клетка, по свойству голограммы, содержит информацию обо всём организме в целом. Из этого можно сделать вывод, что всё функционирует как единая программа. А наличие программы предполагает наличие программиста, то есть того, кто её прописал. И ни одно материальное существо или объект не может выйти за рамки этой системы или матрицы. Человек выгодно отличается от всего животного мира тем, что в нём есть духовная составляющая: Душа и Личность. Ещё совсем недавно, говоря «человек» подразумевалось лишь физическое тело. Теперь многие учёные соглашаются, что человек — это гораздо более сложная система. Просто поместить человека в таблицу биологических видов было недостаточно, так как этим ограничивается процесс самопознания.

Исконные знания позволяют говорить о человеке, как о духовном существе. Познание духовной природы открывает прекрасные возможности для каждого человека и для общества в целом. Ведь когда человек не знает о своей двойственной природе и возможности выбора между двумя этими началами, то им очень легко становится управлять. С рождения мозг человека настроен на волну животного начала и следовательно человек в своей жизни руководствуется инстинктами.

По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. Фракталы встречаются всюду: в продуктах питания, в бактериях,в растениях, в животных, в горах, в небе и в воде.

Посмотрите потрясающие примеры фракталов в природе.

До сих пор ученые не встречали подобные формы, которые сохраняли бы свое самоподобие в больших масштабах. Исследователи получили изображение белковой молекулы с помощью электронного микроскопа. По мере своего роста фрактал образует внутри себя треугольные пустоты, что не похоже ни на одну белковую сборку, известную ученым. Это происходит за счет того, что различные белковые цепи в разных положениях осуществляют несколько разные взаимодействия с другими цепями.

В 1917 году Дарси Томпсон 1860—1948 опубликовал свою книгу «О росте и форме». Его описание взаимосвязи филлотаксиса расположения листьев на стебле растения и чисел Фибоначчи математическое отношение закономерностей спирального роста в растениях стало классическим. Он показал, что простые уравнения могут описать все с виду сложные закономерности спирального роста рогов животных и раковин моллюсков. Тюринг, Плато, Геккель, Цейзинг — знаменитые деятели искусства и науки — искали строгие законы математики и находили ее в красоте природы. Спираль Фибоначчи — геометрическая прогрессия красоты Спирали распространены среди растений и некоторых животных, особенно среди моллюсков. Например, у моллюсков-наутилид каждая ячейка их раковины — примерная копия следующей, масштабированная константой и выложенная в логарифмическую спираль. Чаще всего в природе встречается последовательность Фибоначчи. Она начинается с чисел 1 и 1, а затем каждое последующее число получается путем сложения двух предыдущих чисел. Спирали в растениях наблюдаются в расположении листьев на стебле, а также в структуре бутона и семян цветка — например, у подсолнуха или структуры плода ананаса и салака. Последовательность Фибоначчи можно заметить и у сосновой шишки, где огромное количество спиралей расположено по часовой и против часовой стрелки. Эти механизмы объясняются по-разному — математикой, физикой, химией, биологией. Каждое из объяснений верно само по себе, но необходимо учитывать их все. С точки зрения физики, спирали — конфигураций низких энергий, которые возникают спонтанно путем самоорганизации процессов в динамических системах. С точки зрения химии, спираль может быть образована реакционно-диффузионным процессом с привлечением как активации, так и ингибирования. Филлотаксис контролируется протеинами, которые управляют концентрацией растительного гормона ауксина, который активирует рост среднего стебля наряду с другими механизмами контроля относительного угла расположения бутона к стеблю. С точки зрения биологии листья расположены настолько далеко друг от друга, насколько позволяет естественный отбор, так как он максимизирует доступ к ресурсам, особенно к солнечному свету, для фотосинтеза. Фракталы — бесконечное почти повторение Фракталы — еще одна интересная математическая форма, которую каждый видели в природе.

Исследовательская работа: «Фракталы в нашей жизни».

Потоцкий «Рукопись, найденная в Сарагоссе» предисловия, скрывающие авторство У. Эко «Имя розы» Т. Стоппард «Розенкранц и Гильденстерн мертвы» сцена с представлением перед королём. В семантических и нарративных фракталах автор рассказывает о бесконечном подобии части целому: Х.

Мне, например, известны целых три такие «изобретения» в России за полтора десятка лет в середине XX в.

Главная причина более чем вековой невостребованности данного обобщения обычна и естественна: отсутствие в природе, как казалось, объектов, систем, процессов, которые требовали бы для своего понимания и описания операции дифференцирования интегрирования произвольного нецелого порядка кратности , например: f n х , где n — произвольно. Стоит отметить и еще один момент. С эпохи Лейбница и до наших дней для указанного обобщения аппарата математического анализа не было предложено ни удачной символики, ни яркого и компактного термина. В наше время, после открытия фрактальности Вселенной, для соответствующего математического аппарата прямо-таки напрашивается и представляется неизбежным термин «фрактальное исчисление».

Он лаконичен, емок, логичен, историчен и физичен. Мне кажется разумным остановиться именно на нем для наименования обобщения дифференциального и интегрального исчисления на дробные включая комплексные порядки производной и кратности интеграла. В отличие от уже традиционного физического термина «фрактал», соответствующий математический оператор мог бы именоваться, скажем, «фракталл». Для обозначения же фракталла порядка n от функции f z , я рискнул предложить в [ 12 ] новый символ, сочетающий стилизованные элементы знаков и интеграла, и дифференциала: Можно предвидеть, что после осознания фрактальности Вселенной и следующей отсюда вариации картины мира, с выходом «фрактального исчисления» из незаслуженного полузабвения — актуальным окажется и требуемое обобщение дифференциальных и интегральных уравнений 13.

Могут быть введены не только «фрактальные уравнения», отличающиеся от дифференциальных и интегральных «лишь» дробностью порядка. Прецеденты этого уже имеются Висе, 1986; Метцлер и др. Фрактальные уравнения могут включать и такие, где, скажем, неизвестной искомой функцией является сам переменный порядок этого уравнения. Предлагаются и такие обобщения, как введение зависимости п от координат и др.

Видимо, концепция фракталов может быть связана с выдвинутой в начале 60-х гг. Гротендиком теорией топосов — пространств с топологией, меняющейся от точки к точке — и со временем?! Не приходится опасаться того, что «фрактальный анализ» и «фрактальные уравнения» останутся невостребованными. Не думаю, чтобы в наше время кто-нибудь повторил ошибку знаменитого астронома и физика Дж.

Джинса, утверждавшего, что есть творения математиков, которые никогда не пригодятся за пределами математики. В качестве очевидного примера он приводил теорию групп, на которую ныне завязана, как утверждают специалисты, добрая половина физики! Напротив, история науки многократно подтверждала правоту замечательного математика Ш. Эрмита: «Я убежден, что самым абстрактным спекуляциям Анализа соответствуют реальные соотношения, существующие вне нас, которые когда-нибудь достигнут нашего сознания».

Чуть-чуть фрактальной математики «Главная задача математики наших дней состоит в достижении гармонии между континуальным и дискретным, включении их в единое математическое целое» Ф. Та же задача, видимо, стоит и перед физикой. И построение исчисления, включившего дискретные целые действительные значения фрактального оператора как частный случай, открывает реальные перспективы серьезного продвижения в решении указанной фундаментальной математической — физической — общенаучной — философской проблемы. Как потом оказалось, выражение это с точностью до тождественных преобразований совпало с оператором, найденным за 96 лет до этого Тарди; а через четыре года после меня эквивалентное повторение результата Тарди было опубликовано А.

Светлановым [ 11 ]. Опуская для простоты некоторую «дополнительную функцию», аналог произвольной аддитивной постоянной неопределенного интеграла, имеем: 1 Или максимально компактно: 1а где Г — гамма-функция Эйлера. Вывод оператора занимал у меня полторы страницы и опирался на пару довольно рискованных шагов. Но результат оказался верен.

Как всегда при принципиальном шаге к новой картине мира, на пути встают исторически необходимые! В данном случае возражение их радикально. Начиная с аккуратного сомнения, скептик в данном случае весьма проницательный теоретик заключает: «Фракталы не являются реально существующими объектами» [ 14 ],с. Реальные системы не являются фракталами в точном смысле этого термина, они могут быть только фракталоподобными».

Отсюда и делается приведенный выше, вроде бы убийственный для фракталов вывод. Однако, «в конечном счете ничто так не помогает победе истины, как сопротивление ей» У. Ведь вывод нашего критика напоминает, что по сути ни один объект теоретической науки, ни одна математическая модель природного объекта, процесса и т. Но в том трагедии нет.

Ведь в действительности теоретические «точные науки» называются так. Исторический опыт науки показывает, что внутренне непротиворечивые модели все более адекватно представляют свойства наблюдаемых объектов, что в целом растет предсказательная сила науки. Так и с фракталами. Да, «реальные системы не являются фракталами в точном [математическом] смысле этого термина, они могут быть только фракталоподобными».

Аналогично реальная материя не является «строго континуальной», а лишь «континуально-подобной» в определенных пределах, на нескольких маршах бесконечной лестницы масштабов, или «дискретно-подобной» на других ее участках. Для приближенного описания ряда свойств и закономерностей существующих систем достаточно того, что они в каких-то конечных интервалах масштабов удовлетворительно представляются идеальной моделью фрактальной системы. В этом и состоит соотношение любых теоретических моделей с реальностью. В этом — единственно возможном и обычном во всей науке!

Фрактальная Вселенная и А. Вот как об этом пишет, например, Е. Фейнберг в очерке «Контуры биографии»: «Здесь [на военном заводе в Ульяновске] началась его творческая работа [- выполнены] четыре работы по теоретической физике. Из очерка А.

Яглома «Товарищ школьных лет»: «Д. Сахаров, отец Андрея, по приезде сына в Москву передал какую-то его научную рукопись Тамму через математика А. Лопшица, давнего знакомого Игоря Евгеньевича». А в письме сотрудников отдела теоретической физики им.

На оборонном заводе 1942 — начало 1945 г. Случилось так, что я имею информацию об одной из этих работ, непосредственно от И. В начале зимы 1959—1960 г. В заключение беседы, уже провожая меня, И.

На этом мы и распрощались. Пока остается неизвестным, какой именно путь молодой Андрей Сахаров нашел для построения того, что мы в эпоху фракталов вправе назвать фрактальным исчислением. Но то, что Сахаров не только интересовался этим вопросом почти забытым тогда в математике и ставшим актуальным в физике лишь через 30 лет , но и решил его — судя по словам И. Тамма, непреложный факт.

О влиянии природных фракталов пишут авторы сайта Mindfule Ecotourism , посвященного экотуризму. Они утверждают, что самоподобные ветвящиеся шаблоны, на которые мы смотрим, повторяют строение нашего мозга, легких, сосудистой системы, позвоночника, нервной системы. В этом подобии и созвучии кроется секрет такого сильного влияния природы на человека. Разум человека привлекает симметрия, которая позволяет мозгу перестать анализировать все вокруг и просто наслаждаться окружающими закономерностями, проявляющимися в строении деревьев, растений, цветов, гор. Созерцание природных фракталов приносит огромную пользу психическому здоровью людей. Повторяющиеся узоры расслабляют нервную систему, значительно снижают уровень стресса. Этот процесс в организме запускается физиологическим резонансом, потому что зрительная система совпадает со структурой фрактальных изображений. Фракталы существовали всегда, и люди ощущали их влияние.

Но лишь недавно они были открыты наукой и применяются в исследованиях и технологиях.

Пожалуй, это самый «виртуозный» вид фракталов. Причём это не фракталы в чистом виде: авторы заимствуют понятия и концепты: отсюда название. Концептуальный фрактал и вовсе может состоять из нескольких видов. Фракталы в природе После того, как в 1975 году Мандельброт опубликовал свою основополагающую работу о фракталах, одно из первых практических применений появилось в 1978 году, когда Лорен Карпентер захотел создать несколько сгенерированных компьютером гор.

Используя фракталы, которые начинались с треугольников, он создал удивительно реалистичный горный хребет. В 1990-х годах Натан Коэн, вдохновленный снежинкой Коха, создал более компактную радиоантенну, используя только проволоку и плоскогубцы. Сегодня антенны в сотовых телефонах используют такие фракталы, как губка Менгера, фрактал Вичека и фракталы, заполняющие пространство, как способ максимизировать мощность восприятия при минимальном объеме пространства. Примеры фракталов в природе Капуста сорта «романеско» Романеско она же романская брокколи — итальянский сорт капусты. Внешний вид этого растения напоминает природный фрактал: каждый бутон вбирает в себя бутоны поменьше. А они, в свою очередь, тоже принимают облик логарифмической спирали.

Это «повторение за самим собой» воспроизводится несколько раз. По понятным причинам этот природный фрактал прекращается на более мелких уровнях: иначе цены бы не было этой «бесконечной капусте». Так выглядит природный фрактал — капуста сорта романеско: только посмотрите на её причудливую форму! Поэтому королевская бегония пользуется популярностью благодаря своим листьям. Они тоже имеют структуру фрактала. Иногда листья образуют спирали — поэтому это необычное растение привлекает взгляд.

Главное — не дать бегонии себя загипнотизировать! Природный фрактал может даже жить у вас на подоконнике: например, комнатная королевская бегония — отличный вариант nashzelenyimir. Да, здесь нет ничего самоподобного. Но если разрезать кочан напополам, вы увидите удивительный узор-спираль. Не один вид капусты стремится к такой математической форме — может, эти растения сговорились и планируют фрактальный захват мира? Красная капуста в разрезе тоже напоминает фрактальное подобие floweryvale.

Все мы знаем, как выглядит часть этого растения — треугольник, состоящий из листьев они называются вайи , которые в свою очередь тоже образуют треугольник, подобный самому большому. Существуют даже математические фракталы в виде папоротника.

Фракталы в природе (53 фото)

Фракталы в природе презентация - 97 фото Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы».
Фрактал — Википедия неупо-рядоченные системы, для которых самоподобие выполняется только в среднем.

14 Удивительные фракталы, обнаруженные в природе

Фракталы кажутся нам слишком совершенными, чтобы существовать в реальности, но они не так уж редко встречаются в природе, в частности реализуя себя в виде растений. Роль её печени играют камни и песок, через который фильтруются макро загрязнения, и круговорот воды в природе, который отделяет молекулы воды от микро мусора. Анимация фракталов, изменение фракталов в пространстве, медитация, фрактальная графика.

Похожие новости:

Оцените статью
Добавить комментарий