Новости атомная батарейка

Два года назад учёные Национального исследовательского технологического университета «МИСиС» представили компактную атомную батарейку. Этим они отличаются от атомных реакторов, в которых для этого используется управляемая цепная ядерная реакция. Атомные батарейки, то есть источники электрического тока, получающие энергию от распада радиоактивных веществ.

«Это совершенно безопасно» — в Китае создали ядерную батарейку размером меньше монеты

Российские ученые создали атомную батарейку энергия которой выше в 10 раз по сравнению с предшествинниками. Главная/Новости/Китай представил ядерную батарейку размером с монету, которой хватит на 50 лет. Такие батареи могут стоить $100 за кВт·ч, что вдвое дешевле самых простых литий-ионных версий. Атомные батарейки, то есть источники электрического тока, получающие энергию от распада радиоактивных веществ. В итоге атомная батарейка способна проработать не менее 50 лет. По их заверениям, энергоэффективность атомных батареек настолько высока, что их можно ставить в пару с литиевыми аккумуляторами.

Ядерная батарейка: в России создали источник питания, работающий 50 лет

Betavolt планирует выпустить версию ядерной батарейки на 1 ватт к 2025 году. Атомная батарейка, также известная как радиоизотопный генератор тепла (РИГТ), является источником энергии, который использует процесс распада радиоактивных изотопов для. В России создали прототип атомной батареи, которая может работать без подзарядки 80 лет. Атомную батарейку, которая эффективно сможет работать десятки лет, продлевая работоспособность космических и глубоководных приборов, создали ученые НИТУ «МИСиС». Рассчитана на 50 лет работы без подзарядки – Самые лучшие и интересные новости по теме: Батарейка, Китай, Ядерный реактор на развлекательном портале

«Это совершенно безопасно» — в Китае создали ядерную батарейку размером меньше монеты

Источником энергии для уникальных батареек послужил изотоп никеля-63. Сообщается, что излучение данного элемента не представляет опасности для живых организмов, его период полураспада длится приблизительно сто лет. Этой энергии должно хватить для автономного питания кардиостимулятора в течение многих лет.

Результаты исследования были опубликованы в международном научном журнале Applied Radiation and Isotopes. Батарейку можно применять в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах, а также в труднодоступных или абсолютно не доступных местах: в космосе, под водой, в высокогорных районах.

Не помню, в какой-то стране, может даже в сша, безвизовый въезд для учёных и инженеров, жизнь в шоколаде, разные плюшки там, бонусы, типа сбор всех лучших мозгов к себе в страну. Может чутка переврал и преувеличил, но где-то такое слышал давно.

За основу разработки специалисты взяли технологию MEMS microelectromechanical systems, микроэлектромеханические системы. В качестве элемента питания — радиоактивный изотоп. В итоге атомная батарейка способна проработать не менее 50 лет. А теперь более подробно.

В элементе питания под тонким слоем изотопа никель-63 период полураспада превышает 100 лет расположен крошечный кантилевер рычаг. В процессе распада электроны заряжают его и создают разность потенциалов между пленкой и рычагом. Таким образом, кантилевер притягивается к пленке и, касаясь ее, разряжается, тем самым возвращаясь в исходное положение. В конструкции атомной батарейки использовался кварцевый рычаг, механическое движение которого и преобразовалось в электроэнергию. Самое интересное, что в 2013 году в продажу поступил атомный аккумулятор NanoTritium от компании City Labs, который, по заверениям производителей, способен обеспечить работу электронного устройства сроком до 20 лет. Как нетрудно догадаться, в его основе используется тяжелый изотоп водорода — тритий. В природе он получается в высоких слоях атмосферы под воздействием радиации.

Тритий научились получать и искусственно. Только стоит учесть, что килограмм этого элемента стоит несколько десятков миллионов долларов. Излучение, вызванное распадом этого элемента, считается безопасным для человека.

Российская армия получит портативные атомные источники электропитания военной техники

С учётом улучшенных характеристик российская атомная батарейка сможет занять существенную долю этого рынка, уверены исследователи. Физики оптимизировали толщину слоев ядерной батарейки, использующей для производства электрической энергии бета-распад изотопа никеля-63. 28 тысяч лет без подзарядки: как устроена батарейка на ядерном топливе и насколько она безопасна? В Китае создали компактную ядерную батарею, которая может проработать 50 лет.

Ядрена батарейка

Это позволило сделать технологию изготовления элемента более простой. При этом появилась возможность контроля обратного тока, существенно влияющего на общую мощность батареи. Так же увеличена в 14 раз эффективная площадь преобразования бета-излучения, что увеличило общий выходной ток. Эксперты отмечают уникальность, инновационность и перспективность российской разработки. Она может найти массу применений в самых разных сферах.

Но получить источник энергии, который будет работать без подзарядки десятки лет, пытаются во многих лабораториях мира. Недавно учёные химического факультета МГУ им. Ломоносова совместно с РХТУ им. Менделеева создали батарейку, работающую на энергии, которая выделяется при бета-распаде изотопа никеля. Делаем электричество из изотопов Вспоминаем школьный курс химии и физики. Слово "изотоп" означает, что мы имеем дело с химическим элементом, который занимает ту же клеточку в таблице Менделеева, но имеет другую массу ядра.

Разницу в массе обеспечивают "лишние" или "недостающие" нейтроны. Например, кроме обычного водорода с одним протоном 1H существует его более тяжёлый изотоп - дейтерий 2H , у которого в ядре протон и нейтрон. Есть ещё и тритий с одним протоном и двумя нейтронами 3H. Если химических элементов в таблице Менделеева больше сотни, то изотопов - свыше трёх тысяч. Большинство из них нестабильны: одни распадаются миллиарды лет, другие - за доли секунды. При распаде выделяется энергия, которую можно использовать себе во благо. Самый очевидный пример - атомные электростанции, в которых тепло от распада урана-237 превращается в электроэнергию. Такой источник энергии не обязательно должен быть громадным, как АЭС. Например, на космических аппаратах "Пионер" и "Вояджер" установлены вполне компактные энергетические установки, работающие на изотопе плутония. Благодаря им эти аппараты смогли покинуть пределы Солнечной системы и продолжают свой путь во Вселенной.

Другой вариант использования энергии распада изотопа - новая технология под названием бетавольтаика. Как она работает?

Для производства идеи данных атомных батареек будет использоваться радиоизотоп Никель-63. Сам изотоп добывают в ядерном реакторе из Никеля-62 - природного изотопа. Батареи в основу которых ляжет данное вещество будут производить низкое B-излучение, поглощение которого будет происходить уже внутри источника питания и не будет нести вред живым существам. Принцип работы заключается бета-вольтаическом элементе, который схож с фото-электрическим эффектом.

Дорогой - это мягко сказано. Одна экспериментальная батарейка стоит от трёх до десяти миллионов рублей. Ещё одна проблема - нанесение никеля-63 на подложку из кремния. Нужно обеспечить слой примерно в 15 нанометров, иначе распад будет поглощаться внутри самого материала. А неэффективно тратить столь дорогой изотоп, конечно, нельзя. Реакция порой идёт совершенно непредсказуемо и зависит от мелочей вплоть до тряпки, которой протирали стол. Иван показывает на экране чёрно-белые пирамидки. Проверять правильность нанесения приходится с помощью атомно-силового микроскопа, который позволяет контролировать работу с точностью почти до атома. Мощность - 60 микроватт. Для сравнения: чтобы обеспечить энергией обычную лампочку, понадобится примерно десять миллионов таких устройств. Атомная электростанция в сердце У обывателя сразу возникает вопрос: а можно ли на основе этой технологии сделать батарейку для телефона или ноутбука и навсегда забыть фразу "у меня гаджет разрядился"? Но должен сразу предупредить: по размеру батарейка будет несопоставима с мобильником. Пока считают, что основное назначение атомной батарейки - питание кардиостимуляторов. Кому-то покажется страшноватой идея разместить внутри организма миниатюрный аналог атомной электростанции. Но учёные уверяют: устройство абсолютно безопасно. Использование атомной батарейки позволит не менять источник энергии кардиостимулятора раз в 3-4 года, как это делается сейчас, всё-таки операция - штука не самая приятная. Вдобавок такой кардиостимулятор не раздражает металлоискатель. Ещё эту батарейку можно использовать в космических аппаратах - сейчас там стоят источники энергии, которые работают не больше двух десятков лет.

Почему ядерные батарейки так и не стали популярны? История почти забытой технологии

Впрочем, российские ученые в перспективности проекта коллег из Поднебесной сомневаются. Получить объемы электроэнергии, необходимые для питания, например, телефона, от подобного устройства невозможно. Заявленного напряжения будет недостаточно, чтобы зарядить что-то сложнее простейших устройств.

Не существующий в природе радиоизотоп никель-63 обладает уникальными свойствами мягкого бета-излучения без опасного гамма-излучения.

Изотоп никеля-63 первоначально наработали с помощью облучения стабильного изотопа никель-62 в исследовательском реакторе ИВВ-2М Института реакторных материалов входит в научный дивизион «Росатома». В Радиевом институте имени В. Хлопина, также входящем в научный дивизион «Росатома», полученный материал очистили и создали рабочий газ для каскада газовых центрифуг Электрохимического завода.

Или же он может питать датчик температуры где-нибудь в Арктике или других труднодоступных местах с суровыми условиями. Единственная проблема технологии — слишком высокая себестоимость. При этом они втрое уменьшили размеры и одновременно увеличили энергоемкость в 10 раз.

Ядерные реакторы, использующие воду в активной зоне, также являются источником углерода-14. Дальше процитируем пресс-релиз: "Радиоизотопы выделяют большое количество тепла. Благодаря неупругому рассеянию, возникающему из-за присутствия монокристаллического алмаза, конструкция предотвращает самопоглощение тепла радиоизотопом и обеспечивает быстрое преобразование в электроэнергию". Фото: Nano Diamond Battery Тесты, проведенные в Ливерморской национальной лаборатории имени Лоуренса и Кавендишской лаборатории Кембриджского университета, подтвердили, что атомная батарейка безопасна для человека и окружающей среды: радиационный фон вокруг нее остается в норме. А алмазная оболочка выполняет дополнительную функцию — защищает устройство от возможных повреждений.

По их заверениям, энергоэффективность атомных батареек настолько высока, что их можно ставить в пару с литиевыми аккумуляторами — и Nano Diamond Battery будет не только питать устройство, но еще и подзаряжать аккумулятор. По заявлениям представителей стартапа, с двумя компаниями уже заключены предварительные контракты на поставку атомных батарей, правда, названия этих компаний пока держатся в тайне. Если предположить, что все действительно обстоит именно так, как нам обещают, то на горизонте маячит событие невероятного, глобального масштаба: полный переворот всей энергетики человечества.

Атомная батарейка: разработан прототип, способный держать зарядку тысячи лет

Вместо того чтобы пустить эту энергию на ветер, BV100 использует ее в своих интересах. Конструкция устройства позволяет улавливать энергию, выделяемую при распаде никеля-63, и накапливать ее для питания различных устройств. Между слоями никеля-63 в батарею встроены листы монокристаллического алмазного полупроводника толщиной всего десять микрон. Такая сложная конструкция позволяет оптимизировать энергоэффективность батареи. Для каких применений? При емкости 3 300 мегаватт-часов BV100 имеет плотность энергии, более чем в десять раз превышающую плотность энергии обычных литиевых батарей.

Эти замечательные характеристики обеспечивают постоянное энергоснабжение в течение исключительно длительного времени.

В камере источника питания капсула для изотопа плутония-238, установка преобразовывает энергию его полураспада в электричество. Для проверки ее работы вполне достаточно имитатора источника из молибдена, но можно ли уже сейчас запитать от установки датчик телеметрии, который необходим для проверки трубопроводов в газовой промышленности? Подключаем контакты, работает! Мы имеем комплект: датчик, запитанный от автономного радиоизотопного источника питания.

Фактически, это открывает нам возможность 20 лет, независимо от внешних условий, получать информацию в данном случае о температуре, о влажности, это может быть коррозионная стойкость, это может быть давление в линейной части нефтегазопровода. Эта информация может быть отражена на мониторе. Этого хватит чтобы обеспечить электричеством, например, метеостанцию на Крайнем Севере, где альтернативные источники энергии использовать очень непросто, особенно Полярной ночью. Области применения ограничиваются только фантазией инженеров. Можем поставить станцию слежения за температурой где-нибудь на отдалённом острове и на протяжении всего периода работы такого источника мы будем получать сигнал.

Тепло с помощью особого нанопокрытия превращают в свет, а свет в электрическую энергию. Оригинальность решения ученых МИФИ в использовании специального покрытия. Мы создаем специальное покрытие на основе наночастиц, которыми покрывается капсула радиоизотопного источника тепла, чтобы сместить спектр излучения нагретого тела в более коротковолновую область, в более видимый спектр. Это позволяет увеличить эффективность преобразования энергии ядерного распада в электричество с помощью специальных фотоэлементов.

А сколько грамм необходимо на изготовление одного аккумулятора? Одновременно с этим было замечено, что потребуются также алмазные элементы также не ясно сколько? Какова же будет полная стоимость такой батарейки? Электрокардиостимуляторы в России устанавливаются по полису ОМС бесплатно в экстренных случаях или при наличии квоты. При недостаточности квоты и за электрокардиостимуляторы иностранного производства больным приходится оплачивать самостоятельно.

Будут ли ядерные батареи устанавливаться за счет бюджета ОМС или пожилые люди должны будут приобретать их отдельно? Если бы руководство Росатома впомнило, что российские пенсионеры живут в режиме "день простоять и ночь продержаться", то, наверно, осознало бы тот нелепый диссонанс между космическим сроком службы и стоимостью. Это наталкивает на мысль, что уважаемый Павел Зайцев активно осваивает средства, выделенные на НИОКР, ничуть не задумываясь о конечных пользователях. Аналогичную оценку "изобретения" Росатома дают пользователи социальных сетей: Едва ли ее где-нибудь получится использовать. Я более чем уверен, что бюджет как всегда освоили, часть его потратили на презентацию, а само изделие никто никогда не увидит : Заявленный срок службы 50 лет , как мы догадались - это как раз половина периода полураспада Ni63 100лет. Такую же логику используют ученые Бристольского университета в концептуальном ролике. В отличие от батарейки Росатома, бристольская атомная батарейка использует изотоп C14 и может работать 5730 лет! В Бристольском университете правда забыли поделить на 2, но и 2865 лет слишком много для кардиостимулятора. Уникальность бристольской концепции заключается в том, что проблема ядерных отходов решается путем переработки их в ядерные батарейки.

Если внимательно прослушать и перевести текст этого ролика, то открывается гораздо больше интересной информации. Сначала подробно рассказывается о происхождении изотопа С14 С 1940 Англия сделала много ядерных реакторов научного, военного и гражданского назначения.

Согласно характеристикам производителя, элемент питания может выдавать 100 микроватт мощности и напряжение 3 В. В основе разработки лежит полупроводниковый слой искусственного алмаза толщиной 10 микрометров. Кристаллическая структура вырабатывает электричество за счёт энергии, выделяемой распадающимся изотопом никеля Никель-63 в виде пластинок толщиной 2 микрометра. Использование радиоактивных источников никеля-63 более высокой чистоты позволит дополнительно улучшить плотность и мощность батарей.

Рекомендуем

  • Как получить тяжёлый никель
  • Ядерная батарейка
  • Ядерное питание: российские учёные создали атомную батарейку повышенной мощности — РТ на русском
  • Атомная батарейка в современном мире

Почему ядерные батарейки так и не стали популярны? История почти забытой технологии

Об этом сообщает Oddity Central 24 января. Авторами изобретения стали специалисты из компании Betavolt. Компания утверждает, что она является первой, кто успешно миниатюризировал атомную энергию, поместив 63 ядерных изотопа в батарею размером меньше монеты. Этот прорыв ставит его «далеко впереди» всех других европейских и американских академических и коммерческих учреждений, отмечается в публикации.

В России создана атомная батарейка, которая способна работать 20 лет 2023-01-15 15:55 2626 Национальный исследовательский технологический университет «МИСиС» НИТУ «МИСиС» сообщает о разработке инновационного автономного источника питания — передовой атомной батарейки. Главной особенностью изделия является оригинальная микроканальная 3D-структура никелевого бетавольтаического элемента. Радиоактивный элемент наносится с двух сторон так называемого планарного p-n-перехода, что позволяет упростить технологию изготовления элемента, а также контролировать обратный ток, который «крадёт» мощность.

Модификация одного из них обогревала измерительный инструмент, который взяли с собой участники миссии «Аполлон-11». И пока это так. Однако подобные системы практически незаменимы при отправке зондов на сверхдальние расстояния — туда, где солнечные батареи бесполезны. Первопроходцем в этом деле стала межпланетная станция «Пионер-10», отправленная в космос 3 марта 1972 года. Перед запуском они выдавали 155 Вт электроэнергии, но при подлете к Юпитеру показатель снизился до 140 Вт. Этого было более чем достаточно для работы систем, потреблявших 100 Вт, но к 2001 году энергии уже едва хватало на поддержание функционирования лишь некоторых модулей.

До этого новые системы прошли обкатку в спутниках на околоземной орбите. Каждый из космических аппаратов получил по три РИТЭГа общей электрической мощностью 470 Вт на момент запуска с перспективой снижения электрической мощности в два раза примерно через 88 лет. Источниками энергии стали 24 спрессованные сферы из оксида плутония. Плюс на борту имелось по девять нагревателей RHU их может быть и больше, они устанавливаются точечно в рассчитанных местах. Инженерам приходилось решать проблемы с нагревом в тысячи градусов как в случае с новой системой, так и в прошлом и будущем Спустя пару лет после запуска «Вояджеров» США временно вышли из гонки, а СССР, напротив, наращивал количество запущенных спутников — это были аппараты серии УС-А. Но на них устанавливали ядерные энергетические установки БЭС-5 «Бук», работавшие на уране. Их электрическая мощность составляла 3 кВт при тепловой мощности 100 кВт, что заметно превосходило показатели американских систем, работавших по несколько иному принципу. Фото: Los Alamos National Laboratory Срок работы спутников с «Буками» был заметно меньше: он составлял около полугода потом аппарат становился мусором, который летает вокруг Земли до сих пор , и это при более высоком весе ядерного топлива. Поэтому требовались регулярные запуски, с которыми то и дело не ладилось.

На смену БЭС-5 пришли ядерные установки «Топаз», которые были мощнее предшественников более чем в два раза. Однако новые системы получили лишь два спутника, и один из них был уничтожен. Фото: kerbalspaceprogram. Однако какого-то значительного шага вперед с точки зрения эффективности сделано не было. Новые «атомные батарейки» устанавливали в автоматическую межпланетную станцию АМС «Улисс», изучавшую Солнце и Юпитер; в спускаемый зонд «Галилео» для исследования атмосферы Юпитера; в станцию «Кассини-Гюйгенс», которая исследовала Сатурн, его кольца и спутники; в АМС «Новые горизонты», выполняющую программу исследования объектов Солнечной системы. АМС «Улиcс».

К, заставляя ее поверхность светиться. Это улавливают окружающие капсулу фотоэлементы, способные выдерживать колоссальную жару. И на выходе уже сейчас, на стадии прототипа, обеспечивается мощность, способная заставить светиться электрическую лампочку на несколько свечей. Казалось бы, зачем так сложно? Ведь тепло, неизменный спутник процесса радиоактивного распада, способно давать ток напрямую. Примерно так рассуждали ученые прошлых поколений в Советском Союзе, когда конструировали и запускали в серийное производство радиоизотопный термоэлектрический генератор РИТЭГ. Он работал на бета-частицах стронция 90 по другому принципу — термоэлектрическому. Иначе говоря, как термопара: между холодным и разогретым от активного источника контактами возникало напряжение, током от которого и запитывали приборы. Для эвакуации последних РИТЭГов с автономных антарктических метеопостов в 2015 году, кстати, пришлось снаряжать полярную миссию. С тех пор российские автоматические метеостанции в труднодоступных районах электричество получают от ветряков. Секрет в специальных термофотоэлементах, которые эффективно преобразуют свет ближнего диапазона инфракрасного спектра в электричество.

Похожие новости:

Оцените статью
Добавить комментарий