Хромосомный микроматричный анализ (ХМА) – технология молекулярно-генетического исследования.
Хромосомный микроматричный анализ абортивного материала (CMA of miscarriage tissue)
Дородовую диагностику генетических патологий проводят с 9-й недели беременности, для анализа используют амниотическую жидкость или ворсинки хориона. В МЖЦ практикуют 3 вида хромосомного микроматричного анализа, которые отличаются разрешающей способностью — возможностью «видеть» мелкие фрагменты ДНК: 1. Самый доступный по цене вид исследования, идентифицирует 350 тыс. Определяет причины невынашивания, анеуплоидии изменения числа хромосом и пузырного заноса — отсутствия эмбриона в плодном яйце, замершей беременности. Используется для лабораторного подтверждения генетических синдромов. Содержит 750 тыс. Выявляет триплоидии, микроделеции и хромосомные перестройки.
Хромосомный микроматричный анализ ХМА — это вид генетической диагностики хромосомных аномалий, при котором определяются структурные изменения количества генетического материала, ДНК, в хромосомах, например, делеции и дупликации участка хромосомы. Зачем нужен ХМА анализ? Хромосомный микроматричный анализ ХМА применяется для постнатальной диагностики хромосомных аномалий, которые могут быть причиной множественных врожденных пороков и малых аномалий развития в сочетании с задержкой психомоторного развития, умственной отсталостью у ребенка, и носят название микроделеционных и микродупликационных синдромов. Что такое микроделеционный синдром? Микроделеционные синдромы — это хромосомные заболевания, которые вызваны отсутствием маленьких участков хромосом, не видимых в микроскоп при стандартном кариотипировании. Такое отсутствие называется микроделецией. Почему ХМА лучше стандартного цитогенетического исследования?
Это исследование очень важно, потому что иногда в этих «пустых» участках могут скрываться особые мутации одного или нескольких генов, которые распределяются по всему геному, и только взгляд на весь геном дает понимание качества распределенной мутации. Можно говорить, что показание к этому исследованию — это диагностических поиск непонятных наследственных патологий, очень похожих на другие болезни, у которой нет единого источника мутации, и они находятся в разных районах генома, лежащих далеко друг от друга. Эти методы применяются, когда другие способы генетического анализа крови оказались неэффективными, в том числе, для поиска причины умственной отсталости, при аутизме, при диагностике целых групп наследственных болезней, например, нейромышечных заболеваний. ТМС или тандемная масс-спектрометрия С помощью этого высокоточного метода можно провести сразу анализ для многих десятков, и даже сотен соединений в маленьком количестве биологического материала. По сути, при этом методе не исследуется наследственный материал, но зато можно распознать вещества, которые по своей структуре отклоняются от нормы. Речь идет в первую очередь об аминокислотах. Известно очень много наследственных заболеваний у новорождённых, при которых нарушается метаболизм белков, жиров и углеводов. В том случае, если вследствие генетического отклонения организм начинает продуцировать какое-либо дефектное, не встречающееся у нормального человека вещество, либо оно начинает накапливаться в аномально больших количествах, то можно определить, какая генетическая болезнь может этому способствует. В настоящее время этот метод используется для того, чтобы из одного анализа крови узнать о том, нет ли у новорождённого несколько десятков наследственных болезней сразу. Раньше для проведения этого метода требовалось очень много биологического материала и проведение как минимум нескольких исследований, и это понятно. Метод тандемной масс-спектрометрии позволяет определить весь этот набор не только качественно, но и количественно, причём при сдаче одного — единственного анализа, например, генетический скрининг «пяточка» в роддоме. Можно с уверенностью диагностировать различные наследственные нарушения обмена белков, аминокислот, дефекты митохондрий, а в общей сложности — определить более 100 различных генетических заболеваний. В Российской Федерации в число обязательных и бесплатных входит пять наиболее часто встречающихся болезней. Средняя частота встречаемости заболеваний, которые определяются методом тандемной масс-спектрометрии — один случай на 5000 новорождённых малышей. Флуоресцентная гибридизация С помощью этого метода современного исследования, применяемого в цитогенетике, определяют положение последовательности нуклеиновых кислоты в хромосомах в период деления клеточного ядра, а также в ядрах клеток в периоде интерфазы. Этот метод исследования используют в пренатальный и постнатальной диагностики при скринингах, а также перед применением экстракорпорального оплодотворения, для диагностики злокачественных новообразований и оценке риска их развития в следующих поколениях. Показания к исследованию Исходя из описания методов исследования, уже можно предположить, что генетические заболевания встречаются не так уж и редко. Конечно, речь идет о крупных городах — миллионниках, где есть специалисты — генетики и высокотехнологические лаборатории. Следует учесть, что ни один из современных секвенсоров нового поколения не производится в РФ, оборудование стоит очень дорого.
У меня носовую кость на тринадцатой неделе не обнаружили и отправили в ЦПСИР переделать через неделю. Через неделю кость также не увидели. Все другие показатели были в норме. Меня отправили к генетику тут же в соседний кабинет. Генетик очень сухим языком еще раз повторила цифры и рекомендовала сделать амниоцентез, то есть анализ, когда иглой берется амниотическая жидкость и считают хромосомы. На более ранних сроках, 9-13 недель, делают биопсию хориона, но я уже не успевала. На более позднем — после 22 недель — кардоцентез, когда берут кровь из пуповины ребенка. Что я поняла уже постфактум: после 35 лет коэффициент риска с каждым годом сильно возрастает. То есть в мои 40 лет он уже 1:75 просто априори без анализов и УЗИ. А в 48 лет он будет гораздо больше. При норме УЗИ на чуть повышенный хгч никто бы не обратил внимания, но 40 лет, отсутствие носовой кости и 2,7 вместо 2,5 моль в итоге превратились в риск 1:4. Я сделала неинвазивный тест — сдала анализ крови Пренетикс на определение распространенных хромосомных аномалий. Результат пришел отрицательный. Я решила не делать амниоцентез, хотя сдала все анализы и была готова. На следующий день мы улетали, а это все-таки маленькая операция, рекомендуется покой и есть небольшая, но угроза выкидыша. Я читала о таких случаях, причем, когда женщина теряла здорового ребенка.
Анализ доступен в этих центрах:
- Генетический анализ крови
- Возможности хромосомного микроматричного анализа
- Хромосомный микроматричный анализ.
- Опубликованы рекомендации РОМГ по ХМА
- Полногеномный хромосомный микроматричный анализ
Генетические анализы, проведение которых финансирует фонд для благополучателей
Для чего ещё применяется ХМА? Хромосомный микроматричный анализ ХМА также применяется для диагностики недифференцированных синдромальных форм моногенных заболеваний в случае делеции утраты генов, если пациент имеет сходный с заболеванием клинический фенотип. Аналогично стандартному анализу кариотипа, с помощью ХМА можно выявить хромосомные анеуплоидии у пациента некратное изменение хромосомного набора, связанное с наличием дополнительной или отсутствием целой хромосомы. Хромосомный микроматричный анализ позволяет выявить участки с потерей гетерозиготности, что актуально при однородительских дисомиях. Каковы ограничения ХМА? Хромосомный микроматричный анализ не выявляет сбалансированные хромосомные транслокации, инверсии, низкоуровневый мозаицизм, точковые мутации, экспансию тринуклеотидных повторов, а также изменения, находящиеся за границей разрешающей способности метода. Интерпретация клинической значимости структурных изменений, выявленных по хромосомному микроматричному анализу, проводится по специализированным базам данных например, OMIM.
Особенности метода Метод не определяет сбалансированные хромосомные перестройки. Возможно получение результатов неясной клинической значимости. В связи с этим необходимо иметь максимально полную информацию об обследуемых и иногда бывает необходимо проведение дополнительного исследования родственников. Замораживанию не подлежит.
Ткани 100 - 200 мг в физрастворе.
Применения в клинической практике: в пренатальной диагностике для поиска хромосомной патологии плода при наличии биохимических, ультразвуковых маркеров хромосомной патологии ХП плода, при повышенном риске ХП по результатам неизвазивного пренатального теста НИПТ ; в постанальной диагностике для детей со множественными пороками развития, малыми аномалиями развития, задержкой развития, аутизмом; для анализа постабортного материала для установления причины потери беременности; в онкологии для исследования опухолевых клеток. ХМА опухолей позволяет сделать полногеномное исследование числа копий с детекцией участков с потерей гетерозиготности LOH, с улучшенным разрешением по 900 опухолевым генам, определить статус часто исследуемых соматических мутаций. Все эти данные можно получить на материале одной пробы. ХМА в отношении опухоли может использоваться у больных миелодиспластическим синдромом при нормальном кариотипе.
Так, в текущем году планируется провести 650 таких обследований. Для исследования подойдет любой материал, содержащий ДНК, — ворсина плаценты или жидкость внутри плодных оболочек. Учеными анализируются отдельные фрагменты генома с использованием специально подготовленной микроматрицы», — сообщает пресс-служба ведомства. Сообщается, что при применении данного метода одновременно исследуются свыше тысячи генов.
Полногеномный хромосомный микроматричный анализ для пренатальной диагностики беременных
Желаете узнать больше о преимуществах и ограничениях? Запишитесь на консультацию врача-генетика, который ответит на все Ваши вопросы и поможет определиться. Преимущества Методика позволяет проанализировать одномоментно около 1000 функциональнозначимых генов и исключить более 250 тяжелых генетических синдромов, которые невозможно выявить стандартным методом кариотипирования. Данное исследование позволяет с высокой точностью как определять анеуплоидии видеть количественное изменение хромосомного набора, в частности, подтвердить синдром Дауна трисомия 21 , Эдвардса трисомия 18 , Патау трисомия 13 и др. Запишитесь на консультацию врача-генетика, который ответит на все Ваши вопросы и поможет определиться Преимущества В разработке. Не помещать биоматериал в формалин!
Хромосомный микроматричный анализ представляет собой сложную молекулярную технологию, при которой проводится полногеномная амплификация с последующим анализом наличия множества отдельных фрагментов генома с использованием специально подготовленной микроматрицы ДНК-ЧИПа. Методика позволяет проанализировать одномоментно около 1000 функционально значимых генов и исключить более 250 тяжёлых генетических синдромов, которые невозможно выявить стандартным методом кариотипирования. Разрешающая способность хромосомного микроматричного анализа составляет 40 тыс. Это и позволяет проводить исследование на гораздо большее количество синдромов, по сравнению с обычным исследованием хромосомного набора.
Пациенты с мутациями гена UBE3A характеризуются нормальной структурой метилирования. Метод MS-MLPA может не только обнаруживать дефект метилирования, но и различать делеции 15q11-q13 и импринтингового центра. Но MS-MLPA не идентифицирует отцовскую дисомию по хромосоме 15 и нарушения импринтинга, которые не обусловлены делецией, в связи с чем дальнейшее тестирование требует микросателлитного анализа ДНК. При проведении молекулярно-генетического обследования пациентов с СА рекомендуется использовать последовательность лабораторно-диагностических действий, представленную на схеме, представленной в начале раздела. В МГНЦ акад. Бочкова по направлению врача-невролога можно сделать анализ метилирования ДНК бесплатно, но только после консультирования осмотра ребенка генетиком их центра, которое тоже проводится бесплатно.
В каких случаях рекомендовано исследование: В качестве исследования первой линии пациентам с предполагаемым наследственным заболеванием, обусловленным хромосомным дисбалансом; В качестве метода диагностики недифференцированных синдромов у пациента с аутизмом, умственной отсталостью, задержкой психомоторного развития, судорожным синдромом, малыми аномалиями развития, множественными врожденными пороками развития; В целях валидации вариаций числа копий, выявленных при проведении секвинирования нового поколения; При выявлении единственной гетерозиготной мутации в гене, ассоциированном с аутосмно-рецессивным заболеванием, для поиска делеции или дупликации на втором аллеле. Выявляемые заболевания: Полный дополнительный набор хромосом триплоидии ; Дополнительные или отсутствующие части хромосом дупликации и делеции ; Как сдать анализ:.
Хромосомный микроматричный анализ (XMA)
Медико-генетическое консультирование и генетические исследования проводятся по адресу: г. Москва, 115522, ул. Москворечье, д. По направлению врача — невролога-эпилептолога Горчхановой Зареты Казбулатовны, вы можете получить скидку на генетический анализ ХМА стандартное. НКО «Синдром Ангельмана» работает над вопросом получения бесплатного расширенного генетического анализа для детей с подтвержденным диагнозом «Синдром Ангельмана». Подробности будут опубликованы на нашем сайте в ближайшее время Синдром Ангельмана.
При выполнении ХМА с помощью специальной методики исследуются последовательности генетического материала во всех хромосомах и могут быть выявлены избыток или недостаток генетического материала числовые аномалии, дупликации и делеции хромосом, несбалансированные транслокации. ХМА имеет высокую разрешающую способность, то есть позволяет выявить достаточно мелкие структурные изменения. Хромосомный микроматричный анализ ХМА является сложной молекулярной технологией, позволяющей провести полногеномную амплификацию с последующим анализом множества отдельных фрагментов генома с применением специально подготовленной микроматрицы.
Справочно: В декабре 2020 года Башкортостан стал победителем конкурсного отбора и получил федеральную поддержку на развитие Евразийского научно-образовательного центра НОЦ мирового уровня. В Евразийский научно-образовательный центр мирового уровня вошли шесть университетов Башкортостана, «Сколковский институт науки и технологий», три научных учреждения и 20 организаций реального сектора экономики. В соответствии с программой деятельности НОЦ определили 10 технологических проектов по направлениям «Новая среда жизни», «Цифровая и «зеленая» химия, энергетика», «Биомедицина и генетика», «Инжиниринг и передовые производственные технологии». Размещено: 16 июл.
Используется для диагностики болезней, наследуемых по аутосомно-рецессивному типу, выявления участков хромосомы с потерей гетерозиготности и множества других аномалий. Когда будет готов результат В связи с трудоемкостью и клиническими особенностями проведения процедуры, ХМА занимает 30-60 дней с момента набора 8 пациентов на микрочип. Срок готовности в прямой зависимости от количества пациентов на один чип. Предварительно записавшись на консультацию к генетику в МЖЦ, вместе с результатами анализа можно получить также их расшифровку, узнать о возможных последствиях хромосомных аномалий и методах их коррекции. Как пройти исследование Молекулярная диагностика генетических дефектов методом ХМА доступна в Экспериментальной лаборатории Медицинского женского центра на Земляном валу. Чтобы получить результаты хромосомного микроматричного анализа в сжатые сроки, позвоните нам прямо сейчас. Забронируйте одно из 8 мест на микрочипе для ближайшего исследования!
Хромосомный микроматричный анализ при выкидыше или замершей беременности
В этой связи Отделение медицинских наук РАН организовало Всероссийский Форум молодых учёных, посвященный 300-летию Российской академии наук и 80-летию Отделения медицинских наук РАН «Медицинская наука: вчера, сегодня, завтра» 18-19 апреля 2024 года в г. Москва на котором было отобрано 309 участников из различных регионов России и Белоруссии. Секция «Болезни нервной системы» проходила 18 апреля в Научном центре неврологии, состав жюри включал в себя самых авторитетных деятелей науки в рамках неврологии и психиатрии академики, члены корр. Моя работа «Генетический ландшафт детского церебрального паралича» заслужила отдельного внимания, и была высоко оценена.
Анеуплоидии и другие несбалансированные хромосомные аномалии являются самой частой причиной неразвивающихся беременностей, самопроизвольных выкидышей и мертворождения или грубой патологии плода, определяемой на УЗИ. Молекулярное кариотипирование абортивного материала хромосомный микроматричный анализ является наиболее доступным тестом для диагностики хромосомных аномалий, являющихся причиной неразвивающейся беременности. Этот метод позволяет определить следующую хромосомную патологию: изменение числа хромосом анеуплоидии и полиплоидии ; большие хромосомные перестройки делеции и дупликации ; субмикроскопические микроделеции и микродупликации; участки отсутствия гетерозиготности.
Преимущества исследования «Хромосомный микроматричный анализ абортивного материала» Молекулярное кариотипирование абортивного материала хромосомный микроматричный анализ обладает следующими преимуществами перед стандартными цитогенетическими методами: высокая разрешающая способность позволяет выявлять больше клинически значимых изменений; есть возможность определения контаминации материнскими клетками, что снижает вероятность получения ложных результатов исследования; нет необходимости в процедуре культивирования клеток для проведения исследования, что часто является затруднительным при работе с абортивным материалом; быстрое получение результата. С какой целью выполняют Хромосомный микроматричный анализ абортивного материала Своевременная диагностика причин потерь беременности позволяет правильно подойти к вопросу планировании последующих беременностей и избежать ненужных диагностических и лечебных мероприятий. Что дает исследование «Хромосомный микроматричный анализ абортивного материала» Выявление хромосомных аномалий у плода позволяет: установить связана ли потеря беременности или пороки развития плода с хромосомной патологией; заподозрить возможные хромосомные перестройки у родителей сбалансированные транслокации ; определить полную или частичную молярную беременность, связанную с риском пузырного заноса и отличить его от дигинической триплоидии; определить риск повторного рождения ребенка с хромосомным синдромом в данном браке; определить необходимость назначения лекарственных препаратов для предотвращения повторных самопроизвольных выкидышей абортов. Правила подготовки к исследованию «Хромосомный микроматричный анализ абортивного материала» Специальной подготовки к исследованию не требуется.
Цена указана без взятия биоматериала В корзину Описание Подготовка Хромосомный микроматричный анализ ХМА — это молекулярно-генетическое исследование кариотипа, молекулярный кариотип. При выполнении ХМА с помощью специальной методики исследуются последовательности генетического материала во всех хромосомах и могут быть выявлены избыток или недостаток генетического материала числовые аномалии, дупликации и делеции хромосом, несбалансированные транслокации. ХМА имеет высокую разрешающую способность, то есть позволяет выявить достаточно мелкие структурные изменения.
Позволяет выявить: - дополнительные или недостающие хромосомы анеуплоидии , - полный дополнительный набор хромосом триплодии , дополнительные или отсутствующие части хромосом дупликации и делеции , - две копии хромосомы от одного родителя однородительская дисомия , - контаминацию материнскими клетками. Исследование выполняется методом хромосомного матричного анализа молекулярно-генетический анализ aCGH.
Вся структура генома в одном исследовании. Хромосомный микроматричный анализ
ХРОМОСОМНЫЙ МИКРОМАТРИЧНЫЙ АНАЛИЗ (ARRAY-CGH) с использованием матрицы со средней плотностью 750 тыс. маркеров. молекулярно-цитогенетический метод анализа вариаций числа копий ДНК, позволяет с максимальной точностью исключить. Хромосомный микроматричный анализ (ХМА) помогает диагностировать хромосомные перестройки, даже те, которые не видны при стандартном генетическом исследовании. Хромосомный микроматричный анализ (ХМА) представляет собой высокотехнологичное молекулярно-генетическое исследование, направленное на изучение строения и состава. Хромосомный микроматричный анализ (ХМА) представляет собой сложную молекулярную технологию, позволяющую провести полногеномную амплификацию с последующим анализом. Хромосомный микроматричный анализ (ХМА) пренатальный на ДНК-микроматрицах низкой плотности (350 000 маркеров) (пуповинная кровь) в Мерке.
Цитогенетическая лаборатория
Докладывает: руководитель проекта ГЕНОМЕД, врач-генетик, д.м.н., профессор Коростелев Сергей Анатольевич Теперь стандартный хромосомный микроматричный анализ (ХМА) с. Хромосомный микроматричный анализ (ХМА) молекулярно-цитогенетический метод анализа вариаций числа копий ДНК по сравнению с набором проб или маркеров. Хромосомный микроматричный анализ (XMA) позволяет обнаруживать микроделеции и микродупликации, которые не выявляются при кариотипи-ровании [13]. Для плода с аномалиями, выявленными в ходе ультразвукового исследования, когда молекулярный анализ (ХMA) и цитогенетический тест не дал окончательного диагноза.
Опубликованы рекомендации РОМГ по ХМА
Хромосомный микроматричный анализ пренатальный таргетный | Хромосомный микроматричный анализ (молекулярно-генетический анализ aCGH) при неразвивающейся беременности (абортивный материал) Оptima. |
Хромосомный микроматричный анализ - новые возможности - вебинар по ХМА от Геномед | ХМА пренатальный (амниотическая жидкость/ворсины хориона/пуповинная кровь с ЭДТА; выявление хромосомной патологии: анеуплоидии, делеции, дупликации; заключение врача. |
Хромосомный микроматричный анализ (ХМА) - исследование | Новые методы диагностики, такие как хромосомный микроматричный анализ (ХМА), позволяют осуществлять поиск новых молекулярных факторов, которые определяют патогенез. |
Генетические анализы (ХМА) | Докладывает: руководитель проекта ГЕНОМЕД, врач-генетик, д.м.н., профессор Коростелев Сергей Анатольевич Теперь стандартный хромосомный микроматричный анализ (ХМА) с. |
ХМА пренатальный - Вопрос генетику - 03 Онлайн | • Хромосомный микроматричный анализ – молекулярно-цитогенетический метод для выявления вариаций числа копий ДНК по сравнению с контрольным образцом. |
ХМА пренатальный
оптимальный выбор для диагностики хромосомной патологии, включая трисомии, моносомии, триплоидию. Полногеномный хромосомный микроматричный анализ В России научились вычислять риск возникновения порока сердца у ребенка ещё на этапе планирования беременности. Хромосомный микроматричный анализ представляет собой сложную молекулярную технологию, при которой проводится полногеномная амплификация с последующим анализом. Анализ производится с использованием ДНК-микрочипов. Разрешение метода обычно составляет десятки тысяч пар оснований.