Условие задачи: Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). Найдите площадь поверхности многогранника, изображенного на рисунке. Данный многогранник можно разбить на 10 прямоугольниковS верхнего прямоугольника = 5*1 =5 см²S прямоугольника справа (начиная сверху). Ответ: Пошаговое объяснение: Находим площадь поверхности многогранника, кроме площади поверхности с вырезом. Задача е площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Теория: 05 Площадь поверхности прямоугольных многогранников
Найдите площадь поверхностимногогранника, изображённого на рисунке (все двугранныеуглы — прямые). Объяснение: Так как все двугранные углы прямые, то многогранник является прямоугольным параллелепипедом. Найдите площадь поверхности многогранника, изображённого на рисунке. Самое простое и доказательство теоремы об отношении площадей двух треугольников, имеющих равные высоты. Найдите площадь полной поверхности многогранника, изображенного на рисунке (все двугранные углы многогранника прямые).
Решение заданий В11 (часть 1) по материалам открытого банка задач ЕГЭ по
Приведенное решение можно использовать с целью успешной подготовки к ЕГЭ по математике, в частности при решении задач типа В10. Понравилась задача? Поделись ей с друзьями.
Найдите объём отсечённой треугольной призмы. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Найдите объём этой призмы, если объём отсечённой треугольной призмы равен 15.
Правильный ответ: 3 2 Объем куба равен 8. Найдите площадь его поверхности. Правильный ответ: 24 3 Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 54. Найдите ребро куба. Правильный ответ: 4 4 Во сколько раз увеличится объем куба, если его ребра увеличить в три раза? Правильный ответ: 27 5 Диагональ куба равна 12. Найдите его объем. Правильный ответ: 8 6 Объем куба равен 24 3. Правильный ответ: 6 7 Если каждое ребро куба увеличить на 1, то его объем увеличится на 19. Правильный ответ: 2 8 Диагональ куба равна 1. Правильный ответ: 2 9 Площадь поверхности куба равна 24. Правильный ответ: 8 10 Объем одного куба в 8 раз больше объема другого куба. Во сколько раз площадь поверхности первого куба больше площади поверхности второго куба? Найдите угол MLK. Ответ дайте в градусах. Правильный ответ: 60 13 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины. Правильный ответ: 5 14 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Правильный ответ: 3 15 Прямоугольный параллелепипед описан около единичной сферы. Найдите его площадь поверхности. Правильный ответ: 24 16 Площадь грани прямоугольного параллелепипеда равна 12. Ребро, перпендикулярное этой грани, равно 4. Найдите объем параллелепипеда. Правильный ответ: 48 17 Объем прямоугольного параллелепипеда равен 24. Одно из его ребер равно 3. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру. Правильный ответ: 8 18 Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани. Правильный ответ: 5 19 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 6. Объем параллелепипеда равен 48. Найдите третье ребро параллелепипеда, выходящее из той же вершины. Правильный ответ: 4 20 Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 6, 9. Найдите ребро равновеликого ему куба. Правильный ответ: 6 21 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Правильный ответ: 32 22 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 3. Объем параллелепипеда равен 36. Правильный ответ: 7 23 Одна из граней прямоугольного параллелепипеда — квадрат.
Площадь поверхности и объем многогранника. Найдите площадь полной поверхности многогранника. Как найти площадь поверхности многогранника. Площадь боковой поверхности многогранника. Как посчитать площадь многогранника. Рисунки площадь поверхности и объем. Объем и площадь поверхности тел изображенных на рисунке 10. Площадь поверхности многогранника изображенного на рисунке 96. Вычислите объем и площадь поверхности многогранника. Найдите объем многогранника изображенного на рисунке все углы прямые. Объем многогранника ЕГЭ. Найдите объем многогранника изображенного на рисунке 22125. Найдите объем многогранника изображенного на рисунке 11. Найдите площадь поверхности фигуры. Найдите площадь поверхности детали. Найдите площадь поверхности многогранника 4 5 1 2. Объем многогранника формула ЕГЭ. Найдите площадь поверхности многогранника 3 3 3 1 1 1. Найдите площадь поверхности многогранника 3 3 2 1 1. Найдите площадь поверхности многогранника 1 1 3 2 2. Площади поверхностей многогранников. Найдите площадь поверхности многогранника на рисунке 210 200 194. Найдите площадь полной поверхности и объем многогранника. Найдите площадь поверхности многогранника двугранные углы прямые. Трехмерные фигуры с двугранным углом. Рассмотрим объемное тело изображенное на рисунке. Найдите объем многогранника изображенного 3036. Найдите объем многогранника, изображенного на рисунке:. Задача на нахождение объема фигуры. Объем сложной фигуры. Нахождение объема фигур задания. Задания на нахождение многогранников. Объем многогранника формула пирамиды. Составной многогранник. На рисунке изображена прямая Призма. Площадь многогранника Равена.
Министерство образования и науки РФ
- Решение заданий В13 (часть 1) по материалам открытого банка задач ЕГЭ презентация
- Нахождение площади поверхности многогранника — «Шпаргалка ЕГЭ»
- Многогранник
- Сборник для подготовки к ЕГЭ (базовый уровень).Прототип задания № 13
- Урок 5 Задание 8 типы 1 -6
Лучшие репетиторы для сдачи ЕГЭ
- Слайд 4: ПЛОЩАДЬ ПОВЕРХНОСТИ ШАРА
- 3.3. Составные тела (Задачи ЕГЭ профиль)
- Площадь поверхности многогранника
- Содержание
Лучшие репетиторы для сдачи ЕГЭ
- Решение заданий В11 (часть 1) по материалам открытого банка задач ЕГЭ по презентация, доклад
- Решение заданий В11 (часть 1) по материалам открытого банка задач ЕГЭ по
- Задания по теме «Многогранник»
- Площадь поверхности составного многогранника
- Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые)
- Поверхности многогранников изображены на рисунках
Как решить найдите площадь поверхности многогранника
Да В ближайшее время курс будет доступен в разделе Моё обучение Материалы будут доступны за сутки до начала урока Чат будет доступен после выдачи домашнего задания Укажите вашу электронную почту.
Ответить на вопрос Для ответа на вопрос необходимо пройти авторизацию или регистрацию. Ответы 1 Марго2 14 сент. Площадь оставшейся фигуры будет равна 38 76 - 38. Dovganicha 2 янв. Nikitavoron29 29 февр. Kristinas15 13 нояб. Vlad21232 17 апр.
Aram8991 7 янв. Megadatsenko 8 окт. Все двугранные углы многогранника прямые.
Даже если вы умеете делать это очень хорошо, можете мысленно сделать такую разбивку, всё-таки следует не торопиться и воспользоваться рекомендациями из этой статьи. Кстати, пока работал над данным материалом, нашёл ошибку в одной из задач на сайте. Нужна внимательность и ещё раз внимательность, вот так. Итак, если стоит вопрос о площади поверхности, то на листе в клетку постройте все грани многогранника, обозначьте размеры. Далее внимательно вычисляйте сумму площадей всех полученных граней.
Если будете предельно внимательны при построении и вычислении, то ошибка будет исключена. Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Используем оговоренный способ. Он нагляден. На листе в клетку строим все элементы грани в масштабе. Если длины рёбер будут большими, то просто подпишите их. Ответ: 72 Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Посмотреть решение Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые.
Он имеет две грани с площадью две грани с площадью и две грани с площадью Следовательно, площадь его поверхности равна Из этого параллелепипеда вырезали прямоугольный параллелепипед с ребрами 1, 1 и 2. В результате этого площадь боковой поверхности уменьшилась на и увеличилась на Следовательно, площадь поверхности многогранника, изображенного на рисунке, равна Ответ: 82.
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые)
Правильный ответ здесь, всего на вопрос ответили 1 раз: найти площадь поверхности многогранника изображённого на рисунке (все двугранные углы прямые). 2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). Решение: Найдем площадь поверхности искомой детали многогранника как сумму прямоугольников. Найти площадь поверхности многогранника изображенного на рисунке все двугранные углы прямые 5 3. отвечают эксперты раздела Математика.
ЕГЭ по математике Профиль. Задание 5
Поверхность многогранника состоит из двух квадратов площад и 4, четырех прямоугольников площад и 2 и двух невыпуклых шестиугольников площад и 3. Следовательно, площадь поверхности многогранника равна 22. Упражнение 2 Изображение слайда Слайд 7: Упражнение 3 Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые. Поверхность многогранника состоит из двух квадратов площад и 4, четырех прямоугольников площад и 2, и двух невыпуклых шестиугольников площад и 3. Упражнение 3 Изображение слайда Слайд 8: Упражнение 4 Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые. Упражнение 4 Изображение слайда Слайд 9: Упражнение 5 Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Поверхность многогранника состоит из квадрат а площад и 9, семи прямоугольников площади которых равны 3, и двух невыпуклых восьми угольников площад и которых равны 4. Следовательно, площадь поверхности многогранника равна 38. Упражнение 5 Изображение слайда Слайд 10: Упражнение 6 Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые. Поверхность многогранника состоит из трех квадратов площад и 4, трех квадратов площад и 1 и трех невыпуклых шестиугольников площад и 3. Следовательно, площадь поверхности многогранника равна 2 4.
Упражнение 6 Изображение слайда Слайд 11: Упражнение 7 Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые. Поверхность многогранника состоит из двух квадратов площад и 16, прямоугольника площади 12, трех прямоугольников площади 4, двух прямоугольников площади 8, и двух невыпуклых восьми угольников площад и 10. Следовательно, площадь поверхности многогранника равна 92. Упражнение 7 Изображение слайда Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые.
Далеко не все обладают хорошим пространственным мышлением, чтобы сразу увидеть все грани и параллелепипеды из которых «состоят» многогранники. Даже если вы умеете делать это очень хорошо, можете мысленно сделать такую разбивку, всё-таки следует не торопиться и воспользоваться рекомендациями из этой статьи. Кстати, пока работал над данным материалом, нашёл ошибку в одной из задач на сайте. Нужна внимательность и ещё раз внимательность, вот так. Итак, если стоит вопрос о площади поверхности, то на листе в клетку постройте все грани многогранника, обозначьте размеры. Далее внимательно вычисляйте сумму площадей всех полученных граней. Если будете предельно внимательны при построении и вычислении, то ошибка будет исключена. Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Используем оговоренный способ. Он нагляден. На листе в клетку строим все элементы грани в масштабе. Если длины рёбер будут большими, то просто подпишите их. Ответ: 72 Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые.
Ответ: 3429,5 5. Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1,5. Ответ: 13,5 5. Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 6. Объем параллелепипеда равен 36. Найдите высоту цилиндра. Ответ: 0,25 5. Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 9. Объем параллелепипеда равен 81. Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 3. Объем параллелепипеда равен 27. Ответ: 0,75 5. Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 8,5. Ответ: 2456,5 6. Цилиндр и конус имеют общее основание и общую высоту. Вычислите объем цилиндра, если объем конуса равен 16.
Развертка Попробуем мысленно "развернуть" наш многогранник так, чтобы одна из граней стала основанием. Тогда задача сводится к вычислению площади основания и боковой поверхности усеченной пирамиды: Способ 2. Достраивание до простого многогранника Можно достроить исходную фигуру до более простого многогранника, например куба. Тогда решение сводится к нахождению разности между площадями поверхностей этих двух многогранников. Подобные приемы позволяют иногда существенно упростить решение задачи. Главное - видеть конструкцию многогранника и уметь мысленно ее трансформировать. Различные типы многогранников Рассмотрим особенности вычисления площади поверхности для разных типов многогранников. Начнем с призмы - многогранника, у которого две грани являются равными многоугольниками, а боковые грани - параллелограммы. У нее одна грань является основанием, а остальные - треугольники с общей вершиной. Для них вычисления проводятся аналогично, но нужно не забыть отнять площадь сечения. Подставив соответствующие значения, получим ответ.
Остались вопросы?
Решение: Задачи на Шары Для решения задач этого типа необходимо повторить формулы для вычисления площади круга, длины окружности, площади поверхности шара, объёма шара. Найдите радиус шара, если плоскость находится на расстоянии 8 см от центра шара.
В результате этого площадь боковой поверхности уменьшилась на и увеличилась на Следовательно, площадь поверхности многогранника, изображенного на рисунке, равна Ответ: 82.
Площадь поверхности заданного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 4: Слайд 22 Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Площадь поверхности заданного многогранника равна сумме площадей большого и маленького параллелепипедов с ребрами 1, 5, 7 и 1, 1, 2, уменьшенной на 4 площади прямоугольника со сторонами 1, 2 — передней грани маленького параллелепипеда, излишне учтенной при расчете площадей поверхности параллелепипедов: Слайд 23 Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Площадь поверхности тела равна сумме поверхностей трех составляющих ее параллелепипедов с ребрами 2,5,6; 2,5,3 и 2,2,3, уменьшенная на удвоенные площади прямоугольников со сторонами 5 ,3 и 2, 3: Слайд 24 Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Площадь поверхности данной детали - есть сумма площади поверхности двух многогранников: со сторонами 1,2,5 и 2,2,2 за вычетом 2 площадей прямоугольников со сторонами 2,2 т. Значит: Слайд 25 Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые.
Да В ближайшее время курс будет доступен в разделе Моё обучение Материалы будут доступны за сутки до начала урока Чат будет доступен после выдачи домашнего задания Укажите вашу электронную почту.
Задача по теме: "Площадь поверхности составного многогранника"
Правильный ответ: 24 3 Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 54. Найдите ребро куба. Правильный ответ: 4 4 Во сколько раз увеличится объем куба, если его ребра увеличить в три раза? Правильный ответ: 27 5 Диагональ куба равна 12.
Найдите его объем. Правильный ответ: 8 6 Объем куба равен 24 3. Правильный ответ: 6 7 Если каждое ребро куба увеличить на 1, то его объем увеличится на 19.
Правильный ответ: 2 8 Диагональ куба равна 1. Правильный ответ: 2 9 Площадь поверхности куба равна 24. Правильный ответ: 8 10 Объем одного куба в 8 раз больше объема другого куба.
Во сколько раз площадь поверхности первого куба больше площади поверхности второго куба? Найдите угол MLK. Ответ дайте в градусах.
Правильный ответ: 60 13 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.
Правильный ответ: 5 14 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Правильный ответ: 3 15 Прямоугольный параллелепипед описан около единичной сферы.
Найдите его площадь поверхности. Правильный ответ: 24 16 Площадь грани прямоугольного параллелепипеда равна 12. Ребро, перпендикулярное этой грани, равно 4.
Найдите объем параллелепипеда. Правильный ответ: 48 17 Объем прямоугольного параллелепипеда равен 24. Одно из его ребер равно 3.
Найдите площадь грани параллелепипеда, перпендикулярной этому ребру. Правильный ответ: 8 18 Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12.
Найдите ребро параллелепипеда, перпендикулярное этой грани. Правильный ответ: 5 19 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 6. Объем параллелепипеда равен 48.
Найдите третье ребро параллелепипеда, выходящее из той же вершины. Правильный ответ: 4 20 Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 6, 9. Найдите ребро равновеликого ему куба.
Правильный ответ: 6 21 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Правильный ответ: 32 22 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 3.
Объем параллелепипеда равен 36. Правильный ответ: 7 23 Одна из граней прямоугольного параллелепипеда — квадрат. Диагональ параллелепипеда равна 8 и образует с плоскостью этой грани угол 45o.
Правильный ответ: 4 24 Диагональ прямоугольного параллелепипеда равна 8 и образует углы 30o , 30o и 45o с плоскостями граней параллелепипеда.
Решение: Задачи на Цилиндры Для решения задач этого типа необходимо повторить формулы вычисления площади круга, длины окружности, площади поверхности цилиндра, объёма цилиндра. Радиус основания цилиндра увеличили в 3 раза, а его высоту уменьшили в 4 раза.
Во сколько раз увеличится объём цилиндра?
Ответ: 58 2. Найдите объем многогранника, изображенного на рисунке все двугранные углы прямые. Ответ: 90 2. Ответ: 10 2.
Ответ:40 2. Ответ: 18 3. Длина окружности основания конуса равна 3, образующая равна 2. Найдите площадь боковой поверхности конуса. Ответ: 3 3.
Объем конуса равен 16. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса. Ответ: 2 3. Объем конуса равен 64.
Ответ: 8 3. Объем конуса равен 120.
Правильный ответ: 8 10 Объем одного куба в 8 раз больше объема другого куба. Во сколько раз площадь поверхности первого куба больше площади поверхности второго куба? Найдите угол MLK. Ответ дайте в градусах. Правильный ответ: 60 13 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4.
Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины. Правильный ответ: 5 14 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Правильный ответ: 3 15 Прямоугольный параллелепипед описан около единичной сферы. Найдите его площадь поверхности. Правильный ответ: 24 16 Площадь грани прямоугольного параллелепипеда равна 12.
Ребро, перпендикулярное этой грани, равно 4. Найдите объем параллелепипеда. Правильный ответ: 48 17 Объем прямоугольного параллелепипеда равен 24. Одно из его ребер равно 3. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру. Правильный ответ: 8 18 Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12.
Найдите ребро параллелепипеда, перпендикулярное этой грани. Правильный ответ: 5 19 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 6. Объем параллелепипеда равен 48. Найдите третье ребро параллелепипеда, выходящее из той же вершины. Правильный ответ: 4 20 Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 6, 9. Найдите ребро равновеликого ему куба. Правильный ответ: 6 21 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4.
Диагональ параллелепипеда равна 6. Правильный ответ: 32 22 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 3. Объем параллелепипеда равен 36. Правильный ответ: 7 23 Одна из граней прямоугольного параллелепипеда — квадрат. Диагональ параллелепипеда равна 8 и образует с плоскостью этой грани угол 45o. Правильный ответ: 4 24 Диагональ прямоугольного параллелепипеда равна 8 и образует углы 30o , 30o и 45o с плоскостями граней параллелепипеда. Правильный ответ: 4 25 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4.
Найдите площадь поверхности параллелепипеда. Правильный ответ: 64 26 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Объем параллелепипеда равен 6. Найдите объем треугольной пирамиды AD1CB1. Найдите длину ребра AA1. Найдите длину диагонали DB1. Точка K — середина ребра BB1.
Найдите площадь сечения, проходящего через точки A1, D1 и K.
Как решить найдите площадь поверхности многогранника
Пример: Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые). Найдите площадь поверхности многогранника, вершинами которого являются середины рёбер данного тетраэдра. Объяснение: Так как все двугранные углы прямые, то многогранник является прямоугольным параллелепипедом. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).№5Решение:Площадь поверхности заданного многогранника равна сумме площадей. Задача 2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).