Новости применение искусственного интеллекта в медицине

Сегодня искусственный интеллект позволяет выявить опасные заболевания на самых ранних этапах, создавать оптимальные схемы терапии, сводить к минимуму вероятность ошибок в лабораторной диагностике и даже делать хирургические операции.

Искусственный интеллект в медицине: добро или зло?

2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями. Искусственный интеллект на рынке медицины прогнозируемая нехватка врачей и специалистов в единицах, США, 2032 г. Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи.

Обзор Российских систем искусственного интеллекта для здравоохранения

Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. Искусственный интеллект (ИИ) помогает врачам ставить верный диагноз и назначать нужные исследования. Использование искусственного интеллекта (ИИ) для анализа данных в целях фармаконадзора. Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества. Возможность делать прогнозы с помощью искусственного интеллекта в медицине применяют и иначе.

Национальная база медицинских знаний

Журналисты приводят данные, согласно которым совокупный экономический эффект от использования искусственного интеллекта в медорганизациях достиг 13 млрд рублей еще в 2021 году. Применяя когнитивные технологии и искусственный интеллект (ИИ) к этим данным, сектор может перейти от традиционного реактивного лечения к более проактивной медицинской системе, базирующейся на предотвращении заболеваний, укреплении здоровья, ускоренной. Искусственный интеллект на рынке медицины прогнозируемая нехватка врачей и специалистов в единицах, США, 2032 г. Преимущества искусственного интеллекта. Благодаря использованию технологий ИИ в медицине, сможет повысится эффективность оказания медицинских услуг, практически единогласно говорят участники рынка.

Собянин: Цифровые технологии спасают жизни и повышают качество лечения москвичей

Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую. Одним из важных направлений применения искусственного интеллекта в медицине является его использование в диагностике различных заболеваний. Некоторые из созданных с помощью искусственного интеллекта редакторов генов демонстрируют сравнимую или улучшенную активность.

Применение искусственного интеллекта в московском здравоохранении

В 2023 году искусственный интеллект произвел фурор в качестве полезной технологии во многих отраслях, особенно в медицине. Искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения, а также напоминает выпить таблетку и угрожает безработицей. Однако внедрение искусственного интеллекта в медицину сопряжено с некоторыми рисками и ограничениями.

Искусственный интеллект в медицине. Настоящее и будущее

Один из последних примеров — китайская биотехнологическая компания в начале этого года с помощью ИИ придумала лекарство для лечения идиопатического легочного фиброза ИЛФ. Это тяжелое заболевание, сопровождающееся рубцеванием легких, от которого страдают в основном пожилые люди. ИИ исследовал массив данных о фиброзе дыхательных путей с целью найти белок, отвечающий за заболевание. Когда белок был найден, нейросеть приступила к синтезированию молекулы, которая бы эффективно боролась с недугом. Препарат от ИЛФ прошел первую стадию клинических исследований, и его уже испытали на добровольцах. Столичные алгоритмы По данным Национального центра развития ИИ при правительстве РФ, Россия занимает лидирующие позиции в мире по разработке и внедрению ИИ в здравоохранении. Значительную роль в этом сыграл московский опыт внедрения ИИ в здравоохранение. Как рассказали «Ведомости. Городу» в столичном депздраве, сегодня в Москве реализуются четыре крупнейших проекта использования ИИ в здравоохранении. Компьютерные алгоритмы находят патологии уже по 21 клиническому направлению. Нейросети помогают врачам определять на снимках лучевых исследований признаки рака легкого, COVID-19, остеопороза позвоночника, аневризмы аорты, ишемической болезни сердца, инсульта, а также рака молочной железы, грыж позвоночника, артроза, плоскостопия и других заболеваний.

О совершенно новой области применения ИИ в московском здравоохранении «Ведомости. Городу» рассказала заммэра по вопросам социального развития Анастасия Ракова. Это опасное неврологическое заболевание обычно начинает развиваться в молодом возрасте и со временем может привести к тяжелой инвалидности. Технологии ИИ позволят медикам повысить скорость и точность его диагностики на МРТ головного мозга», — объяснила Ракова. Алгоритмы отмечают области возможных патологий цветовыми подсказками и ранжируют медицинские снимки по степени вероятности патологии. Окончательный диагноз в любом случае ставит врач, но технологии значительно ускоряют постановку диагноза и повышают его точность.

Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов. Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента. Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца. Создание лекарств Разработка вакцины и последующие клинические исследования — это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям. Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза. Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных. Таким образом, понадобилось 46 дней для выбора подходящего лекарства. Однако традиционный процесс разработки лекарств занимает около 8 лет и стоит фармкомпаниям несколько миллионов долларов. Новые технологии дают надежду на то, что с их помощью мы сможем быстрее получить лекарства от болезней, которые сегодня не поддаются лечению: рассеянный склероз, болезнь Альцгеймера и другие.

Качество работы подтверждает статистика. Например, заммэра Москвы по вопросам социального развития Анастасия Ракова сообщила , что за два года сервисы ИИ обработали более 6 млн лучевых снимков. По ее словам, технологии помогли быстрее описать снимки и заметили мельчайшие отклонения. ИИ хорошо показал себя в медицине, поэтому ученые уже пишут алгоритм, по которому можно будет обнаружить ранние проявления болезни Альцгеймера по результатам МРТ. Еще одним направлением, где применяется искусственный интеллект, стала область семантического анализа. ИИ анализирует и систематизирует данные, содержащиеся в электронной медицинской карте пациента. Ее заполняют сразу несколько врачей: кардиолог, невролог, терапевт и другие. Алгоритм собирает анамнезы воедино, и так специалист может обнаружить определенные паттерны. Метод, при котором медкарта заполнена разными специалистами, а данные собраны воедино, позволяет оптимизировать постановку точного диагноза. Настоящей технологией будущего можно считать роботов-хирургов — это решение на стыке роботизации и ИИ. Успешный проект в этом направлении представил резидент «Сколково» — компания «Экзоскелет». Специалисты разрабатывают роботы-экзоскелеты, которые помогают людям после тяжелых травм заново учиться ходить. Однако говорить об использовании роботов-хирургов пока рано. Причина кроется в большом количестве алгоритмических частей, с помощью которых можно создать конечный продукт. При этом они могут быть не связаны напрямую с медицинскими показателями. К примеру, автопилот распознает препятствия на дороге, но не имеет доступа к управлению машиной. Польза для каждого Применение ИИ выгодно как для врача, так и для пациента — то есть, для всей системы здравоохранения в целом. Качество диагностики выходит на совершенно другой уровень.

Но на самом деле исследования куда глубже, чем можно представить. И касаются они не только вирусологии, но также профилактической медицины и нутрициологии, для которых анализируют натуральные органические соединения. Их существует десятки миллиардов, поэтому исследования вручную не слишком эффективны. Клинические испытания требуют крупных инвестиций и могут длиться несколько лет. Для разработки нового препарата нужно протестировать на клеточных культурах десятки и сотни химических соединений, которые в дальнейшем нужно будет проверить и на живых организмах. Из-за этого все фазы клинических испытаний могут занять несколько лет. Компьютерные мощности способны помочь исследователям, значительно ускорив процесс создания новых лекарственных препаратов, а также ощутимо сократить расходы на проведение дорогостоящих клинических испытаний. К примеру, британо-ирландская компания Nuritas использует искусственный интеллект для поиска активных органических соединений, которые в теории можно использовать для лечения и предотвращения болезней. Как утверждают специалисты компании, технология анализа химических соединений с помощью искусственного интеллекта в 600 раз точнее и в десять раз быстрее, чем стандартные методики. Впрочем, без человека пока еще не обойтись. После того, как нейросеть обнаруживает перспективное соединение, за глубокое исследование берутся биохимики. За восемь лет сотрудники компании зарегистрировали 65 патентов в медицинской отрасли, сейчас компания активно разрабатывает препараты для восстановления мышц, нормализации метаболизма глюкозы и замедления клеточного старения. Это лишь один из нескольких десятков проектов, которые изучают химические соединения для разработки диетических и биологических пищевых добавок, а также лекарственных препаратов. А развитие искусственного интеллекта в перспективе еще больше ускорит исследования и улучшит их результативность. Согласно данным Всемирной организации здравоохранения, редкими считаются болезни с распространенностью от 1 случая на 1 000 человек до 1 случая на 200 000 человек. Концерны не слишком часто инвестируют средства в поиски лекарств от таких болезней. Время окупаемости таких исследований составит десятки лет, если они вообще когда-нибудь окупятся. Основная сложность лечения редких болезней не в синтезе лекарств и лабораторных тестированиях, а в недостатке клинических данных.

Нейросеть для медиков: искусственный интеллект научился ставить диагнозы

В 2014 году Алекс основал уже упомянутую Insilico Medicine, имея за плечами опыт работы в индустрии высоких технологий и заинтересовавшись вопросами фармации. Это интересно: Как работает искусственный интеллект Если вернуться к ИИ, то сами разработчики называют основную технологию работы искусственного интеллекта «генеративным тензорным обучением». Она позволяет ИИ, если не вдаваться в подробности, более эффективно и быстро обучаться требуемым навыкам. Мы подумали: можем ли мы заставить машины придумывать с нуля новые молекулы с определенными свойствами вместо того, чтобы заставлять их перебирать десятки доступных вариантов, — говорит Алекс Жаворонков. Insilico использовали GENTRL для того, чтобы создать несколько а если быть точным, то 6 вариантов лекарств для лечения мышечного фиброза. Созданные лекарственные средства ингибируют рецептор DDR1, который участвует в развитии болезни. Для этого ИИ потребовался 21 день, после чего ученые выбрали наиболее подходящие варианты препаратов и протестировали их на лабораторных животных.

Всего в рамках награды было подано более 100 заявок.

Также победителями номинаций стали: Русагро, Авито, Росатом и Роскосмос. Премия Data Fusion Awards присуждается за достижения в области развития тренда Data Fusion, реализацию успешных кросс-отраслевых проектов по анализу больших данных с использованием алгоритмов машинного обучения и искусственного интеллекта, развитие образовательных инициатив для подготовки специалистов. От лица Цельса хотим поблагодарить организаторов за высочайший уровень организации конференции Data Fusion, качество докладов и актуальность повестки. Почти в каждом четвертом случае была обнаружена патология. Технология для анализа цифровых изображений помогает оперативно обнаружить изменения скелета, сердечно-сосудистые нарушения, фиброз и т. Результаты работы Цельса проверяет врач», — отметил заммминистра здравоохранения региона в сфере цифровизации Алексей Захаров.

Также 32 региона заключили контракт на закупку решений для работы с электронными медкартами, говорится в презентации замминистра. Замминистра также обратил внимание, что перевес в этой сфере имеют российские продукты - из 24 медицинских изделий с ИИ, зарегистрированных Росздравнадзором, 17 - от российских разработчиков. Как работает анализ медицинских изображений? А врач, когда работает с этим исследованием, уже использует результаты работы искусственного интеллекта, - рассказал "РГ" коммерческий директор компании Цельс Артем Капнинский. И мы эту работу делаем не для того, чтобы заменить его, а чтобы ему помочь.

Когда врач работает вместе с искусственным интеллектом, это минимизирует возможность ошибки. До 50 процентов уменьшается время на интерпретацию исследования, и до 15-20 процентов повышается качество - выявление онкологических и других заболеваний на ранних стадиях". Один из самых активных регионов в плане использования ИИ для анализа медицинских изображений - город Москва. Научная база столицы включает более 10,5 миллиона исследований, проанализированных с помощью сервисов искусственного интеллекта, рассказал директор Центра диагностики и телемедицины, главный внештатный специалист по лучевой и инструментальной диагностике департамента здравоохранения Москвы Юрий Васильев. Врач-рентгенолог большую часть времени что-то пишет, а не смотрит на изображение, а должно быть наоборот", - сказал он.

Пока искусственный интеллект применяется в основном для анализа медицинских изображений и электронных медицинских карт Есть и другие технологии ИИ, помогающие повысить эффективность системы здравоохранения.

Впрочем, эта проблема достаточно быстро решилась: на рынок вышли отечественные разработки и, по оценке Анны Соломахиной, основателя Школы медицинского бизнеса, многие из них не уступают иностранным аналогам. Читайте также: Нейросети скоростного плетения: Россия даст свободу искусственному интеллекту В частности, только в этом году был предложен целый ряд инновационных продуктов, которые будут использованы в сфере диагностики. Так, ученые из химико—биологического кластера Санкт—Петербургского ИТМО разработали ИИ—платформу для поиска наночастиц, которые можно будет использовать в терапии онкологических заболеваний. Прорывом в области диагностики можно считать и один из первых в мире видеокапилляроскопов для обнаружения самых ранних стадий всех видов карцином, который был представлен сотрудниками МГМУ им.

Также российскими разработчиками были анонсированы появления уникального прибора идиокапилляроскопа, офтальмологического анализатора, сфокусированного ультразвука и т. Почти полувековой опыт применения роботизированных систем в сегменте лабораторной диагностики подтверждает слова эксперта. С помощью лабораторных анализов, сделанных посредством искусственного интеллекта, можно выявить широкий спектр заболеваний, включая инфекционные, воспалительные, онкологические и наследственные. Первые автоматические анализаторы, которые могли проводить измерения одновременно нескольких биохимических параметров и оперативно выполнять комплекс исследований в одном образце биоматериала, появились ещё в 70—х годах прошлого века. При этом необходимо нивелировать риск ошибок по причине человеческого фактора, а также защитить сотрудников от контакта с потенциально опасным биологическим материалом.

Современное оборудование может также исключить из исследования некачественный биоматериал на основе тестирования пробы в процессе постановки, а также выполнять дополнительные исследования по предустановленным правилам и назначениям", — поясняет Ирина Скибо.

Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией

Текущее исследование займет около 12 недель, а его итоги планируется подвести в следующем году. Проблема в том, что он с той же эффективностью способен создавать и новые отравляющие вещества и оружие. ИИ — сам по себе потенциальное оружие, которое нуждается в жестком контроле. Что же касается усилий по созданию с его помощью новых средств спасения жизней, то это можно только приветствовать». Еще два препарата, созданных Insilico Medicine при участии ИИ, сейчас проходят клинические испытания: лекарство от COVID-19 на первой фазе и препарат против онкологических заболеваний, который должен будет помочь в лечении твердых опухолей. Они, однако, были созданы ИИ лишь частично.

Что нужно сделать, чтобы перестать отставать от развитых стран? Эти вопросы «МВ» адресовал члену наблюдательного совета ассоциации «Национальная база медицинских знаний» и участнику рабочей группы по подготовке проекта приказа об электронном медицинском документообороте Александру Гусеву. Искусственный интеллект преодолевает препятствия Ассоциация разработчиков и пользователей ИИ в медицине «Национальная база медицинских знаний» НБМЗ , созданная несколько лет назад при поддержке РВК, поставила перед собой цель способствовать внедрению новейших технологий в клиническую практику.

Во внедрении ИИ в медицину есть еще множество неразрешенных вопросов. К примеру, кто будет нести ответственность за ошибки? Все люди совершают ошибки. Поэтому неудивительно, что созданный людьми искусственный интеллект тоже может их совершать. С врачебной ошибкой все ясно — ответственность несет тот, кто совершил неверное действие, а вот с ИИ зона ответственности непонятна. Обеспечение работы искусственного интеллекта связано с применением вычислительных мощностей, которых нет во многих медицинских учреждениях. Также остается открытым вопрос предоставления и хранения личной информации пациента. Поскольку кибермошенники не дремлют, данный вопрос требует особой проработки. Могу сказать точно, что никакие технологии не смогут заменить человеческого общения.

Искусственный интеллект никогда не научится сострадать человеку и морально поддерживать в трудную минуту. Общение врача с пациентами имеет большое значение. Однажды был случай, когда врач в Калифорнии послал робота в палату к 78-летнему пациенту и его родственникам, чтобы с помощью видеосвязи сообщить им о том, что тот умрет. Конечно же родные пациента, да и сам пациент были в шоке, хотя они и знали, что смерть неминуема. Однако это не означает, что подобные новости можно преподносить таким образом.

Когда начал работать в науке, стало понятно, что и здесь много рутины. Это только в кино каждый день какие-то прорывы, а в реальности работа ученого — это в основном кропотливый труд. Больше всего раздражают бюрократические, административные вопросы, которые отвлекают от научной деятельности и сильно выматывают. Но зато, когда что-то получается, подтверждается гипотеза и есть результат — например, научная статья в авторитетном журнале — это радует и вдохновляет. Максим с детства хотел заниматься наукой Источник: Анастасия Пешкова — А почему вы выбрали биофизику? Еще с ранних лет мне было интересно всё, что связано с изучением мозга. Когда я был маленьким, мне казалось, что для этого нужны знания по биологии, нейрофизиологии, психологии. Но потом, в том числе благодаря родителям и учителям, я понял, что современные науки, особенно те, где есть большое количество экспериментальных данных, сложные приборы, установки, невозможно постичь без естественно-научного образования в качестве базы. Эмпирическая биология и нейрофизиология, когда было достаточно простых наблюдений и анализов, давно закончилась. Сейчас любая сложная наука — это наука данных, а методы их анализа одни и те же в любых областях. Биохимическая физика — это применение физико-математических методов к биологическим системам. Исследования по большей части имеют прикладной характер Источник: Анастасия Пешкова — Наша лаборатория изучает мозг человека, больше половины проектов связаны с нейровизуализацией — получением и анализом данных работы мозга. Для этого применяются математическое моделирование, методы машинного обучения и искусственного интеллекта. Но в процессе решения прикладных задач часто возникают и фундаментальные, например, касающиеся методов: разработка новых типов нейронных сетей, новых архитектур, подходов к анализу данных. Также мы занимаемся так называемой персонализированной медициной. По каждому человеку можно собрать огромное количество данных: геномные, транскриптомные, МРТ мозга, энцефалограмма, анализы крови и так далее. Суммарно это даст очень информативный индивидуальный портрет человека. А методы машинного обучения ИИ позволяют эти данные объединить и сделать полезный вывод для науки или для лечения человека. Пока это поиск общих тенденций, но мы надеемся, что со временем получится давать конкретные рекомендации. Максим много сотрудничает с зарубежными коллегами Источник: Анастасия Пешкова — Где это может применяться? Тогда берется анализ патологической ткани и проводится ее детальный анализ. Какие-то части этой сложной неоднородной структуры могут откликаться на терапию, какие-то — нет.

Национальная база медицинских знаний

Один из последних примеров — китайская биотехнологическая компания в начале этого года с помощью ИИ придумала лекарство для лечения идиопатического легочного фиброза ИЛФ. Это тяжелое заболевание, сопровождающееся рубцеванием легких, от которого страдают в основном пожилые люди. ИИ исследовал массив данных о фиброзе дыхательных путей с целью найти белок, отвечающий за заболевание. Когда белок был найден, нейросеть приступила к синтезированию молекулы, которая бы эффективно боролась с недугом.

Препарат от ИЛФ прошел первую стадию клинических исследований, и его уже испытали на добровольцах. Столичные алгоритмы По данным Национального центра развития ИИ при правительстве РФ, Россия занимает лидирующие позиции в мире по разработке и внедрению ИИ в здравоохранении. Значительную роль в этом сыграл московский опыт внедрения ИИ в здравоохранение.

Как рассказали «Ведомости. Городу» в столичном депздраве, сегодня в Москве реализуются четыре крупнейших проекта использования ИИ в здравоохранении. Компьютерные алгоритмы находят патологии уже по 21 клиническому направлению.

Нейросети помогают врачам определять на снимках лучевых исследований признаки рака легкого, COVID-19, остеопороза позвоночника, аневризмы аорты, ишемической болезни сердца, инсульта, а также рака молочной железы, грыж позвоночника, артроза, плоскостопия и других заболеваний. О совершенно новой области применения ИИ в московском здравоохранении «Ведомости. Городу» рассказала заммэра по вопросам социального развития Анастасия Ракова.

Это опасное неврологическое заболевание обычно начинает развиваться в молодом возрасте и со временем может привести к тяжелой инвалидности. Технологии ИИ позволят медикам повысить скорость и точность его диагностики на МРТ головного мозга», — объяснила Ракова. Алгоритмы отмечают области возможных патологий цветовыми подсказками и ранжируют медицинские снимки по степени вероятности патологии.

Окончательный диагноз в любом случае ставит врач, но технологии значительно ускоряют постановку диагноза и повышают его точность.

Неоднородность мультимодальных данных затрудняет построение моделей. Важно изучить, как представлять входные данные и обобщать их таким образом, чтобы они отражали несколько модальностей. Например, текст представляется символами, а аудио и визуальные модальности — сигналами. В контексте медицинского применения вся диагностическая информация о пациенте может быть интегрирована в такие мультимодальные данные и обрабатываться системой ИИ, обученной рассматривать как внешнее изображение человека и фрагментов его тела, так и результаты анализов, МРТ- и КТ-изображения, аудиозаписи ответов на вопросы и т. Все это приближает нас к построению универсального диагноста, использующего холистический подход к диагностике заболеваний, и сокращению количества посещений разных врачей-специалистов для назначения эффективного лечения. Приложения для здоровья на базе искусственного интеллекта Самое большое потенциальное преимущество искусственного интеллекта — возможность помочь людям оставаться бодрыми, чтобы им не приходилось посещать врача или по крайней мере делать это не слишком часто. Искусственный интеллект и интернет медицинских вещей IoMT уже постепенно меняют парадигму с «реактивного» здравоохранения на «проактивное».

Сочетание искусственного интеллекта и IoMT со временем сделает подключенные устройства для мониторинга состояния здоровья более интеллектуальными. ИИ и огромные объемы данных, генерируемые IoMT, также могут использоваться для постановки диагноза. Различные приложения для здорового образа жизни на основе искусственного интеллекта, такие как MyFitnessPal и HealthTap, предоставляют людям полный контроль над своим здоровьем и благополучием, обратную связь с медучреждением и рекомендации для поддержания здоровья. Например, HealthTap узнает о симптомах пациента и их изменении с течением времени и координирует процесс лечения: отправляет напоминания, предоставляет текстовые ответы, сопоставленные с данными об истории болезни, руководствами, созданными врачами, а также обеспечивает возможность проведения онлайн-консультаций по видеоконференцсвязи. ИИ в медицине — это прорыв? Можно ли назвать применение ИИ прорывом в диагностике и лечении? На мой взгляд, сегодня прорыв еще не произошел. Поэтому я бы использовал количественную оценку развития технологии, например, число успешных исследовательских проектов в этой области или число публикаций.

Если такой показатель растет экспоненциально, то можно говорить о быстром продвижении вперед. С этой точки зрения мы присутствуем при развитии прорывных технологий диагностики и лечения.

Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике. Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию.

Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей. Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы? То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины. Это довольно сложный процесс, который может тянуться годами.

Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний. Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты.

Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах. В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ? MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков. Её создали в 1970-х годах учёные Стэнфордского университета США.

MYCIN предназначалась для подбора антибактериальной терапии. Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Всё дело в доверии. Медицина — это область доверия. Мы же доверяем врачу самое дорогое — своё здоровье и здоровье наших детей.

Поэтому компьютерные системы должны не только выдавать рекомендации, но ещё и обладать функцией объяснения, обоснования предложенных решений. Это важный компонент доверия. Вот почему в сфере медицины очень сложно применять популярные сегодня нейронные сети и другие модели, основанные на методах восходящей парадигмы искусственного интеллекта. Если система, основанная на нейронных сетях, сможет объяснять свои решения, то, пожалуйста, применяйте. Но обычно нейросети на это неспособны.

Вопрос, как я уже сказал, в доверии. Врач или консилиум врачей должен иметь возможность проверить выводы программы. Если ИИ даёт второе мнение по какому-то пациенту, то доктору нужно понимать, почему алгоритм пришёл к таким выводам. В случаях, когда «Джейн» помогла уточнить диагнозы, фактически решение приняли врачи консилиум. Система лишь обратила внимание на нестыковки и смогла обосновать альтернативное решение.

Окончательное решение всегда остаётся за человеком. И поэтому она была основана не на нейросетях, а на наборах хранимых правил. То есть в ней была база знаний, правила вывода, семантические сети. При поиске решения применялось нечёткое сопоставление то есть правила нечёткой логики. Я всегда мог объяснить врачам, почему система, основываясь на наблюдениях за состоянием пациента, сообщала о вероятности того или иного диагноза.

Говоря научным языком, «Джейн» относилась к объяснимому искусственному интеллекту. Росстандарт принял первый в нашей стране ГОСТ по этой теме только несколько месяцев назад. К его созданию имел отношение Технический комитет по стандартизации ТК 164 «Искусственный интеллект», в работе которого я участвую.

Особое внимание уделяется радиологии — использованию нейросетей для анализа рентгеновских снимков. Google использовали алгоритмы для интерпретации снимков грудной клетки, чтобы поставить 14 различных диагнозов, от пневмонии до гипертрофии сердца и коллапса легкого. DNN также способны диагностировать отдельные виды рака , переломы, кровоизлияния, ретинопатию, поражения кожи и множество других заболеваний.

Алгоритмы могут улучшить работу дерматологов, кардиологов, офтальмологов и даже психотерапевтов, позволяя отслеживать развитие депрессии. Примеры применения ИИ в здравоохранении на протяжении жизни человека Проблема состоит в том, что большинство исследований и отчетов все еще существуют только в виде препринта. Они не опубликованы и не проверены рецензентами. В препринтах проверка работоспособности алгоритмов осуществляется с точки зрения точности, что еще не равно клинической эффективности. Эффективность подтверждается с помощью недешевых клинических испытаний. Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты.

Датчики на часах определяют частоту сердечных сокращений пользователя в состоянии покоя и при физической нагрузке, и когда происходит сильное отклонение от ожидаемого, пользователю выдается предупреждение о записи ЭКГ через часы, результаты которого затем интерпретирует алгоритм.

Похожие новости:

Оцените статью
Добавить комментарий