Новости с точки зрения эволюционного учения бактерии являются

Другие бактерии, например, цианобактерии и некоторые пурпурные бактерии, являются автотрофами, то есть получают углерод, фиксируя углекислый газ[86]. Поскольку «эволюция бактерий» часто доказывается именно указанием на их способность приспосабливаться к воздействию антибиотиков, то в ряде исследований биологи проверили древних бактерий именно на устойчивость к этим самым антибиотикам. 9 классы. какими организмами являются бактерии с точки зрения эволюции.

Роль бактерий в эволюции жизни на Земле

Заходи и смотри, ответил 1 человек: какими организмами являются бактерии с точки зрения эволюции — Знания Сайт. Как перемещаются бактерии? №1. Каких химических эллементов больше всего в живом организме? №2. Что указывает на почему молекула воды является диполем. В целом клетка бактерии устроена достаточно просто. Его основной труд «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926 г.) лег в основу синтетической теории эволюции. Как перемещаются бактерии? №1. Каких химических эллементов больше всего в живом организме? №2. Что указывает на почему молекула воды является диполем.

Задание Учи.ру

Найдите правильный ответ на вопрос«Какими организмами являются бактерии с точки зрения эволюции » по предмету Биология, а если вы сомневаетесь в правильности ответов или ответ отсутствует. Правильный ответ на вопрос«Какими организмами являются бактерии с точки зрения эволюции » по предмету Биология. С точки зрения эволюции они являются , 1. образовательная образовательные ткани, или меристемы, являются эмбриональными тканями. долго сохраняющейся способности. Бактерии Thermotogota обычно являются термофильными или гипертермофильными, грамотрицательно окрашивающимися, анаэробными организмами, которые могут жить вблизи гидротермальных источников, где температура может колебаться в пределах 55-95 ° C.

Эволюция всего: как развиваются бактерии, вирусы и люди

  • Почерневшие бабочки, неуязвимые бактерии. Эволюция в наши дни и как ее «увидеть» — Нож
  • Вирусы как эволюционный фактор (Александр Бутюгин) / Проза.ру
  • Бактерии — Википедия Переиздание // WIKI 2
  • Прокариоты: у подножья пирамиды жизни. Интервью с чл.-корр. РАН Е.А. Бонч-Осмоловской
  • Дарвиновская эволюция бактерий — полная картина / Хабр

Настоящее разнообразие жизни: что умеют бактерии

Таким образом, многие свойства микроорганизмов как культивируемых, так и некультивируемых до сих пор остаются скрытыми от нас. Бактерии и археи осуществляют огромное количество биологических реакций на нашей планете. Например, азот на Земле в основном присутствует в свободном виде в атмосфере, его очень трудно мобилизовать, а ведь он необходим для построения белков и аминокислот. Доступным для всех живых существ азот делают прокариоты. Я думаю, что их роль в азотном питании животных и растений до сих пор недооценена. Работа прокариотных сообществ способствует окончательной переработке ископаемого органического вещества в природный газ. Но только бактерии и археи могут при отсутствии кислорода разлагать сложные полимерные субстраты, образованные растениями и животными, до простейших молекул, которые снова возвращаются в так называемые биогеохимические циклы. Невидимые микробы заставляют «крутиться» все циклы элементов на Земле, и их роль для нашей биосферы бесценна.

А могут ли бактерии поедать пластик не в лабораторных условиях под присмотром ученых, а самостоятельно, в природе? Конечно, разложением пластика бактерии могут заниматься и в природных условиях, но эти процессы, к сожалению, протекают очень медленно. Совместно с коллегами из Института микробиологии им. Виноградского РАН мы пытаемся найти термофильные микроорганизмы, способные разлагать различные виды пластика, в первую очередь полиэтилен и полиэтилентерефталат. Высокая температура делает их более доступными для разложения: меняется структура полимера, пластик становится более рыхлым. Таким образом, на структуру пластика одновременно действуют и температура, и ферменты, выделяемые микробами. Результаты уже есть, но пока я не могу назвать их стабильными, и причина такого избирательного разрушения пластика неясна.

Но наши исследования продолжаются. Спасибо за интересный разговор!

Каждая популяция размножалась в искусственной среде, где скорость размножения ограничивалась стрессовыми условиями. Каждый день 0,1 мл содержимого каждой пробирки переносилось в пробирку с 10 мл свежей питательной среды, где размножение бактерий продолжалось. В эксперименте использовалась линия E.

В отличие от эукариот, они не имеют оформленного ядра, отделенного от цитоплазмы ядерной оболочкой. Наследственная информация, представленная в виде кольцевой реже — линейной молекулы ДНК, расположена в центральной части клетки.

Размножаются бактерии митозом — простым делением надвое. Предполагается, что в появлении каких-либо приспособлений имеет место горизонтальный перенос генов — передача генетического материала от одного организма к другому, не являющемуся его потомком. В частности, горизонтальный перенос способствует распространению у бактерий устойчивости к антибиотикам, поскольку «гены устойчивости», появившись у одной бактерии, могут быстро передаваться другим видам.

Iskopaemye bakterii i drugie mikroorganizmy v zemnykh porodakh i astromate-rialakh [Fossil bacteria and other microorganisms in ground terrestrial rock and astromaterial]. Rozanov A. Gerasimenko L. Paleontological Journal 1999; 33 4 :439-459. Zavarzin G.

Vestnik Rossiyskoy Akademii Nauk 2001; 71 11 :988—1001. Vvedenie v prirodovedcheskuyu mikrobiologiyu [Introduction to the natural history microbiology]. Moscow: Universitet; 2001. Osobennosti evolyutsii prokariot. V knige: L. Tatarinov, A. Rasnitsyn red. Evolyutsiya i biotsenoticheskie krizisy [The features of prokaryotic evolution.

In: Tatarinov L. Evolution and biocenotic crises]. Moscow: Nauka; 1987. Zvyagintsev I. Uspekhi mikrobiologii 1992; 25:3- 27. Krylov I. Na zare zhizni [At the dawn of life]. Moscow: Nauka; 1972.

Kusakin O. Filema organicheskogo mira [Phylema of the living things]. Petersburg: Nauka; 1994. Lysenko S. Uspekhi mikrobiologii 1981; 16:231253. Margelis L. Moscow: Mir; 1983. Markov A.

Paleontological Journal 2005; 39 2 :109-116. Oparin A. Moscow: Nauka; 1968. Sergeev V. V knige: Rozanov A. Problemy doantropogennoy evoljutsii biosfery [Cianobacterial communities at early stages of biosphere evolution. In: Rozanov A. The problems of pre-antropogenic evolution of biosphere].

Moscow: Nauka; 1993. Sorokhtin O. Moscow: MGU; 1991. Teoriya razvitiya Zemli: proiskhozhdenie, evolyutsiya i tragicheskoe budushchee [The theory of Earth development: origin, evolution and tragic future]. Moscow: IKI; 2010. Fox S. Molekulyarnaya evolutsiya i vozniknovenie zhizni [Molecular evolution and the origin of life]. Moscow: Mir; 1975.

Yakovlev G. Botanika [Botany]. Petersburg; 2001. The origins of multicellularity. Brasier M. Precambrian Res. Green, Jephcoat A. Nature 2002; 416 6876 :76-81.

Bridgwater D. Microfossil-like objects from the Archaean of Greenland: a cautionary note. Brocks J. Archean molecular fossils and the early rise of eukaryotes. Dolan M. Motility proteins and the origin of the nucleus. Meteorites, Microfossils, and Exobiology. In: Hoover R.

Kellogg C. A, Griffin D. Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. Aerobiologia 2004; 20: 99-110. Kurr M. Martins Z. Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet.

Настоящее разнообразие жизни: что умеют бактерии

Наглядный пример такого сцепления обнаружился в ходе эксперимента с домашними лисами. Опыт по их одомашниванию начался еще в 1959 году в Академгородке под Новосибирском. С тех пор появилось множество поколений, и ученые заметили, что, хотя главным критерием отбора лисиц было дружелюбие то есть стремление к контакту с человеком , вместе с дружелюбием они приобрели и другие качества. В частности, закрученный колечком хвост и свисающие уши — совсем как у собак! Даже цвет шкуры стал светлее, а глаза у некоторых особей стали голубыми. Получается, что искусственный отбор сделал, по сути, из лисиц почти собак, причем совершенно случайно. Искусственный отбор — это любопытный процесс, но у подвергаемых ему видов нет времени, чтобы развиться в совершенно другие формы: ни разу еще при искусственном отборе не получался настоящий новый вид, отличающийся от предковой формы. Есть много разных пород и подвидов. Были даже попытки скрещивать разные виды, но их потомство в большинстве своем оказывалось нефертильным и дать начало новому таксону не могло. Возможно, когда-нибудь, через тысячи лет, домашняя лиса станет совершенно не похожа на своего дикого предка, полностью поменяет внешний вид и даже количество хромосом. Но пока что в целом это та же самая лиса — слишком мало времени прошло.

За всё это время она, хоть и изменилась, не «получила» совсем уж новых признаков — не стала, грубо говоря, травоядной и не отрастила перепонки на лапах. А можно ли хоть на ком-то увидеть жизненно важные изменения? Мировое поле экспериментов Нет ничего лучше для эволюции, чем что-то маленькое, активное и быстро размножающееся. Речь, разумеется, о бактериях — в рамках эволюции они стали своеобразной экспериментальной установкой, а потому именно на них можно исследовать эволюционный процесс, причем буквально в лаборатории под собственным микроскопом! При достаточно благоприятных условиях окружающей среды бактерии способны делиться каждые 20—40 минут, то есть за одни сутки они могут «выдать» исследователям сразу несколько десятков поколений! Одним из ярких примеров современной эволюции бактерий является развитие устойчивости к антибиотикам. Бактерии, которые подвергаются частому и несмертельному воздействию антибиотиков, нередко мутируют: выживают в популяции именно те, которые оказываются устойчивыми, а потом передают свои «способности» потомству. Антибиотики всё менее эффективны, а некоторые инфекции становится трудно или даже невозможно лечить. Это явление называется антибиотикорезистентностью , и его масштабы растут с каждым годом из-за неправомерного использования лекарственных препаратов в сельском хозяйстве и распространенности самолечения. В самом начале эры антибиотиков больному, чья патогенная флора никогда не сталкивалась с такими препаратами, хватало буквально капли пенициллина для быстрого излечения.

Сейчас же антибиотики помогают, только если их пить курсом, а иногда и вовсе не помогают — за свою жизнь человек пробует столько препаратов, что его бактериям уже все их уловки знакомы. Читайте также Почему инфекций, устойчивых к антибиотикам, становится все больше — и как с этим бороться Помимо развития бактериальной устойчивости есть и другие примеры быстрой эволюции, причем примеры рукотворные. В 1988 году американский микробиолог Ричард Ленски начал длительный эксперимент, который показал, как быстро может происходить эволюция, если дело касается маленьких и активно размножающихся кишечных палочек. У них не только маленький геном, но еще и невероятная популярность: кишечные палочки служили модельными объектами практически весь ХХ век, а потому научное сообщество знает о них куда больше, чем о многих других. Ленски взял популяцию бактерий E. В течение нескольких поколений бактерии, которые успешнее использовали другие источники пищи, стали доминировать в популяции. Оказалось , что через несколько десятков тысяч поколений геном бактерий изменился, обеспечивая адаптивность. Во всех популяциях при этом наблюдался быстрый рост относительной приспособленности в течение первых поколений, но со временем он замедлялся. Всего лишь несколько мгновений, с нашей точки зрения, — но бактерии эволюционировали. Эксперимент Ленски и его команды всё еще продолжается, и кто знает, что еще удастся обнаружить.

Kellogg [et al. Methanopyrus kandleri, gen. Kurr [et al. Martins [et al. McKay [et al.

Nisbet E. Rasmussen [et al. Rhawn J. Rossi [et al. Sand W.

Schopf J. Shu [et al. Stetter K. Vellai T. Walsh M.

Wainwright [et al. Westall [et al. Whitman W. Woese C. Astafeva M.

Iskopaemye bakterii i drugie mikroorganizmy v zemnykh porodakh i astromate-rialakh [Fossil bacteria and other microorganisms in ground terrestrial rock and astromaterial]. Rozanov A. Gerasimenko L. Paleontological Journal 1999; 33 4 :439-459. Zavarzin G.

Vestnik Rossiyskoy Akademii Nauk 2001; 71 11 :988—1001. Vvedenie v prirodovedcheskuyu mikrobiologiyu [Introduction to the natural history microbiology]. Moscow: Universitet; 2001. Osobennosti evolyutsii prokariot. V knige: L.

Tatarinov, A. Rasnitsyn red. Evolyutsiya i biotsenoticheskie krizisy [The features of prokaryotic evolution. In: Tatarinov L. Evolution and biocenotic crises].

Moscow: Nauka; 1987. Zvyagintsev I. Uspekhi mikrobiologii 1992; 25:3- 27. Krylov I. Na zare zhizni [At the dawn of life].

Moscow: Nauka; 1972. Kusakin O. Filema organicheskogo mira [Phylema of the living things]. Petersburg: Nauka; 1994. Lysenko S.

Uspekhi mikrobiologii 1981; 16:231253. Margelis L. Moscow: Mir; 1983. Markov A. Paleontological Journal 2005; 39 2 :109-116.

Oparin A. Moscow: Nauka; 1968. Sergeev V. V knige: Rozanov A. Problemy doantropogennoy evoljutsii biosfery [Cianobacterial communities at early stages of biosphere evolution.

In: Rozanov A. The problems of pre-antropogenic evolution of biosphere]. Moscow: Nauka; 1993. Sorokhtin O. Moscow: MGU; 1991.

Teoriya razvitiya Zemli: proiskhozhdenie, evolyutsiya i tragicheskoe budushchee [The theory of Earth development: origin, evolution and tragic future]. Moscow: IKI; 2010. Fox S. Molekulyarnaya evolutsiya i vozniknovenie zhizni [Molecular evolution and the origin of life]. Moscow: Mir; 1975.

Yakovlev G. Botanika [Botany]. Petersburg; 2001. The origins of multicellularity.

Попав во влажную питательную среду, споры набухают и затем прорастают.

Из споры снова образуется бактерия, которая начинает двигаться, питаться и размножаться. Так, путём образования спор бактерии сохраняют своё существование. Таким образом, бактерии объединяются в царство мельчайших организмов очень простого строения. Бактерии большей частью питаются органическими веществами; среди них встречаются сапрофиты и паразиты. Бактерии растут и размножаются очень быстро.

Поэтому они быстро распространяются. Исключением являются такие растения , как нитчатые цианобактерии и актиномицеты. Рисунок 1. Формы бактерий В строении бактерий выделяют три обязательных клеточных элемента: цитоплазматическую мембрану, нуклеотид, рибосомы. Эта клеточная оболочка выполняет основные механические и физиологические функции.

Микробиологи делят все виды бактерий на грамположительные, грамотрицательные и бактерии без клеточной стенки микоплазмы , так как в связи с особенностями строения клеточной стенки бактерии по-разному реагируют на окрашивание способом Грама. У грамположительных бактерий стенка утолщена и содержит большее количество муреина, тогда как у грамотрицательных видов клеточная стенка тонкая, а снаружи имеется мембрана, включающая белки, фосфолипиды, липополисахариды. Многие бактерии имеют на своей поверхности ворсинки либо жгутики, обеспечивающие передвижение организма. Некоторые бактерии покрыты снаружи слизистыми капсулами, состоящими из полисахаридов в некоторых случаях полипептидов или гликопротеинов. Рисунок 2.

Строение клетки бактерии От клеточной стенки цитоплазму бактерий отделяет цитоплазматическая мембрана. Такие важные для жизнедеятельности организма процессы, как дыхание, хемосинтез, фиксация азота и др. В мембране осуществляется биосинтез клеточной стенки, а также спорообразование. В целом клетка бактерии устроена достаточно просто. Вся генетическая информация об организме бактерии, необходимая для ее жизнедеятельности, заключена в одной ДНК, которая присутствует в клетке в виде замкнутого кольца.

Она называется нуклеоид. Хромосома обычно в бактериальной клетке имеется в единственном экземпляре, но иногда может содержаться несколько ее копий. У фототрофных, нитрифицирующих бактерий имеется обширная сеть цитоплазматических мембран, представленная сливающимися пузырьками, как граны хлоропластов у эукариот. У тех бактерий, которые живут в водной среде, есть газовые вакуоли аэросомы , функция которых заключается в регуляции плотности. Также в цитоплазме имеются включения запасных питательных веществ: полифосфатов, полисахаридов, соединений серы, т.

Исследуя роль вирусов в эволюции эукариотических клеток, ученые обнаружили вирусное происхождение некоторых структурных элементов. Также существует теория вирусного возникновения ядра. В ее основу положено происхождение клеточного ядра от большого ДНК-содержащего вируса. Проникнув в архею и начав размножаться, микроорганизм стал полностью ее контролировать. Как повлияло появление многоклеточных организмов на ход эволюции Первыми прокариотами, которые могли появиться в водной среде, считаются анаэробные микроорганизмы, осуществлявшие свою жизнедеятельность за счет брожения. Через 1 млрд лет после того, как появился кислород, все эукариоты, большинство которых является аэробами, начали активно заселять водные пространства планеты. Размножаясь, одноклеточные микроорганизмы образовывали многочисленные колонии. Большая скученность привела к появлению у них специализации и определенных клеточных структур. У одних сохранились жгутики и ворсинки, другие их потеряли, сохранив взамен ложноножку.

Таким образом, происходит расслоение колоний, где каждый устойчивый слой выполняет определенные функции. Это можно считать началом эволюции одноклеточных форм до наиболее высокоразвитых животных. К первым многоклеточным животным относятся губки, кишечнополостные и членистоногие. Дальнейшее развитие было направлено на усовершенствование способов передвижения, дыхания и координации функций клеток организма. По мере того, как шла эволюция бактерий, грибов, растений и животных, произошел их выход на сушу. Это привело к быстрому появлению высокоорганизованных форм жизни. Одноклеточные микробы сыграли основную роль в образовании многоклеточных организмов. Эволюция микробного паразитизма и происхождение патогенных микроорганизмов Эволюция паразитизма у сапрофитных бактерий и простейших базируется на расширении мест обитания, а также борьбе за новые сферы распространения. Усовершенствование паразитизма за счет увеличения зависимости от хозяина привело к появлению патогенных микроорганизмов, ставших возбудителями инфекционных заболеваний.

Утратив сапрофитную форму, они стали неспособны жить самостоятельно во внешней среде. В дальнейшем появились факультативные шигеллы, менингококки, микобактерии , а затем облигатные патогенные простейшие, хламидии, риккетсии внутриклеточные паразиты. По мере увеличения количества патогенных микроорганизмов, усовершенствования их вирулентных и токсических характеристик, развивались специфические и неспецифические способы иммунной защиты хозяев. Это стало одним из основных факторов естественного отбора. Основные определения Экология вирусов — это область вирусологии, изучающая взаимосвязь вирусов с объектами внешней среды. Микроэволюция — это эволюционный процесс в популяции, приводящий к видообразованию новых разновидностей микроорганизмов за короткий период времени. Фотолиз — это реакция разложения химического вещества под воздействием световой энергии. Гетеротрофы — это микроорганизмы, которые питаются готовыми органическими веществами. Хемосинтезирующие автотрофы — это бактерии, источником энергии для которых служит реакция соединения железа и серы.

Коацерватные капли — это высокомолекулярные протеиновые структуры, которые появились из раствора с коллоидными частицами. Подвижные генетические элементы — это автономные образования, содержащие информацию о структуре определенных протеинов и обеспечивающие возможность их перемещения из одной части генома в другую. Сапрофитные бактерии — это микробы, использующие для питания органические вещества. Они являются антиподами паразитов. Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой.

Какими организмами являются бактерии с точки зрения эволюции

Согласно третьей точке зрения, это был химерный организм, образовавшийся в результате слияния клеток нескольких разных архей и бактерий. Например, уникальной чертой бактерий является их способность достаточно легко обмениваться между собой разными генами. Найдите правильный ответ на вопрос«Какими организмами являются бактерии с точки зрения эволюции » по предмету Биология, а если вы сомневаетесь в правильности ответов или ответ отсутствует. Согласно третьей точке зрения, это был химерный организм, образовавшийся в результате слияния клеток нескольких разных архей и бактерий.

Бактерии эволюционировали в лаборатории?

Не небольшом вулканическом острове Оаху, изрезанном скальными гребнями и долинами, заросшими влажным тропическим лесом, обитает 25 видов улиток. Всего на острове 25 долин со схожими условиями обитания, в каждой из которых обитает свой вид улиток. Какой тип видообразования обусловил появление такого разнообразия видов улиток? Какие факторы движущие силы эволюции обеспечили образование этих видов улиток и какова роль каждого из факторов? Ответ 2 разделение долин скальными гребнями; 3 низкая миграционная способность улиток невозможность преодолеть скальные гребни ; 4 изоляция; 5 изоляция популяций друг от друга препятствовала обмену генами; 6 мутации; 7 мутации приводили к изменению генофонда в каждой популяции; 8 дрейф генов эффект основателя ; 9 каждая изолированная группа отличалась изначальным генофондом 13. При каких условиях генетически разнообразная популяция организмов может со временем образовать два вида?

Укажите возможные причины разделения популяции с образованием двух видов. Ответ 1 Для того, чтобы образовались два вида, должна возникнуть изоляция: 2 географическая изоляция возникает в результате появления физической преграды между частями популяции; 3 экологическая изоляция возникает при смене экологической ниши частью популяции; 4 изоляция может привести к образованию двух видов в случае невозможности скрещивания и обмена генами между новыми популяциями репродуктивная изоляция. Объясните, как переселение человеком собак в Австралию привело к образованию нового вида Дикая собака динго. Для объяснения используйте знания о факторах эволюции. Ответ 1 популяция собак, переселённых в Австралию, оказалась пространственно изолированной от популяций собак волков других континентов; 2 в изолированной популяции собак появились новые мутации признаки, аллели , которые оказались полезными в новых условиях жизни; 3 длительный естественный отбор сохранил полезные признаки мутации и привёл к изменению генофонда; 4 репродуктивная изоляция привела к формированию нового вида.

Определите по рисунку вид изоляции севанской форели, приведший к образованию различных популяций. Ответ обоснуйте. Почему учёные относят эти популяции к одному виду? Почему севанская форель требует пристального внимания со стороны природоохранных организаций? Ответ 2 в исходном виде сформировались популяции с разными местами нереста; 3 в исходном виде сформировались популяции с разными сроками нереста; 4 между популяциями нет репродуктивной изоляции, поэтому это один вид; 5 этот вид-эндемик обитает только в озере Севан 16.

Как с позиции современного эволюционного учения объясняется появление собачьих блох, устойчивых к противоблошиному шампуню? Ответ 1 в популяции блох присутствуют особи с различной степенью устойчивости к ядовитым веществам разными мутациями ; 2 при обработке шампунем в ходе борьбы за существование неустойчивые к яду шампуня блохи погибают, а устойчивые выживают; 3 выжившие блохи передают гены устойчивости к яду мутацию своим потомкам получим преимущество в размножении ; 4 в результате естественного отбора формируется новая популяция, устойчивая к яду шампуня 17. Вид азиатской птицы зеленоватой камышевки Phylloscopus trochiloides распространился на восток и запад Тибетского плато с юга, огибая непроходимые Гималаи направление распространения вида указано стрелками , где миграция из-за высоты гор невозможна. При этом образовалось множество подвидов, которые различаются по мотивам песни и окраске. Соседние подвиды способны свободно скрещиваться и давать плодовитое потомство например, P.

Однако дальние подвиды не могут скрещиваться и давать плодовитое потомство например, P. Какой тип видообразования иллюстрирует данный пример? Почему у дальних подвидов P. Дайте аргументированный ответ. Ответ 2 дальние подвиды долгое время не контактировали между собой отсутствовал поток генов ; 3 в результате между подвидами накопились значимые генетические различия генофонд подвидов стал различаться ; 4 поэтому возникла репродуктивная изоляция.

Виды тихоокеанской саламандры Ensatina распространены вокруг долины в Калифорнии, которая ограничена горным массивом. В процессе эволюции последовательно образовались виды, которые отличались друг от друга по окраске и другим морфологическим признакам направление распространения видов указано на рисунке стрелками. Соседние виды способны свободно скрещиваться например, E. Однако виды E. Почему у видов E.

Ответ 1 географическое аллопатрическое видообразование; 2 виды E. Многие животные совершают в течение своей жизни регулярные или нерегулярные миграции. Назовите не менее трёх возможных причин таких перемещений. Каждую причину сопроводите примером. Ответ 2 например, миграция рыб из морей в реки на нерест; 3 смена экосистем пожар в лесу, истощение природных ресурсов, увеличение внутривидовой конкуренции ; 4 например, перемещение грызунов после пожара; 5 сезонные изменения условий обитания; 6 например, перелёты птиц миграция северных оленей ; 7 суточные изменения условий обитания; 8 например, вертикальная миграция зоопланктона приливно-отливные миграции.

Внутри находится протоплазма. Ядра нет, как нет и хлорофилла. Содержимое клетки бесцветно. Многие бактерии имеет форму палочки. Само слово «бактерия» происходит от греческого слова «бактерион», что означает палочка. Однако многие бактерии имеют форму шара, изогнутых палочек, запятых или спиралей. Бактерии растут и размножаются необыкновенно быстро. Холерная бактерия делится на две клетки через каждые 20 минут. Новые клетки вырастают до размеров взрослой бактерии и снова делятся. Бактерии нуждаются в пище, влаге, в определённой температуре для поддержании своей жизнедеятельности.

При наступлении неблагоприятных для их жизни условий, например при недостатке пищи, влаги или при резком понижении или повышении температуры, протоплазма бактерии сжимается в шарик и покрывается новой прочной оболочкой. Такое состояние бактерий называется cпopoй. В состоянии споры бактерия не питается и не движется - она находится в покое. Споры многих бактерий выдерживают длительное высушивание, кипячение, замораживание, а также действие различных ядов. Попав во влажную питательную среду, споры набухают и затем прорастают. Из споры снова образуется бактерия, которая начинает двигаться, питаться и размножаться. Так, путём образования спор бактерии сохраняют своё существование. Таким образом, бактерии объединяются в царство мельчайших организмов очень простого строения. Бактерии большей частью питаются органическими веществами; среди них встречаются сапрофиты и паразиты. Бактерии растут и размножаются очень быстро.

Поэтому они быстро распространяются. Исключением являются такие растения , как нитчатые цианобактерии и актиномицеты. Рисунок 1. Формы бактерий В строении бактерий выделяют три обязательных клеточных элемента: цитоплазматическую мембрану, нуклеотид, рибосомы. Эта клеточная оболочка выполняет основные механические и физиологические функции. Микробиологи делят все виды бактерий на грамположительные, грамотрицательные и бактерии без клеточной стенки микоплазмы , так как в связи с особенностями строения клеточной стенки бактерии по-разному реагируют на окрашивание способом Грама.

Clostridium tetani столбнячная палочка — возбудитель столбняка. Не окрашиваются по методу Грама Менингококки Neisseria meningitidis — возбудитель менингита. Палочки Escherichia coli кишечная палочка — кишечный симбионт человека, сальмонеллы — возбудители сальмонеллёза, Rhizobium клубеньковые бактерии — симбионты корней бобовых растений, способные усваивать атмосферный азот. Вибрионы Спириллы Спирилла — обитатель пресных и соленых водоемов.

Помимо основной ДНК хромосомы бактерии обычно содержат большое количество очень маленьких кольцевых молекул ДНК длиной несколько тысяч пар, так называемых плазмид, участвующих в обмене генетическим материалом между бактериями. Как правило, плазмиды имеют в составе гены устойчивости к антибиотикам и ионам тяжелых металлов. Поскольку плазмидная ДНК значительно меньше хромосомной, ее довольно легко выделить в чистом виде для дальнейшего использования в создании рекомбинантных ДНК. Одна их наиболее часто употребляемых плазмид для клонирования создана на основе плазмид, выделенных из E.

Считается, что они являются одними из самых ранних форм жизни. Свидетельства существования этих организмов были обнаружены в австралийской вершине Апекс-Черт возле древних гидротермальных источников. Возраст этих пород составляет 3,46 миллиарда лет, и считается, что эти окаменелости принадлежали ранним термофильным бактериям.

Это потому, что эти организмы не нуждаются в кислороде для выживания, который был элементом, который не присутствовал в больших количествах в ранней атмосфере Земли. Кроме того, в этом типе все еще есть живые виды, такие как Thermotoga neapolitana , которые все еще во многом напоминают свою предковую форму и все еще обитают вокруг этих отверстий, которые некоторые ученые использовали в качестве доказательства в поддержку этой теории.. Появились более свежие свидетельства того, что Thermotogales возникли примерно 3,2—3,5 миллиарда лет назад. Эти доказательства были собраны путем секвенирования генов бактериальных нуклеоидов для реконструкции их филогении. Первое серьезное расхождение в филуме Thermotogales было между Thermotogaceae и Fervidobacteriaceae, однако, когда это произошло, еще предстоит определить.

Материалы по теме

  • Прокариоты в сети Интернет (обзоры, статьи, новости, порталы)
  • Физиология бактерий
  • какими организмами являются бактерии с точки зрения эволюции - Есть ответ на
  • Знятие 1. Введение в биологию | VK
  • МОЛЕКУЛЯРНЫЙ ТУПИК ТЕОРИИ ЭВОЛЮЦИИ
  • Страница 131

Общие этапы эволюции микроорганизмов

  • Какими организмами являются бактерии с точки зрения эволюции -
  • Общие этапы эволюции микроорганизмов
  • Теории и практики фенотипической эволюции
  • Концепции происхождения и развития микроорганизмов

какими организмами являются бактерии с точки зрения эволюции

Эволюция микроорганизмов: этапы развития бактерий и вирусов Тело первых бактерий имело примитивное строение. Со временем структура микроорганизмов усложнилась, но и сейчас они являются наиболее примитивными одноклеточными организмами.
Бактерии - Bio-Lessons Как называется состояние зрения, при котором человек лучше видит предметы на удалении.

Этапы эволюции микроорганизмов кратко

какими организмами являются бактерии с точки зрения эволюции БАКТЕРИИ, обширная группа одноклеточных микроорганизмов, характеризующихся отсутствием окруженного оболочкой клеточного ядра.
Основные аспекты теории эволюции микроорганизмов Новости Новости.
Какими организмами являются бактерии с точки зрения эволюции Запоминание стихов является стандартным заданием во многих школах.
11. Бактерии. Эволюция или адаптация? . Что ответить дарвинисту? Часть II С точки зрения эволюции они являются , 1. образовательная образовательные ткани, или меристемы, являются эмбриональными тканями. долго сохраняющейся способности.
Концепции происхождения и развития микроорганизмов Рассматриваются гипотетические этапы возникновения жизни на Земле.

Этапы эволюции микроорганизмов кратко

Вокруг прямого проводника с током (смотри рисунок) существует магнитное поле. определи направление линий этого магнитного поля в точках a и внимание, что точки a и b находятся с разных сторон от проводника (точка a — снизу, а точка b — сверху). Какими организмами являются бактерии с точки зрения эволюции. Из перечисленных признаков, общим для клеток растений и животных является а) наличие. Почему бактериальную клетку считают простоорганизованной? Одним из основных отличий клетки бактерий от клетки эукариот является отсутствие ядерной мембраны и, строго говоря, отсутствие вообще внутрицитоплазматических мембран, не являющихся производными ЦПМ. Бактерии часто являются симбионтами и паразитами растений и животных.

11. Бактерии. Эволюция или адаптация?

Это интересно: история изучения бактерий Этот материал будет полезен тем, кто готовится к олимпиаде Малые размеры бактерий стали причиной того, что эта группа организмов долгое время была неизвестна исследователям природы. Впервые бактерий вместе с другими одноклеточными организмами — простейшими и водорослями — ещё в XVII в. Но несовершенство увеличительного прибора не позволило ему детально рассмотреть этих крошечных существ. Впоследствии такие же существа были обнаружены во всех природных водах, в почве, морском иле, зубном налёте, молоке и других средах. В начале XIХ в.

Впоследствии выяснилось, что клетки этой группы организмов бывают самой разнообразной формы — округлой, спиралевидной, каплевидной, — но название уже прижилось для всей группы доядерных организмов. Луи Пастер фотография 1878 г. Большой вклад в изучение роли бактерий в природе и жизни человека внёс французский учёный Луи Пастер 1822—1895 , основоположник микробиологии. Он изучал процессы брожения, вызываемые бактериями, при изготовлении пива, вина, уксуса, молочнокислых продуктов и квашения овощей.

Впоследствии этот способ получил в честь своего изобретателя название пастеризации. Пастер доказал, что причиной многих заболеваний человека и животных — сибирской язвы, куриной холеры, болезни шелковичных червей — являются бактерии, и заложил научные основы создания вакцин и вакцинации. Были исследованы многие болезнетворные бактерии, получены вакцины и лекарства, способные предотвратить и победить болезни, вызываемые этими бактериями. Многие бактерии стали служить человеку в промышленных масштабах: их культивированием и получением продукции от этих микроорганизмов занимается прикладная микробиология и биотехнология.

Свернуть Общая характеристика бактерий Бактерии — это крошечные организмы, изучать которые можно только с помощью увеличительной техники. Увидеть бактерии можно и в световой микроскоп, а вот рассмотреть мельчайшие структуры бактериальных клеток позволяют только электронные микроскопы. Бактерии, видимые в световой а и электронный б микроскопы. Бактерии — это одноклеточные организмы У некоторых видов бактерий клетки не разделяются после деления, а располагаются парами, четвёрками, цепочками или гроздьями, но при этом каждая бактериальная клетка остаётся самостоятельным организмом и способна существовать независимо от других клеток.

Многие бактерии способны образовывать на питательной среде колонии характерной формы. Колония таких бактерий не является многоклеточным организмом, а представляет собой клеточную массу — различимое невооружённым глазом скопление клеток. Формы бактериальных клеток Это интересно: форма бактериальных клеток Бактериальные клетки бывают разной формы. Палочковидные бактерии называют бациллами от лат.

Диплококки от др. Названия стафилококков и стрептококков происходят от греческих слов staphylоs [стафилос] — «виноград, гроздь» и streptos [стрептос] — «цепочка». В бактериальных клетках нет ядер Все представители царства бактерий являются прокариотами. Прокариоты, или Доядерные, — это надцарство одноклеточных организмов, не имеющих клеточных ядер.

Бактериальные клетки окружены клеточной стенкой из муреина Муреин от лат. Прочная и достаточно жёсткая клеточная стенка располагается поверх клеточной мембраны и определяет характерную для каждого вида форму бактериальных клеток. Бактерий можно выращивать в лабораторных условиях Микробиологи, изучающие разные виды бактерий, выращивают их на особых средах — в жидком питательном бульоне, на поверхности или в толще особых плотных желеобразных сред. Колонии бактерий на поверхности питательных сред в чашках Петри Строение бактериальной клетки Клетки бактерий устроены гораздо проще клеток других организмов — животных, растений, грибов.

В них нет не только ядер, но и многих органоидов. В цитоплазме можно обнаружить только мелкие округлые органоиды — рибосомы, осуществляющие сборку белковых молекул, и включения в виде зёрен, капель, кристаллов или комочков разной формы — отложенные впрок запасы питательных веществ или изолированные уже ненужные клетке продукты обмена веществ. В цитоплазме располагается также генетический материал — вещество, содержащее наследственную информацию о строении и жизнедеятельности бактериальной клетки. В отличие от клеток эукариотических организмов, генетический материал в клетках бактерий не окружён ядерной оболочкой.

У некоторых видов бактерий поверх клеточной стенки имеется дополнительный внешний слой — слизистая капсула. В отличие от стенки, капсула неплотная, полужидкая, полупрозрачная. Капсула обеспечивает дополнительную защиту бактериальных клеток от повреждений. Схема строения бактериальной клетки.

Некоторые виды бактерий имеют один или несколько жгутиков, с помощью которых они передвигаются. Узнать больше: пили бактерий Этот материал будет полезен тем, кто готовится к олимпиаде Иногда клетки бактерий бывают покрыты многочисленными тонкими выростами — пилями от лат. Пили представляют собой нитевидные белковые образования и бывают двух видов.

Грибобактерии актиномицеты, стрептомицеты, микобактерии Актиномицеты Actinomicetes или лучистые грибки, стрептомицеты, микобактерии Mycobacterium - от греч. Распространены в почве, водоемах, в воздухе и на растительных остатках; некоторые - паразиты животных, человека туберкулез, дифтерия и др.

Некоторые виды образуют антибиотики, пигменты, витамины [т. Для них характерно нитевидное или палочковидное и кокковидное строение и наличие боковых выростов. Актиномицеты состоят из центрального "клубка" ветвящихся нитевидных структур гифы , от которого к периферии отходят тонкие филаменты. Длинный ветвящийся мицелий актиномицетов не имеет перегородок, чем сильно отличается от мицелия грибов. Микобактерии, к которым относятся возбудители туберкулеза и проказы, обладают рядом особенностей, из-за которых с ними трудно бороться.

Например, при лечении туберкулеза приходится принимать антибиотики очень долго, чтобы избежать рецидива, хотя большинство туберкулезных палочек Mycobacterium tuberculosis погибает в самом начале лечения. Дело в том, что некоторая часть популяции сохраняет жизнеспособность еще долго после гибели основной массы бактерий. Самое интересное, что выжившие микробы могут генетически ничем не отличаться от погибших. Иными словами, у микобактерий имеется большая ненаследственная изменчивость по устойчивости к антибиотикам. Микобактерии фактически создают фенотипическое разнообразие при каждом делении, не меняя своего генома.

Цианобактерии сине-зеленые водоросли, цианеи Цианобактерии, или сине-зелёные водоросли лат. Cyanobacteria, от греч. Сине-зеленая окраска обусловлена пигментами - хлорофиллом и фикоцианином. Размножение бесполое. Обитают чаще в пресных водах, но могут жить в морях, океанах, почве, горячих источниках.

Некоторые съедобны. Цианобактерии, вместе с хлороксибактериями, относят к подцарству оксифотобактерий. Эти бактерии имеют одиночные и колониальные формы. Колонии создают органогенные известковые постройки строматолиты. Цианобактерии могут использовать как солнечную энергию автотрофность , так и энергию, выделяющуюся при расщеплении готовых органических веществ гетеротрофность.

В периферической части клеток цианобактерий диффузно распределены синий и бурый пигменты, определяющие в сочетании с хлорофиллом сине-зеленый цвет этих организмов. Некоторые цианобактерии могут иметь дополнительные пигменты, изменяющие их характерный цвет до черного, коричневого, красного. Цвет Красного моря определяется широким распространением в нем пурпурно пигментированных сине-зеленых. Цианобактерии наиболее близки к древнейшим микроорганизмам, остатки которых строматолиты, возраст более 3,5 миллиардов лет обнаружены на Земле. Они были и остаются самой распространенной группой организмов на планете.

Сравнительно крупные размеры клеток и физиологическое сходство с водорослями было причиной их рассмотрения ранее в составе водорослей «синезелёные водоросли», «цианеи». За то время было альгологически описано более 1000 видов в почти 175 родах. Бактериологическими методами в настоящее время подтверждено существование не более 400 штаммов. Биохимическое, молекулярно-генетическое и филогенетическое сходство цианобактерий с остальными бактериями в настоящее время подтверждено солидным корпусом доказательств, однако до сих пор некоторые ботаники, отдавая дань традиции, склонны относить цианобактерии к водорослям. Единственные, наряду с прохлорофитами, бактерии, способные к оксигенному фотосинтезу, предки цианобактерий рассматриваются в теории эндосимбиогенеза как наиболее вероятные предки хроматофоров красных водорослей прохлорофиты по этой теории имеют общих предков с хлоропластами прочих водорослей и высших растений.

Сине-зелёные водоросли выделяют свободный кислород, одновременно химически связывая водород и углерод. Они замечательны тем, что способны использовать атмосферный азот и превращать его в органические формы азота. При фотосинтезе они могут использовать углекислый газ как единственный источник углерода. В отличие от фотосинтезирующих бактерий, цианобактерии при фотосинтезе выделяют молекулярный кислород. В течении прошедших 3-х миллиардов лет до начала кембрия они являлись основным источником свободного кислорода в атмосфере Земли, наряду с фотохимическими реакциями в верхних слоях атмосферы.

Строматолиты ископаемые цианобактериальные маты Строматолиты др. Следует иметь ввиду, что вещество, из которого построен строматолит, не создается матом; последний лишь структурирует естественное осадконакопление. На ранних стадиях изучения строматолиты ассоциировались с остатками многоклеточных эукариот — губками, кораллами или мхами. По степени сложности они более всего напоминали исследователям скелеты многоклеточных эукариот.

К числу таких поведенческих программ относятся хемотаксис , фототаксис , энергетический таксис и магнитотаксис [128] [129] [130]. Клетки бактерий могут кооперироваться с образованием единого скопления за счёт чувства кворума, как, например, миксобактерии при образовании плодовых тел. Некоторые виды родов внутриклеточных паразитов [en] Listeria и Shigella движутся внутри клетки-хозяина, используя её цитоскелет , который обычно используется для перемещения клеточных органелл. Стимулируя полимеризацию актина у одного из полюсов своих клеток, эти бактерии формируют своего рода актиновый хвост, который проталкивает их вперёд [131]. Коммуникация[ править править код ] У некоторых бактерий имеются химические системы, испускающие свет. Способность к биолюминесценции часто имеется у бактерий, живущих в симбиозе с глубоководными рыбами , и свет, производимый бактериями, привлекает рыб друг к другу или более крупных животных к рыбам [132].

Бактерии часто формируют многоклеточные скопления, известные как биоплёнки, обмениваясь разнообразными химическими сигналами, за счёт которых их движение становится координированным [133] [134]. Формирование многоклеточных скоплений даёт бактериям ряд преимуществ: в них наблюдаются разделение труда между клетками и появление различных функциональных типов клеток, питательные вещества усваиваются более эффективно, обеспечивается более надёжная защита от естественных врагов. Например, бактерии в составе биоплёнок в 500 раз более устойчивы к антибиотикам, чем одиночные планктонные клетки того же вида [134]. Координированное поведение клеток одного и того же вида бактерий часто осуществляется за счёт особых химических веществ. На основе локальной концентрации этих веществ бактерия определяет плотность клеток-сородичей вокруг себя чувство кворума. За счёт чувства кворума бактерии могут координировать экспрессию генов и начинают выделять и улавливать аутоиндукторы [en] или феромоны , концентрация которых повышается по мере роста популяции [135]. Основная статья: Систематика бактерий Филогенетическое древо, построенное на основании анализа рРНК , показывает разделение бактерий, архей и эукариот Бактерий можно классифицировать на основе строения клетки, метаболизма, а также различий в химическом составе клеток наличия или отсутствия некоторых жирных кислот , пигментов , антигенов, хинонов [97]. В то время как перечисленные характеристики подходят для выделения штаммов, непонятно, можно ли их использовать для разделения видов бактерий. Дело в том, что у большинства бактерий нет отличительных структур, а из-за широко распространённого горизонтального переноса генов родственные виды могут сильно отличаться по морфологии и метаболизму [136]. В связи с этим в настоящее время современная классификация базируется на молекулярной филогенетике.

К числу её методов относят определение GC-состава генома, гибридизация геномов, а также секвенирование генов, которые не подверглись интенсивному горизонтальному переносу, такие как гены рРНК [137]. Релевантная классификация бактерий публикуется «Международным журналом систематической бактериологии» англ. International Journal of Systematic Bacteriology [138] и руководством по систематической бактериологии Берджи англ. Международный комитет систематики прокариот [en] англ. International Committee on Systematics of Prokaryotes регулирует международные правила именования таксонов бактерий и определение их рангов согласно правилам Международного кодекса номенклатуры прокариот [en] англ. International Code of Nomenclature of Prokaryotes [139]. Термин «бактерии» традиционно применяли по отношению к микроскопическим одноклеточным прокариотам. Однако данные молекулярной филогенетики свидетельствуют о том, что в действительности прокариоты подразделяются на два независимых домена, которые первоначально получили названия эубактерии лат. Eubacteria и архебактерии лат. Archaebacteria , но в настоящее время называются бактерии и археи [15].

Эти два домена, наряду с доменом эукариоты, составляют основу трёхдоменной системы , которая является наиболее популярной системой классификации живых организмов [140]. Археи и эукариоты состоят в более близком родстве, чем каждый из этих доменов к бактериям. Впрочем, высказывается мнение, что археи и эукариоты произошли от грамположительных бактерий [141]. Поскольку количество отсеквенированных последовательностей бактериальных геномов очень быстро растёт, классификация бактерий постоянно меняется [3] [142]. В медицине идентификация бактерий имеет огромное значение, поскольку от неё зависит схема лечения. По этой причине ещё до эры молекулярной биологии учёные активно разрабатывали методы, позволяющие быстро идентифицировать патогенные бактерии. В 1884 году Ганс Кристиан Грам предложил метод дифференциального окрашивания бактерий на основе строения их клеточной стенки [62]. При окрашивании по Граму грамположительные бактерии с толстым слоем пептидогликана имеют фиолетовый цвет, а грамотрицательные бактерии с тонким слоем пептидогликана окрашены в розовый.

Микроэволюция — это эволюционный процесс в популяции, приводящий к видообразованию новых разновидностей микроорганизмов за короткий период времени. Фотолиз — это реакция разложения химического вещества под воздействием световой энергии. Гетеротрофы — это микроорганизмы, которые питаются готовыми органическими веществами. Хемосинтезирующие автотрофы — это бактерии, источником энергии для которых служит реакция соединения железа и серы. Коацерватные капли — это высокомолекулярные протеиновые структуры, которые появились из раствора с коллоидными частицами. Подвижные генетические элементы — это автономные образования, содержащие информацию о структуре определенных протеинов и обеспечивающие возможность их перемещения из одной части генома в другую. Сапрофитные бактерии — это микробы, использующие для питания органические вещества. Они являются антиподами паразитов. Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры. Свидетельство и скидка на обучение каждому участнику Зарегистрироваться 15—17 марта 2022 г. Описание презентации по отдельным слайдам: Эволюция микроорганизмов Эволюция жизни — процесс, стартовавший на планете около 4 млрд. Современная геномика подтверждает предположение Дарвина 1859 г. Эволюция микроорганизмов Главная проблема — Эволюция 3 доменов жизни: Бактерий, Археев и Эукариот и создание универсального дерева жизни. Археи и Эукариоты возможно имеют общего предка, отличного от Бактерий. Первой самореплицирующаяся молекула — РНК — основа первых примитивных клеток Эволюция микроорганизмов Клеточное ядро эукариот, митохондрии и гидрогеносомы, а также хлоропласты, согласно эндосимбиотической теории, произошли от протеобактерий и цианобактерий. Разнообразие микробных форм жизни огромно, метаболическая пластичность микробов позволила им занять огромное число экологических ниш. Один код, одинаковые рибосомы, состоящие из 3 консервативных молекул РНК. Универсально сохраняются компоненты системы трансляции: около 30 транспортных РНК, несколько факторов трансляции, 18 аминоацил-тРНК-синтетаз и несколько тРНК модифицирующих ферментов. Для объяснения различий между археями и бактериями в механизмах репликации ДНК и химическом составе мембран предлагаются 2 возможных сценария: LUCA содержал признаки архей и бактерий, далее в эволюции каждой их групп была утеряна часть признаков. LUCA содержал один из вариантов, впоследствии замененный на другой у архей или бактерий. Сценарий доклеточной эволюции Неорганические ячейки для развития доклеточной жизни, согласно М. Расселу и его коллегам , сети микроячеек в гидротермальных источниках, состоящие в основном из сульфида железа [Russell, 2007]. Градиенты температуры и рН, способствующие биохимическим реакциям. Генетические элементы: сегменты РНК на первой стадии, затем более сложными молекулами РНК и далее всё более крупными молекулами ДНК Различные стратегии репликации генетического материала и генетические элементы, эволюционировали совместно в соседних ячейках. Опарин и Холдейн 1929 Синтез биологических мономеров из газов первичной атмосферы. Образование биологических полимеров. Формирование фазообособленных систем, отделенных от внешней среды мембранами протобионтов. Возникновение простейших клеток. Опыты Миллера, Оро, Шрамма Опыты Миллера аминокислоты, органические кислоты, альдегиды, углеводороды из формальдегида — сахара, из метана и воды — жирные кислоты.

Какими организмами являются бактерии с точки зрения эволюции

Помимо поразительных фактов, приведенных академиком Заварзиным, совсем новая научная публикация Schopf et al. Из этой публикации мы узнаем, что окаменевшие сообщества древнейших серобактерий возрастом 1. А во-вторых, эти же древнейшие бактериальные сообщества оказались идентичны сообществам современных серобактерий, открытых у побережья Южной Америки в 2007 году Schopf et al. Со стороны верующих дарвинистов это весьма зажигательно — доказывать эволюцию живых существ на примере таких биологических созданий, которые вообще не изменялись на протяжении 2 млрд. Кроме этого, имеются и другие серьезные особенности бактерий, которые наводят на размышления — а корректно ли вообще рассматривать примеры с «эволюцией бактерий» в качестве аналогии эволюции любых других живых существ? Прежде всего, бактерии радикальным образом отличаются от эукариот[179] строением своих клеток. Бактерии устроены гораздо проще и имеют массу отличий от эукариотических клеток, как биохимически, так и морфологически Рис. Слева схематичное строение бактериальной клетки.

Справа схематичное строение эукариотической клетки пропорции не соблюдены — эукариотические клетки обычно в 10—20 раз больше бактериальных клеток. Кроме того, бактерии разделяются еще и между собой, и тоже радикальным образом в биохимическом плане. Настолько, что это потребовало разделения всех бактерий на два отдельных домена — эубактерии и архебактерии, несмотря на их морфологическое сходство друг с другом. Различия между тремя только что озвученными группами живых существ настолько радикальны, что сейчас некоторые авторы предлагают вообще разделять всю существующую на Земле жизнь на три разных формы: эубактерии, архебактерии и эукариоты Шаталкин, 2004. Естественно, возникает вопрос, корректно ли переносить те механизмы эволюции, которые мы можем обнаружить у одной формы жизни — на другую форму жизни? Например, уникальной чертой бактерий является их способность достаточно легко обмениваться между собой разными генами. То есть, осуществлять тот самый горизонтальный перенос генов, который у эукариот напрямую пока еще никто не наблюдал.

Зато в мире бактерий горизонтальный перенос является наблюдаемым явлением. Бактерии могут поглощать куски ДНК других бактериальных клеток, например, в ходе процессов коньюгации или трансформации. При этом какие-то отдельные чужие гены вполне могут быть «усвоены» бактерией, поглотившей соответствующую молекулу ДНК, ранее принадлежавшую другой бактерии. Крайне интригующим обстоятельством здесь является то, что поглощенные гены, в принципе, могут быть вообще не от родственной бактерии, а от какой-нибудь удаленной в таксономическом отношении. Получается, что гены вообще всех видов бактерий, обитающих на каком-нибудь общем участке, в принципе, можно считать единым «генетическим пулом» всех этих бактерий. Особенно те гены, которые находятся в плазмидах, то есть, в тех молекулах ДНК, которыми бактерии обмениваются чаще всего. Стоит ли говорить, что именно в плазмидах, например, нередко сосредоточены гены устойчивости к тем или иным антибиотикам?

Но наверное, самой главной отличительной особенностью бактерий является потрясающая численность их «популяций», которую для подавляющего числа эукариотических организмов даже представить себе невозможно. В одной колонии бактерий может насчитываться миллиарды, десятки или даже сотни миллиардов отдельных особей. Разве можно сравнивать подобную численность с группами каких-нибудь горных горилл Gorilla beringei beringei , которые настолько редки, что занесены в Международную Красную книгу? Корректно ли переносить механизмы эволюции, которые теоретически возможны в отношении миллиардных колоний бактерий — на эволюцию горилл? Но и это еще не всё. Бактерии еще и размножаются очень быстро. В благоприятных условиях у бактерий смена поколений может происходить в течение всего одного часа.

Так можно ли сравнивать возможные механизмы эволюции у бактерий, с возможными механизмами эволюции, например, слонов? Если знать, что смена поколений у слонов происходит примерно раз в 17 лет. Итак, с одной стороны у бактерий колоссальная численность особей и фантастическая скорость размножения… а с другой стороны у эукариот , популяции меньшего размера сразу на несколько порядков , с гораздо меньшей скоростью смены поколений.

Считается, что митохондрии — это бывшие бактерии, которые внедрились в клетки более продвинутых организмов. Ретровирусы — вирусы, генетическая информация которых содержится в на молекуле РНК.

Самый известный представитель — ВИЧ. Генетика дарвинизма предполагала только вертикальную передачу признаков — по наследству. Всё древо жизни казалось такой ветвящейся структурой, растущей из одного корня и постепенно усложняющейся. Наверху, конечно же, всегда был человек. Предполагалось, что у каждого вида своя эволюционная траектория, идущая от общего корня, и эти траектории не пересекаются.

Но у бактерий широко распространен горизонтальный перенос генов, когда один вид обменивается генами с другим. Вот представьте себе: пошли вы в зоопарк, увидели слона — вам понравился его хобот, вы обменялись со слоном соответствующими генами и ушли уже с хоботом. Бактерии так делают часто — для одноклеточных это просто. И получается, что ветви на эволюционном древе не изолированы, а образуют сеть. Допустим, сидят себе бактерии, и тут вдруг становится очень плохо — среда изменилась.

Большинство бактерий умирает, и вся их ДНК вытекает наружу. А некоторые выживают и встраивают в себя части этой ДНК. Большинству это ничего не дает, а кто-то получает новые возможности — он растет, и ему становится совсем хорошо, потому что все вокруг погибли: еды куча, никто не мешает. Они могут выдержать долгое кипячение и подолгу не гибнут в дезинфицирующих препаратах [КШ] У людей довольно большая часть ДНК вирусного происхождения. Значит, тут тоже речь идет о горизонтальном переносе.

Возможен ли перенос генов от бактерий к людям? У нас нет бактериальных генов, кроме тех, что мы когда-то получили от бактерий, ставших митохондриями в клетках нашего организма. Помните, как возникли клетки, от которых произошли мы и все, кого мы видим в зоопарке? Наш одноклеточный предок захватил некую древнюю бактерию и заставил ее кашу варить — энергию вырабатывать. Но чтобы эта бактерия не прибила нашего предка, большинство генов из нее было перенесено в ядро.

А гены вирусов, про которые вы говорите, действительно составляют у нас солидную часть генома. Это остатки ретровирусов, которые встроились в разные места нашей ДНК. Они встроились так, чтобы мешать работе наших генов, но испортились потихонечку. Некоторые из них, правда, еще могут прыгать по ДНК, и когда они прыгают, то могут возникать неприятные вещи типа рака. Кстати, интересно, что мы довольно сильно отличаемся от обезьян по «вирусному геному», а те 30 тысяч генов, которые кодируют белки, отличаются от обезьяньих гораздо меньше.

Это был голландский натуралист Антони ван Левенгук, усовершенствовавший микроскоп. Как и всех прочих микроскопических существ, он назвал их «анималькули». Например, у бактерий открыли некую новую иммунную систему. У людей, которые занимаются оптимизацией штаммов для молочной промышленности, есть большая проблема: вирусы убивают ферментацию, и миллиарды долларов теряются из-за испорченного молока. Если вирус заражает бактерию, все бактерии дохнут, но иногда возникают бактерии, устойчивые к вирусу.

Оказалось, вовсе не потому, что в популяции изначально были резистентные бактерии. Механизм возникновения устойчивости обнаружился такой: небольшой кусочек ДНК вируса попадает в геном бактерии и делает ее устойчивой к вирусу. Этот захваченный фрагмент ДНК, примеряется к заходящему вирусу, и если обнаруживается полное соответствие, бактерия вирус убивает. Это как память, которая передается по наследству. Но такая иммунная система не очень эффективна: она работает только при условии, что чужеродная ДНК точно соответствует захваченному куску.

Даже одно различие не позволит убить вирус. Но с точки зрения генных инженеров и ученых, которые хотят лечить всякие генные болезни, этому механизму цены нет — на его основе совсем недавно был создан метод редактирования генома CRISPR, который сейчас не использует только ленивый. Я думаю, первое действительно эффективное лекарство от рака возникнет именно благодаря этой технологии. Есть, например, больной с лейкемией, у него в ДНК изменена лишь одна буква из трех миллиардов. До недавних пор не было технологии, позволяющей найти и изменить единственную опечатку.

А эта система способна гарантированно узнать неправильную копию и уничтожить ее. То есть бактериальную иммунную систему фактически научились инсталлировать в человеческую клетку, и она работает как часы. Теперь мы можем заменить любую букву в нашем генетическом коде. Этот род бактерий назван в честь их открывателя ветеринара Дэниеля Салмона 1850—1914 [КШ] Скоро ли методы редактирования генома позволят нам самим создавать полезных микробов? У моих студентов в Сколтехе завтра начинается практикум: они все будут это делать.

Но что получится, мы не знаем. Предсказать, как изменение гена или внесение дополнительного гена повлияет на конечный результат, мы пока не можем. Сейчас в моду входит системная биология, которая пытается предсказать последствия генетических изменений в организме, пытается конструировать какие-то новые генетические сети с требуемыми свойствами. Чтобы кишечная палочка, например, ела нефть, ей нужно ввести некий комплекс генов, который, по мнению исследователей, связан со способностью перерабатывать нефть. Эта задачу очень трудно решить — мы слишком мало знаем.

Изменить ген легко, но, скорее всего, то, что получится, не будет работать: вы просто испортите генетический механизм, и палочка умрет либо станет кривая или косая. Зоопарк внутри человека [КШ] Если они так хорошо приспосабливаются, не обречены ли мы на проигрыш в гонке вооружений с микробами? Рано или поздно появится смертельная инфекция, с которой невозможно будет справиться… [КС] Эти страхи возникли еще в XIX веке с подачи Пастера, когда вдруг выяснилось, что мы находимся в состоянии войны с коварным противником — микробами. Но реальная ситуация совершенно не такая. Большинство микробов о нас знать не знают, они занимаются своими делами, и мы им глубоко безразличны.

Идея, что микробы — это что-то очень плохое, посланное богом за наши прегрешения, совершенно неверна.

Чем она характеризуется? Ответ 1 особи исходного вида, попавшие на острова, оказались в разных экологических нишах разных условиях питания ; 2 в каждой популяции возникали мутации; 3 разные мутации поддерживались естественным отбором; 4 накопление мутаций привело к репродуктивной изоляции; 5 дивергентная форма эволюции дивергенции ; 6 новые виды при такой форме образуются путём расхождения от одного общего предка. Объясните с позиции современного эволюционного учения, как сформировались и сохранились в процессе эволюции ядовитые железы у древесной квакши. Ответ 1 в исходной популяции появились мутировавшие особи с наличием ядовитых желёз; 2 они имели преимущество в борьбе за существование; 3 благодаря естественному отбору эти мутации распространялись накапливались в популяции. Предковый вид ландышей был широко распространен в лиственных лесах Евразии несколько миллионов лет назад.

Сейчас существует три вида ландышей, сохранившихся в Европе, Закавказье и на Дальнем Востоке. Как называется такой способ видообразования? Какое климатическое событие привело к дивергенции ландышей? Как происходило видообразование? Ответ 2 оледенение в Северном полушарии образование ледника ; 3 в изолированных популяциях накапливались разные мутации; 4 в разных ареалах условиях среды действовали разные факторы; 5 произошла репродуктивная изоляция. Лемуровые — семейство древесных теплолюбивых млекопитающих из отряда Приматы.

Ископаемые остатки предков лемуров были найдены на разных континентах, но в настоящее время лемуры являются эндемиками Мадагаскара острова у юго-восточного побережья Африки. Чем может объясняться сохранение этих животных на Мадагаскаре и вымирание в других регионах? Какие факторы эволюции способствовали дивергентному видообразованию лемуров в условиях Мадагаскара? Ответ 1 Мадагаскар отделен от континентов фауна острова изолирована ; 2 на Мадагаскаре лемуры не имели конкурентов со схожими экологическими нишами; 3 на остальных территориях лемуры были вытеснены другими древесными млекопитающими другими приматами ; Факторы эволюции: 5 мутации ИЛИ наследственная изменчивость; 6 популяционные волны; 7 дрейф генов. Закон Харди-Вайнберга гласит: при определённых условиях относительные частоты аллелей в популяции остаются неизменными из поколения в поколение. Закон справедлив, если соблюдается ряд условий.

Какие это условия? Ответ 2 в популяции осуществляется свободное скрещивание панмиксия ; 3 отсутствует естественный отбор; 4 не возникает новых мутаций; 5 нет миграции в популяцию или из популяции. У двух видов мохноногих хомячков ареалы не перекрываются: джунгарский хомячок живет в Западной Сибири и на севере Казахстана, а хомячок Кэмпбелла обитает на территории Забайкальского края, Бурятии, Монголии, Северного Китая. Если в лабораторных условиях пытаться скрестить особей разных видов, то в большинстве случаев наблюдается рождение стерильного потомства или гибель беременных самок из-за крупных размеров эмбрионов. Какие две формы изоляции описаны для этих видов хомячков? Какое значение имеет изоляция как фактор микроэволюции?

Ответ 1 географическая изоляция неперекрывающиеся ареалы ; 2 репродуктивная изоляция невозможность формирования плодовитого потомства ; 3 изолированные популяции виды накапливают различия в генофондах; 4 в условиях изоляции затрудняется обмен генами между популяциями ИЛИ в условиях изоляции сохраняется специфичность генофонда популяций видов ; 5 изоляция способствует видообразованию. Рассмотрите схемы процессов видообразования А и Б. На какой схеме отражено экологическое симпатрическое видообразование? Ответ 1 А — экологическое симпатрическое видообразование; 2 в пределах исходного ареала сформировались разные экологические условия ИЛИ в пределах исходного ареала особями осваивались новые разные экологические ниши; 3 возникает экологическая изоляция; 4 обмен генов становится невозможным или затрудняется; 5 происходит накопление мутаций в каждой экологически изолированной группе особей; 6 возникает репродуктивная изоляция особи из разных экологических групп теряют способность скрещиваться ; 7 образуются новые виды. Почему у соседних подвидов P. Ответ 2 из-за отсутствия преград соседние подвиды могут мигрировать осуществляется поток генов ; 3 в результате между подвидами не накапливаются значимые генетические различия не отличается генофонд подвидов ; 4 отсутствует репродуктивная изоляция.

Почему у соседних подвидов E. На рисунках продемонстрированы основные пути, ведущие к появлению новых видов: дивергентный, филетический, гибридогенный. Установите соответствие между основными путями и рисунками 1-3. Дайте характеристику каждого из путей. Ответ 1 1 - филетический путь филогенез ; 2 преобразование одного вида в другой вида А в вид В ; 3 2 - гибридогенный путь; 4 скрещивание слияние двух видов видов А и В и образование нового вида вида С ; 5 3 - дивергентный путь; 6 разделение одного вида вида А на два виды А и В. Какой способ видообразования изображён на рисунке?

Объясните, какие факторы эволюции этому способствовали.

Способны индуцировать [как? На поверхности мембраны клеточной стенки располагается капсулоподобный слизистый покров и микрокапсула, содержащие группоспецифичный «растворимый» антиген. В клеточной стенке локализуются основные белки, большинство из которых являются видоспецифичными антигенами, а также липополисахарид и пептидогликан. В цитоплазматической мембране преобладают ненасыщенные жирные кислоты, она осмотически активна, имеет специфическую транспортную систему АТФ-АДФ.

Грибобактерии актиномицеты, стрептомицеты, микобактерии Актиномицеты Actinomicetes или лучистые грибки, стрептомицеты, микобактерии Mycobacterium - от греч. Распространены в почве, водоемах, в воздухе и на растительных остатках; некоторые - паразиты животных, человека туберкулез, дифтерия и др. Некоторые виды образуют антибиотики, пигменты, витамины [т. Для них характерно нитевидное или палочковидное и кокковидное строение и наличие боковых выростов. Актиномицеты состоят из центрального "клубка" ветвящихся нитевидных структур гифы , от которого к периферии отходят тонкие филаменты.

Длинный ветвящийся мицелий актиномицетов не имеет перегородок, чем сильно отличается от мицелия грибов. Микобактерии, к которым относятся возбудители туберкулеза и проказы, обладают рядом особенностей, из-за которых с ними трудно бороться. Например, при лечении туберкулеза приходится принимать антибиотики очень долго, чтобы избежать рецидива, хотя большинство туберкулезных палочек Mycobacterium tuberculosis погибает в самом начале лечения. Дело в том, что некоторая часть популяции сохраняет жизнеспособность еще долго после гибели основной массы бактерий. Самое интересное, что выжившие микробы могут генетически ничем не отличаться от погибших.

Иными словами, у микобактерий имеется большая ненаследственная изменчивость по устойчивости к антибиотикам. Микобактерии фактически создают фенотипическое разнообразие при каждом делении, не меняя своего генома. Цианобактерии сине-зеленые водоросли, цианеи Цианобактерии, или сине-зелёные водоросли лат. Cyanobacteria, от греч. Сине-зеленая окраска обусловлена пигментами - хлорофиллом и фикоцианином.

Размножение бесполое. Обитают чаще в пресных водах, но могут жить в морях, океанах, почве, горячих источниках. Некоторые съедобны. Цианобактерии, вместе с хлороксибактериями, относят к подцарству оксифотобактерий. Эти бактерии имеют одиночные и колониальные формы.

Колонии создают органогенные известковые постройки строматолиты. Цианобактерии могут использовать как солнечную энергию автотрофность , так и энергию, выделяющуюся при расщеплении готовых органических веществ гетеротрофность. В периферической части клеток цианобактерий диффузно распределены синий и бурый пигменты, определяющие в сочетании с хлорофиллом сине-зеленый цвет этих организмов. Некоторые цианобактерии могут иметь дополнительные пигменты, изменяющие их характерный цвет до черного, коричневого, красного. Цвет Красного моря определяется широким распространением в нем пурпурно пигментированных сине-зеленых.

Цианобактерии наиболее близки к древнейшим микроорганизмам, остатки которых строматолиты, возраст более 3,5 миллиардов лет обнаружены на Земле. Они были и остаются самой распространенной группой организмов на планете. Сравнительно крупные размеры клеток и физиологическое сходство с водорослями было причиной их рассмотрения ранее в составе водорослей «синезелёные водоросли», «цианеи». За то время было альгологически описано более 1000 видов в почти 175 родах. Бактериологическими методами в настоящее время подтверждено существование не более 400 штаммов.

Биохимическое, молекулярно-генетическое и филогенетическое сходство цианобактерий с остальными бактериями в настоящее время подтверждено солидным корпусом доказательств, однако до сих пор некоторые ботаники, отдавая дань традиции, склонны относить цианобактерии к водорослям. Единственные, наряду с прохлорофитами, бактерии, способные к оксигенному фотосинтезу, предки цианобактерий рассматриваются в теории эндосимбиогенеза как наиболее вероятные предки хроматофоров красных водорослей прохлорофиты по этой теории имеют общих предков с хлоропластами прочих водорослей и высших растений. Сине-зелёные водоросли выделяют свободный кислород, одновременно химически связывая водород и углерод. Они замечательны тем, что способны использовать атмосферный азот и превращать его в органические формы азота. При фотосинтезе они могут использовать углекислый газ как единственный источник углерода.

В отличие от фотосинтезирующих бактерий, цианобактерии при фотосинтезе выделяют молекулярный кислород. В течении прошедших 3-х миллиардов лет до начала кембрия они являлись основным источником свободного кислорода в атмосфере Земли, наряду с фотохимическими реакциями в верхних слоях атмосферы.

Похожие новости:

Оцените статью
Добавить комментарий