Новости что такое кубит

С другой, кубиты откликаются не только на управляющее поле, но и на слабые электрические поля, присутствующие вокруг и создающие шумы.

Что такое квантовый компьютер? Разбор

Как сообщалось, кубит — единица информации в квантовом компьютере, он отличается от обычного бита тем, что может принимать любое значение между 0 и 1 в процессе вычислений. Кубиты образуются в квантовом компьютере с использованием квантово-механических свойств отдельных атомов, субатомных частиц или сверхпроводящих электрических цепей. Два кубита можно запутать между собой — тогда они всегда будут выдавать противоположный друг другу результат. Среднее время жизни кубита составляет порядка 14 мс, а среднее время одной квантовой операции — всего 50 наносекунд. Как и двоичные биты, кубиты лежат в основе вычислений, с одним большим отличием: кубиты, как правило, являются сверхпроводниками электронов или других субатомных частицами. Кубит (q-бит, кьюбит; от quantum bit) — квантовый разряд или наименьший элемент для хранения информации в квантовом компьютере. Как и бит, кубит допускает два собственных состояния, обозначаемых и (обозначения Дирака).

Квантовые компьютеры

Кубиты — это квантовые объекты, которые могут находиться в суперпозиции двух состояний, то есть кодировать одновременно и логическую единицу, и ноль. Это открывает новые возможности для обработки информации: компьютер из нескольких тысяч кубитов может производить вычисления со скоростью, недоступной современным суперкомпьютерам. В роли кубитов могут выступать атомы или электроны — цифровые данные записываются на их спине. Такие кубиты неустойчивы к воздействиям окружающей среды, способной нарушить их корректную работу, а процедура считывания и записи информации на них крайне сложна.

Самый мощный КК в стране построен на ионах и насчитывает 16 кубитов. Заместитель руководителя группы «Прецизионные квантовые измерения» РКЦ Илья Семериков, который разрабатывает этот КК, рассказывает: «Нам еще только предстоит измерить экспериментально квантовый объем нашего ионного компьютера, но, судя по достоверностям двухкубитных операций и связности, я бы ожидал увидеть 25 или, может быть, 26.

Увеличение квантового объема — наша основная задача на сегодня». Такие результаты соответствуют уровню лидеров квантовой гонки начала-середины 2020 г. Текущий рекорд по квантовому объему по состоянию на июль 2023 г. Он составляет 219, или 524 288. Это означает, что компьютер может выполнять сложные квантовые алгоритмы с высокой точностью.

РКЦ в конце 2021 г. К недостаткам модели относилось меньшее время когерентности, но на сегодня эта проблема решена, сказал Семериков. Текущая точность квантового компьютера РКЦ находится на уровне ведущих компаний 2018-2019 гг. По словам Семерикова, сейчас команда активно работает над ее повышением. МФТИ создал рабочий квантовый чип, выполненный на сверхпроводниках, на 8 кубитах.

Сейчас тестируется на 12 кубитах. Оборудование для этого было закуплено еще в 2016 г. Но сохраняются сложности с масштабированием и улучшением этого типа КК. Разработчики российских КК сходятся во мнении, что для ускорения разработки квантового компьютера, кроме отдельных проблем, необходимо решать вопрос с кадрами и популяризировать квантовые технологии среди молодежи и в научной среде. Помимо государственного и частного финансирования лабораторий, создающих квантовые компьютеры, уже сейчас нужно готовить компетентные кадры и учебные материалы для разработки квантового «железа» и ПО, рассказал Якимов.

Помимо этого существует проблема с закупкой оборудования. Сколько это займет времени в России, зависит от скорости закупки оборудования и от того, насколько мы будем успешны в попытках построить масштабируемый квантовый компьютер», — сказал Семериков. Для ускорения закупок нужно минимизировать соответствующие бюрократические процедуры, добавил он. Также российским ученым не хватает элементной базы электронных компонентов, лазеров, литографов для квантовых микропроцессоров, средств измерения, охлаждения и т.

Представьте, что вы работаете разъездным торговцем: зарабатываете на жизнь тем, что ходите по домам и продаёте мультиварки.

Вам нужно придумать кратчайший маршрут, который позволит заехать в несколько крупных городов хотя бы по одному разу и вернуться домой. Перед вами — знаменитая задача коммивояжёра, и она гораздо хитрее, чем кажется на первый взгляд. Если городов в условии будет больше 66, обычному компьютеру понадобится несколько миллиардов лет, чтобы решить её простым перебором. И тут на помощь приходят квантовые компьютеры, которые могут решать такие задачи в миллионы раз быстрее обычных. Дело в том, что вместо привычных битов у квантовых компьютеров — кубиты.

Физически это уже не транзисторы, а квантовые частицы — обычно фотоны или протоны. В отличие от бита, кубиты могут не только равняться 0 или 1, но и принимать любые значения между ними. Благодаря этому квантовый процессор может выполнять несоизмеримо больше операций за один такт. Как работает квантовый компьютер Как мы отметили ранее, квантовый компьютер использует два классических понятия из квантовой механики: принцип суперпозиции и спутанность. Суперпозиция — это способность квантовой частицы находиться сразу в нескольких состояниях одновременно.

У суперпозиции есть интересное свойство: она тут же «схлопывается» при появлении наблюдателя. Представьте, что вы подбросили монету и смотрите, как она вращается. Вы не можете точно сказать, что она сейчас вам показывает — орла или решку, всё вращается, ничего не понятно, остановите это кто-нибудь. Но стоит вам только «прихлопнуть» монетку на ладони, всё становится ясно. Точно так же ведёт себя и кубит — пока вы не воздействуете на него измерительным прибором, он так и будет пребывать сразу во всех состояниях между нулём и единицей.

Звучит странно, но это одна из главных заповедей квантовой механики. Вокруг суперпозиции вообще ведётся много споров в научных кругах — взять хотя бы знаменитый парадокс кота Шрёдингера, который то ли жив, то ли мёртв, то ли вообще живёт сразу в нескольких параллельных вселенных. Читайте также: Кот Шрёдингера: что это за эксперимент и в чём его смысл Мало нам суперпозиции — чтобы вычисления совершались, кубиты должны быть связаны между собой. И если в обычной машине эту роль берут на себя токопроводящие дорожки, в квантовой нас выручает квантовая спутанность. Например, в лабораторных условиях мы можем получить несколько фотонов в спутанном состоянии — и тогда, где бы эти фотоны ни оказались, хоть на разных концах Вселенной, они будут связаны между собой.

Если изменить состояние одной, тут же изменятся и другие спутанные с ней частицы. Звучит совсем как магия, но это реальный физический закон: с его помощью учёные научились телепортировать квантовое состояние на многие километры.

Понятнее явно не стало.

Разберем это на примере. Информация в квантовых компьютерах хранится в кубитах — если обычные биты могут иметь состояние 0 или 1, то кубит может иметь состояние 0, 1, и 0 и 1 одновременно. Поэтому если мы имеем 3 кубита, к примеру 110, то это выражение в битах равносильно 000, 001, 010, 011, 100, 101, 110, 111.

Что это нам дает? Да все! К примеру, у нас есть циферный пароль из 4 символов.

Как будет его взламывать обычный процессор? Простым перебором от 0000 до 9999. Поэтому если мы имеем квантовый ПК с 14 кубитами — мы уже знаем пароль: ведь одно из возможных состояний такой системы и есть пароль!

В результате все задачи, которые сейчас сутками считают даже суперкомпьютеры, на квантовых системах будут решаться моментально: нужно найти вещество с определенными свойствами? Не проблема, сделайте систему с таким же количеством кубитов, сколько у вас требований к веществу — и ответ уже будет у вас в кармане. Нужно создать ИИ искусственный интеллект?

Проще некуда: пока обычный ПК будет перебирать все комбинации, квантовый компьютер сработает молниеносно, выбрав лучший ответ.

Что такое квантовый компьютер? Разбор

В эксперименте Google они были случайными. Затем можно снова выполнить ту же самую последовательность, чтобы сэмплировать другую случайную 53-битную строку точно таким же образом — и так далее, так часто, как вам нужно. По оценке Google, чтобы повторить пробное вычисление, которое заняло у «Сикомора» 3 минуты 20 секунд, понадобилось бы 10 тысяч лет и 100 тысяч традиционных компьютеров, на которых запущены самые быстрые на сегодняшний день алгоритмы. Эта задача так сложна, что с помощью обычного компьютера оказалось невозможно даже проверить результаты вычисления! Так что для проверки работы квантового компьютера в самых сложных случаях Google полагался на аналогии с более простыми. Почему IBM говорит, что Google ничего не достиг Компания IBM, которая сконструировала свой собственный 53-кубитный процессор, тут же опубликовала опровержение. Компания заявляет, что с помощью мощнейшего суперкомпьютера на планете она сможет повторить эти вычисления за 2,5 дня, а не за 10 тысяч лет. Для этого понадобится суперкомпьютер Summit в Национальной лаборатории Ок-Риджа в штате Теннесси, площадь которого занимает пару баскетбольных полей.

IBM утверждает, что может записать все 9 квадриллионов возможных состояний, используя не умещающиеся в моем воображении 250 петабайт физической памяти суперкомпьютера. Что характерно, IBM не считает, что такое моделирование будет легким: на момент написания этой статьи компания так и не провела его. Кто и что в итоге доказал? Сегодня мощнейшие суперкомпьютеры планеты с героическим усилием всё еще могут продемонстрировать малую долю мощности квантовых компьютеров. Но сам факт того, что в компьютерной гонке обычный и квантовый компьютер сравнялись, заставляет предположить, что очень скоро кое-кто вырвется вперед. Будь у Google процессор не на 53 кубита, а на 60, для проверки результатов компании IBM понадобилось бы уже 30 суперкомпьютеров Summit. А на проверку 70 кубитов нужен суперкомпьютер величиной с огромный город.

Есть ли какая-то научная ценность в бодании двух технологических гигантов? Является ли формальное «квантовое превосходство», пока что не применимое к жизни, важной вехой? И когда вообще ждать от этого всего практической пользы? Предположим, Google все-таки достиг квантового превосходства — что конкретно это доказывает и кто вообще в сомневался в том, что квантовое исчисление мощнее двоичного? Чем полезен квантовый компьютер? Давайте начнем с практической пользы. Протокол , который я разработал пару лет назад, использует для генерации случайных битов такой же процесс выборки, как и в эксперименте Google.

Сам по себе он не впечатляет, но дело в том, что даже убежденному скептику можно продемонстрировать случайность битов, обеспеченную квантовой интерференцией. Надежная случайность битов необходима для шифрования, например, в случае с криптовалютами с доказательством доли владения Proof-of-stake, или PoS — экологичными альтернативами биткоина.

Их изучением и развитием занимается вычислительная квантовая химия. Сейчас каждый год собираются огромные конференции, на которых тысячи учёных делятся последними достижениями в этой области. И хотя компьютеры могут уже очень многое — вплоть до предсказания эффективности действия инновационного лекарства — последнее слово, как и 100 лет назад, остаётся за экспериментами. Все вычисления будут делать квантовые симуляторы, и будут делать их точнее и быстрее, чем мы». Чего же так боятся квантовые химики?

Идея квантовых симуляторов восходит к статье знаменитого физика Ричарда Фейнмана, опубликованной в 1982 году. В ней нобелевский лауреат высказал относительно простую мысль. Если у нас будут квантовые компьютеры, то есть компьютеры, которые совершают вычисления по квантовым законам, то было бы вполне естественно в первую очередь использовать их для вычислений, связанных с квантовыми системами, — в частности, для вычислений в квантовой химии. И действительно, как показали дальнейшие исследования, это возможно. И более того, такие вычисления смогут в полной мере задействовать уникальные возможности квантовых компьютеров, то есть они будут выполняться значительно быстрее, чем на компьютерах обычных. Это позволит решать задачи точного расчёта химических реакций за разумное время и заменить дорогостоящие прямые эксперименты на более дешёвые вычисления. Более того, одна из проблем квантовых компьютеров — разрушающее действие окружающей среды, не позволяющее подолгу сохранять квантовую суперпозицию, — в квантовых симуляторах может быть использовано для пользы дела.

Ведь реальные квантовые системы тоже находятся в окружении других тел, которые точно так же разрушают квантовые эффекты в них. Это воздействие можно имитировать с помощью действия окружения на кубиты квантового симулятора. Применение квантовых симуляторов Сейчас уже созданы первые, самые простые квантовые симуляторы. Так, в 2010 году группа экспериментаторов из Квинслендского университета в Австралии и Гарвардского университета в США сообщила, что им удалось рассчитать свойства самой простой молекулы — молекулы водорода — с достаточной для химиков точностью при помощи квантового симулятора, кубиты которого были основаны на «частицах» света — фотонах. Молекула водорода пока остаётся основным объектом, который исследуют на квантовых симуляторах, но сами симуляторы при этом с каждым годом улучшаются. Работа ведётся в нескольких направлениях. Во-первых, учёные пробуют разные реализации квантовых симуляторов.

Что такое квантовое декогеренцирование Итак, мы знаем, что кубит находится в суперпозиции до тех пор, пока не измерить его значение. Во время наблюдения кубит принимает полярные значения — условные 0 или 1. При этом частицы изменяют своё поведение в зависимости от других частиц. Но ведь мир состоит из этих частиц, верно?

К примеру, на состояние кубита могут повлиять частицы света вокруг него, а также окружающие его молекулы и атомы. Именно эта проблема и называется декогеренцированием. Она актуальна, и учёные ещё не нашли простого способа снизить её эффект на кубиты. У неё есть два самых известных решения: снизить температуру кубита до абсолютного нуля и окружить кубит суперпроводником, который защищает частицу от внешнего влияния.

Во всяком случае, пока что. Зачем разрабатывать квантовые процессоры Несмотря на то, что квантовые вычисления могут быть ошибочными, а поддерживать кубиты стабильными — непростая задача, которую ещё предстоит решить, есть несколько причин, по которым технологию не оставили: Современные компьютеры ограничены в возможностях, а квантовые — нет. Даже сегодня суперкомпьютеры могут тратить десятки тысяч лет на решение сложнейших задач, когда квантовый компьютер может решить её за секунды. Некоторые из таких задач включают факторизацию больших чисел, оптимизацию, моделирование сложных систем и анализ больших данных.

Квантовые компьютеры помогают лучше понимать мир. Хотя нам кажется, что человечество достигло небывалых высот за последние 50 лет, в действительности мы мало знаем о частицах, их природе и физике. Как бы это ни было парадоксально, строительство квантовых компьютеров помогает изучить квантовую физику. Квантовые алгоритмы могут изменить существующие методы шифрования и дешифровки данных.

С одной стороны, они могут предложить криптографические методы, устойчивые к взлому с использованием квантовых алгоритмов. С другой стороны, квантовые процессоры могут быть использованы для взлома существующих классических криптографических методов.

Классического аналога у большинства возможных значений квантового регистра за исключением базовых просто не существует. Состояния классического регистра - лишь жалкая тень всего богатства состояний квантового компьютера. Представьте, что на регистр осуществляется внешнее воздействие, например, в часть пространства поданы электрические импульсы или направлены лазерные лучи.

Если это классический регистр, импульс, который можно рассматривать как вычислительную операцию, изменит L переменных. Если же это квантовый регистр, то тот же импульс может одновременно преобразовать до переменных. Таким образом, квантовый регистр, в принципе, способен обрабатывать информацию в раз быстрее по сравнению со своим классическим аналогом. В действительности квантовое ускорение обычно значительно меньше, чем приведенная грубая оценка сверху это связано со сложностью получения большого количества амплитуд и считывания результата , поэтому практически полезный квантовый компьютер должен содержать тысячи кубитов. Но, с другой стороны, понятно, что для достижения действительного ускорения вычислений нет необходимости собирать миллионы квантовых битов.

Компьютер с памятью, измеряемой всего лишь в килокубитах, будет в некоторых задачах несоизмеримо быстрее, чем классический суперкомпьютер с терабайтами памяти. Стоит, однако, отметить, что существует класс задач, для которых квантовые алгоритмы не дают значительного ускорения по сравнению с классическими. Одним из первых это показал российский математик Ю. Ожигов, построивший ряд примеров алгоритмов, принципиально не ускоряемых на квантовом компьютере ни на один такт. И тем не менее нет сомнения, что компьютеры, работающие по законам квантовой механики, - новый и решающий этап в эволюции вычислительных систем.

Осталось только их построить. Правда, пока что экспериментально удается собирать лишь небольшие регистры, состоящие всего из нескольких квантовых битов. Так, недавно группа, возглавляемая американским физиком И. Чангом IBM , объявила о сборке 5-битового квантового компьютера. Несомненно, это большой успех.

К сожалению, существующие квантовые системы еще не способны обеспечить надежные вычисления, так как они либо недостаточно управляемы, либо очень подвержены влиянию шумов. Однако физических запретов на построение эффективного квантового компьютера нет, необходимо лишь преодолеть технологические трудности. Существует несколько идей и предложений, как сделать надежные и легко управляемые квантовые биты. Чанг развивает идею об использовании в качестве кубитов спинов ядер некоторых органических молекул. Российский исследователь М.

Фейгельман, работающий в Институте теоретической физики им. Ландау РАН, предлагает собирать квантовые регистры из миниатюрных сверхпроводни ковых колец. Каждое кольцо выполняет роль кубита, а состояниям 0 и 1 соответствуют направления электрического тока в кольце - по часовой стрелке и против нее. Переключать такие кубиты можно магнитным полем. Валиева предложила два варианта размещения кубитов в полупроводниковых структурах.

В первом случае роль кубита выполняет электрон в системе из двух потенциальных ям, создаваемых напряжением, приложенным к мини-электродам на поверхности полупроводника. Состояния 0 и 1 - положения электрона в одной из этих ям. Переключается кубит изменением напряжения на одном из электродов. В другом варианте кубитом является ядро атома фосфора, внедренного в определенную точку полупровод ника. Состояния 0 и 1 - направления спина ядра вдоль либо против внешнего магнитного поля.

Управление ведется с помощью совместного действия магнитных импульсов резонансной частоты и импульсов напряжения. Таким образом, исследования активно ведутся и можно предположить, что в самом недалеком будущем - лет через десять - эффективный квантовый компьютер будет создан. Вероятно, большой масштабируемый компьютер будет содержать тысячи управляющих элементов, действующих локально на каждый кубит. Каким образом могло бы осуществляться это воздействие? Скорее всего, с помощью электрических импульсов, подаваемых на микроэлектроды, подведенные к кубитам.

Возможно также оптическое управление пучками света, сфокусированными на кубитах. Однако в этом случае трудно избежать паразитного воздействия на соседние кубиты дифракционных краев сфокусированного пучка. Что касается электрических методов, то они уже давно и широко применяются в микроэлектронике для управления классичес кими логическими элементами. Поэтому их использование представляется наиболее перспективным и для создания масштабируемых квантовых компьютеров. Возможно, конечно, что в результате какого-нибудь технологического прорыва появится еще и третий вариант.

Однако революционные открытия трудно поддаются прогнозу. Таким образом, весьма возможно, что в перспективе квантовые компьютеры будут изготавливаться с использованием традиционных методов микроэлектронной технологии и содержать множество управляющих электродов, напоминая современный микропроцессор. Для того чтобы снизить уровень шумов, критически важный для нормальной работы квантового компьютера, первые модели, по всей видимости, придется охлаждать жидким гелием.

В погоне за миллионом кубитов

Квантовая интегральная микросхема (КИМС) содержит пять кубитов, один из которых в данном эксперименте не использовался. Кубит может хранить намного больше информации, чем классический бит. Сейчас 16 кубитов есть на нескольких платформах, при этом наибольшую вычислительную мощность демонстрирует ионный процессор. Подобная пространственная конфигурация, как показали последующие опыты, позволила ученым продлить типичное время работы кубитов на базе квантовых точек более чем на два порядка.

Как устроен и зачем нужен квантовый компьютер

В 2013 году мы произвели первичные измерения полученных в Германии кубитов (кубит – элемент сверхпроводниковой микросхемы, сделанный из сверхпроводника – тонких пленок алюминия). Кубит (q-бит, кьюбит, кубит; от quantum bit) — наименьшая единица информации в квантовом компьютере (аналог бита в обычном компьютере), использующаяся для квантовых вычислений. Один кубит соответствует двум состояниям, два кубита — уже четырем, а восемь кубитов могут принимать значения от 0 до 255. Что наиболее важно, кубит достиг времени когерентности в квантовом состоянии, конкурентоспособного с другими современными кубитами.

Квантовые компьютеры. Почему их еще нет, хотя они уже есть?

Компьютер смоделировал молекулу гидрида лития за минуту, на что обычному компьютеру понадобилось бы гораздо больше времени. На сегодня это самый мощный квантовый компьютер в стране. Подпишитесь , чтобы быть в курсе. Компьютер разработала команда ученых из Российского квантового центра и физического института им. Лебедева РАН при координации госкорпорации «Росатом». Это часть реализации дорожной карты по квантовым вычислениям.

Кубиты также должны быть защищены от фонового шума, чтобы уменьшить ошибки в вычислениях. Внутренности квантового компьютера выглядят как роскошная золотая люстра. И да, многие комплектующие сделаны из настоящего золота. Это дорогущий холодильник, который используется для охлаждения квантовых чипов, чтобы компьютер мог создавать суперпозиции и запутывать кубиты, не теряя при этом никакой информации. Квантовый компьютер создаёт эти кубиты из любого материала, который обладает квантово-механическими свойствами, доступными для управления.

Проекты квантовых вычислений создают кубиты различными способами, такими как зацикливание сверхпроводящего проводника, вращение электронов и захват ионов или импульсов фотонов. Эти кубиты существуют только при температурах близких к абсолютному нулю, создаваемых в холодильной установке. Язык программирования квантовых вычислений Квантовые алгоритмы предоставляют возможность анализировать данные и создавать модели на основе данных. Эти алгоритмы написаны на квантово-ориентированном языке программирования. Исследователи и технологические компании разработали несколько квантовых языков.

Q : язык программирования, включенный в Microsoft Quantum Development Kit. Комплект разработчика включает в себя квантовый симулятор и библиотеки алгоритмов. Cirq: квантовый язык, разработанный Google , который использует библиотеку python для написания схем и запуска этих схем в квантовых компьютерах и симуляторах. Forest: среда разработки, созданная Rigetti Computing, которая используется для написания и запуска квантовых программ. Использование квантовых вычислений Настоящие квантовые компьютеры стали доступны только в последние несколько лет, и только несколько крупных технологических компаний имеют квантовый компьютер.

Эти технологические лидеры работают с производителями, фирмами, оказывающими финансовые услуги, и биотехнологическими компаниями, чтобы решить множество проблем. Доступность квантовых компьютерных услуг и прогресс в области вычислительной мощности дают исследователям и ученым новые инструменты для поиска решений проблем, которые раньше было невозможно решить.

Квантовые компьютеры не создаются для замены привычных транзисторных. Итак, квантовые компьютеры ориентированы на сложные расчеты.

За свои открытия в 1999 году Ричард Фейнман попал в десятку лучших физиков всех времен. Фото: britannica. Возможно, мы научимся моделировать ДНК, взломаем существующие шифры и сделаем бессмысленными современные системы шифрования. О том, насколько сильно квантовые компьютеры изменят наш мир, можно судить по термину «квантовое превосходство» — способность квантовых компьютеров решить задачи, которые обычным компьютерам либо неподвластны, либо требуют тысячи лет на просчет.

Квантовые компьютеры позволят делать то, что раньше было немыслимо. А расчет будет в разы надежнее. Именно этот футуристичный механизм — квантовый компьютер Google, который позволил достичь квантового превосходства в строгом смысле, пусть пока и без ориентации на практику.

Алексей Фёдоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра: «Ловим атом, каждый в специальную ловушку.

Выстраиваем эти атомы в определённом порядке это может быть такая двумерная решетка И при помощи возбуждения заставляем их взаимодействовать. Так наш квантовый компьютер будет инициализировать состояния, выполнять операции. Дальше мы производим считывание. То есть мы считываем состояние атомов.

Если он был возбуждён или если он не был возбужден. И в зависимости от этого получаем ответ на поставленный вопрос». Процесс сложный, но ученые излучают уверенность и делают кубиты также на сверхпроводниках, которым нужны экстремально низкие температуры. Уже есть успехи — американская IT-компания , например, в конце 2022 года представила процессор, внутри которого 433 кубита.

Теоретически в нем может одновременно содержаться на много порядков больше бит информации, чем атомов в наблюдаемой Вселенной. Но решить какую-то задачу гораздо быстрее обычного компьютера, то есть «продемонстрировать квантовое превосходство», такой процессор пока не может — слишком нестабильны элементы.

Похожие новости:

Оцените статью
Добавить комментарий