Новости светодиодная подсветка для телевизора

Много приходит крупноформатных телевизоров с LED подсветкой и с дефектной матрицей, от таких телевизоров клиенты отказываются. Подсветка Govee Immersion TV Backlight обещает не только сохранить ваше зрение, но и обогатить впечатления от просмотра телевизора. Дополнительная подсветка телевизора и монитора: нужна ли она?

Дополнительная подсветка телевизора и монитора: нужна ли она?

LED подсветка в современных телевизорах с экранами на жидких кристаллах на сегодня имеет несколько технологических решений. предлагает светодиодная лента для подсветки телевизора, 42399 видов. Вместо умной лампочки можно купить светодиодную ленту — с ней подсветка будет равномернее по периметру экрана. В телевизорах с этим типом подсветки не предусмотрены ЖК-экраны над массивами диодов. USB cветодиодная LED лента подсветка для телевизора и монитора 1 м, IP65, 5050 Зеленая. Вместо умной лампочки можно купить светодиодную ленту — с ней подсветка будет равномернее по периметру экрана.

webOS Forums - форум пользователей телевизоров LG на webOS

Подсветка первых жидкокристалических телевизоров была выполнена при помощи люминесцентных (CCFL) ламп. Хотите приобрести экологичную, энергосберегающую и высококачественную светодиодную подсветку телевизора от профессиональных производителей? Телевизоры же с Direct расположением диодов дают более равномерную подсветку, но увеличивают толщину экрана и энергопотребление за счет увеличения количества диодов. Подсветка работает от USB разъёма телевизора, включается/выключается вместе с телевизором и яркость можно регулировать. Подсветка работает от USB разъёма телевизора, включается/выключается вместе с телевизором и яркость можно регулировать.

Похожие материалы по теме:

  • Типы лед подсветки
  • Навигация по записям
  • Назначение
  • Direct LED или FALD

Сравнительный тест 6 жидкокристаллических телевизоров со светодиодной подсветкой

С одной стороны, это действительно улучшает цветопередачу, с другой — лишает нас возможности вместо светофильтров использовать более технологичный и качественный способ получения цвета — квантовые точки. Квантовым точкам обязательна именно синяя подсветка, цветная или белая работать не будут. Но самое главное во всех этих вариантах с большим числом светодиодов сзади — не их количество, а то, что ими можно управлять по отдельности. Функция подсветки LocalDimming меняет всё Однажды ЖК телевизоры сильно приблизились к светодиодным по уровню чёрного и контрастности. Сейчас практически всё, кроме EdgeLED, обладает этой функцией. Изначально эта функция была только в профессиональных ЖК дисплеях, но потом попала в потребительский сектор и просто перевернула рынок: ЖК вплотную подобрались к OLED почти по всем характеристикам и обогнали их по яркости.

Идея проста: давайте, раз уж у нас тут в подсветке куча лампочек, управлять ими отдельно — превратим подсветку в такой себе недодисплей низкого разрешения, который будет помогать жидким кристаллам делать дело. Подсветка будет грубо накидывать картинку крупными мазками, а дальше мы будем её уточнять жидкими кристаллами и раскрашивать. Мы затемняем подсветку в тех областях, где изображение тёмное естественно, в меру возможности. Например, у нас луна на фоне черного неба — давайте включим подсветку только под луной, а в остальных местах её ослабим. Такое поведение очень хорошо борется с проблемой плохого контраста и недочёрного цвета у ЖК дисплеев.

Нет света — нет проблем со светом. Хотя подсветка и может затемняться где нужно, «подражая» яркости картинки в разных местах, разрешение у этой подсветки, мягко говоря, небольшое, даже у MiniLED с его десятками тысяч зон. Пикселей-то на дисплее миллионы, а не тысячи. Поэтому подсветка будет либо откусывать участки ярких объектов, занижая подсветку вблизи их краёв, либо наоборот, создавать толстые размытые ореолы вокруг ярких объектов на темном фоне. MiniLED пытается в контраст.

Эти смачные синие ореолы вокруг микроперсиков — артефакт дисплея, на самой картинке их нет. На DirectLED всё было бы ещё суровее Например, такой дисплей хорошо справится с луной на темном фоне, но вот со звездным небом — кучей маленьких белых точек — у него будут проблемы: вокруг звезд будут ореолы и разводы. Между близко расположенными звездами и вовсе будет не чёрный, а темно серый. Изделие будет отчаянно метаться между недобелым и светящимся чёрным, в итоге, завалит и то, и другое, и до кучи похоронит контраст с цветовым охватом. Но проблемы всё равно не уйдут, пока светодиодов меньше, чем пикселей.

А если будет столько же, сколько пикселей — то зачем нам вообще ЖК слой, у нас тут уже светодиодный телевизор. Локальное затемнение бывает у всех подсветок, кроме ртутных — эти слишком древние. Хотя, имхо, было бы забавно поставить в жидкокристаллический 8K дисплей вместо подсветки цветную плазменную панель FullHD. Жидкокристаллический плазменный телевизор не путать с PALC — там подсветка не плазменная. Спектр, цвета, контраст, яркость — всё это должно получиться идеальным.

А если ещё сделать два слоя ЖК кристаллов, а цвета получать квантовыми точками... На EdgeLED локальное затемнение ставят, но от там от него толку маловато. Благодаря этой функции, они могут держать уровень чёрного на уровне OLED, обгоняя, при этом, его по яркости. Мухлёж выдают только противные ореолы, засветки, и провал контраста в местах соседства ярких и тёмных областей, особенно, если они маленькие и их много. Но, справедливости ради, все эти ореолы и провалы подсветки заметны не так сильно.

В случае локального затемнения в SLED технологии, то здесь цветные светодиоды дополнительно помогают картинке окрашиваться нужным образом, а не просто меняют яркость. Дальше цвет проходит через жидкие кристаллы и докрашивается дополнительно светофильтрами. Теоретически, у такой подсветки тоже проблемы с ореолами, причём, эти ореолы цветные, а у двух соседних областей с яркими, но разными цветами, на месте резкого перехода с цветами происходит цирк. Однако, в большинстве случаев, это малозаметно — разрешение глаза по цвету ниже, чем по яркости. Здесь можно отследить забавную закономерность: по мере приближения качества картинки жидкокристаллического дисплея к светодиодному, количество светодиодов в подсветке ЖК экрана возрастает настолько, что эта подсветка сама постепенно превращается в светодиодный дисплей.

Жидкие кристаллы Жидкие кристаллы используются как электронная версия жалюзи, чтобы заслонять или не заслонять свет в определённых пикселях, как-бы меняя прозрачность. Это жидкость, состоящая из очень вытянутых молекул, с одной стороны, воздействующих на свет, с другой — поддающихся управлению с помощью электрического поля. ЖК используют не только в дисплеях — из них, например, делают детекторы химических соединений, измерители давления и датчики ультразвука. Оболочки живых клеток — это тоже лиотропные жидкие кристаллы. На деле эту аббревиатуру вешают только на старые-старые, первые, самые примитивные толстые ЖК телевизоры с подсветкой на ртутных лампах.

Сами по себе жидкие кристаллы прозрачность менять не умеют, вместо этого они умеют поворачивать поляризацию света. В комбинации с поляризационными фильтрами это свойство можно использовать для регулировки прозрачности. Что такое поляризация понятным языком и понятными картинками Поляризация — это одно из свойств света. Люди поляризацию не различают, потому что у нас нет нужных органов чувств. По этой причине феномен поляризации не является интуитивно понятным, и чтобы его объяснить, нужно много букв.

Свет — это электромагнитные волны. Любые электромагнитные волны состоят из электрического и магнитного полей, которые колеблются с какой-то частотой, и при этом распространяются со скоростью света. В случае с видимым светом, эти колебания происходят сотни триллионов раз в секунду. Поля колеблются не «сильнее-слабее», а «выше-ниже», «левее-правее», то есть они ориентированы в пространстве. Направление колебаний электрического поля всегда перпендикулярно направлению колебаний магнитного поля.

Оба направления колебаний одновременно перпендикулярны направлению их распространения. В общем, все три направления перпендикулярны. Отсюда растут ноги таких картинок в учебнике физики. Типичные электромагнитные волны в типичном учебнике Электромагнитное поле, тем более волны электромагнитного поля — довольно сложный объёмный объект. Представьте себе, что из каждой точки некоторого объёмного трёхмерного пространства торчит сразу два вектора-стрелочки, при этом стрелочки не замерли, а шевелятся: колеблются волнами по определённым законам, как волна из болельщиков на стадионе.

Если теперь взять какую-нибудь прямую, параллельную направлению распространения электромагнитных волн в этом объёмном пространстве, и скрыть все векторы-стрелочки, кроме тех, начальная точка которых лежит на этой прямой, то получится картинка выше. Но это не важно. Важно другое: направление колебания поля — это и есть поляризация. Именно направление колебания, а не направление распространения. Например, поляризация может быть горизонтальной, или вертикальной.

Или диагональной. Поляризация относительна и зависит от того, под каким углом смотришь — повернёшь голову на бок, и поляризация уже другая. Может даже существовать вариант, когда направление поляризации постоянно меняется вместе с колебаниями электромагнитного поля — тогда получается закрученная электромагнитная волна. Светящийся объект обычно состоит из очень большого количества источников электромагнитных волн говоря упрощённо, каждая молекула выступает «антенной» — самостоятельным источником волн видимого спектра. При этом, направления колебания поля — поляризация — у каждого источника-молекулы случайные.

Поэтому суммарно светящийся объект излучает электромагнитные волны сразу под всеми возможными углами поляризации. Из всех имеющихся колебаний мы можем отсечь только те, которые происходят в определённом направлении. Для этого существуют поляризационные фильтры. Например, можно оставить только горизонтальную поляризацию, или вертикальную: Разумеется, возможны и промежуточные углы. В любом случае, поляризационный фильтр отсеет только волны, которые колеблются в определённом направлении.

Остальные он не удалит полностью, вместо этого он будет их подавлять, и чем больше направление колебаний волны отклонено от направления поляризации в фильтре, тем сильнее он их подавит. В пределе подавление света будет максимальным, если волна колеблется перпендикулярно направлению поляризации фильтра. Свет, отражённый от воды, поляризован — его легко убрать поляризационным фильтром Поляризационные фильтры активно используют на объективах фотоаппаратов. Свет, отражающийся от неметаллических поверхностей, поляризуется. При этом свет, падающий по касательной к поверхности, поляризуется сильнее, чем тот, который падает прямо.

Этот эффект используется для удалений всяких бликов, туманов, дымок с отражениями на воде. В век вычислительной фотографии большую часть задач хорошо делают алгоритмы , но некоторые вещи оптика всё ещё делает лучше. Жидкие кристаллы не умеют менять прозрачность, вместо этого они поворачивают поляризацию света, проходящего через них. Или не поворачивают. Если поместить жидкие кристаллы в электрическое поле — то есть, подать напряжение — то так можно управлять, насколько именно они повернут или не повернут поляризацию.

Из двух поляризационных фильтров и жидких кристаллов между ними мы можем создать бутерброд с изменяемой прозрачностью — те самые электронные жалюзи: Берём свет. Горизонтальным поляризатором оставляем только горизонтальные волны. ЖК поворачиваем или не поворачиваем поляризацию вертикально. Вертикальным поляризатором удаляем всё, что не было повёрнуто вертикально. После горизонтального фильтра остаются горизонтальные волны — они не пробьются через стоящий дальше вертикальный фильтр.

Но если в промежутке между горизонтальным и вертикальным фильтрами мы повернём волны с помощью жидких кристаллов — тогда они смогут пройти через второй фильтр. Гипотетически жидкие кристаллы можно заменить поляризационным фильтром с двигателем, который бы его поворачивал, но на сегодняшний день это слишком сложно, дорого, ненадёжно и неэффективно, даже если использовать MEMC. Жидкие кристаллы инертны, и поворачиваются не мгновенно, поэтому у жидкокристаллических дисплеев есть проблема со шлейфами от быстро движущихся обьектов. Время полного переключения кристалла между двумя крайними состояниями называется временем отклика. Раньше оно измерялось десятками миллисекунд, сейчас некоторые дисплеи вплотную подобрались к показателю в 1 мс.

Теперь разберём виды жидких кристаллов. Жидкие кристаллы TN TN англ. При подаче напряжения спиральки распрямляются, и перестают разворачивать поляризацию — свет начинает блокироваться вторым поляризационным фильтром. В настоящее время единственный плюс TN — скорость. Бешеные геймерские мониторы с разверткой 500 Гц сделаны как раз из таких кристаллов, просто потому, что другие так быстро переключаться не умеют.

С остальными характеристиками всё плохо — контрастность ужасная, углы обзора ужасные, точность ужасная, яркость ужасная. Распрямление скрученных кристаллов тяжело контролировать точно, поэтому матрицы TN, зачастую, имеют 6-битный цвет, а 8 бит достигается путём той самой ШИМ — кристалл «дрожит» между двумя положениями, и достигается промежуточная яркость. Интересно, когда доберутся до 1 КГц. Впрочем, одна из возможных реализаций дисплеев светового поля потребует частоты обновления экрана в десятки МГц Когда говорят «TFT дисплей», зачастую, подразумевают именно TN-кристаллы. Напомню: TFT — это не тип дисплея, и не вид ЖК, а способ управления пикселями, он есть в любых дисплеях, даже в светодиодных.

Чтобы хоть как-то улучшить углы обзора TN, на них стали наносить специальную плёнку. Её так и называют — film. Кроме того, при увеличении разрешения углы обзора TN матриц улучшаются, поэтому в современных дисплеях дела с углами обзора обстоят не так плохо, как раньше. Кристаллы не скручиваются, а просто поворачиваются в плоскости экрана. Их положение можно очень точно регулировать, поэтому экраны с IPS-кристаллами имеют очень хорошие, точные и сочные цвета с 8-ми или даже 10-битной градацией.

К недостаткам можно отнести медлительность и проблемы с чёрным цветом. Первые матрицы имели время отклика порядка 50 мс. Сейчас самые быстрые умеют переключаться за 5 мс — по современным меркам это не предел мечтаний, но неплохо. IPS в закрытом положении плохо блокирует свет, поэтому такие дисплеи вместо чёрного показывают серо-сине-фиолетовое марево. IPS дисплей может выручить подсветка с локальным затемнением, выключающая свет в областях, где он не нужен — тогда проблемы чёрного остаются только в виде ореолов вокруг ярких объектов.

Samsung выпускает свою, немного улучшенную версию IPS, и называет её PLS — расстояние между субпикселями чуть меньше, сами они чуть больше, поэтому такой дисплей чуть ярче, чем IPS, и плотность пикселей у него может быть выше. Это вещество немного сдвигает спектр в правильную сторону, благодаря чему цвета и улучшаются легче «пролезают» через светофильтры. Эти кристаллы тоже поворачиваются, только не в плоскости экрана, а перпендикулярно ему. Изначально кристаллы находятся в плоскости экрана вертикально. При подаче напряжения они поворачиваются перпендикулярно экрану, то есть как-бы смотрят торцом на наблюдателя.

Долгое время VA означало, что у экрана средняя хуже, чем у TN, но лучше IPS скорость, средний уровень цветопередачи, отличный уровень чёрного и отличный контраст. Потом VA развилась, победили проблему углов обзора, научились добиваться высокой точности цветопередачи — у субпикселей появились субсубпиксели , выключая и включая их можно достичь большего числа промежуточных состояний — а это повышает точность цвета. Сейчас это одни из самых распространённых типов матриц и в мониторах и телевизорах. Как покрасить свет? ЖК у нас или светодиодный телевизор — свет получен и дозирован.

Теперь надо его покрасить. Красящие светофильтры Элементарно — это цветные стёкла. Если стараться не погружаться в толщу физики, смысл такой: белая подсветка — это смесь всех возможных цветов. Светофильтр может пропустить какой-то один цвет из этого света, а все остальные нет. При этом, всё, что не пропущено, не исчезает, а трансформируется в тепло.

Закон сохранения энергии никто не отменял. У светофильтров может быть не только разный цвет, но и разная плотность Например, если мы светим белым светом сквозь красное стекло, то из белого цвета стекло пропустит красный, а зелёный и синий цвет превратит в тепло. В результате получаем два недостатка: плохая энергоэффективность и низкая яркость — мы тут большую часть света просто гасим. Если мы хотим сделать цвета точнее и насыщеннее, нам нужно сильнее фильтровать свет — для этого фильтр должен быть плотнее. Так мы сильнее погасим ненужные нам цвета, и оставим только то, что нужно.

Но это влечёт за собой большую потерю яркости. Если хотим сделать такой дисплей ярче, мы должны светить белым светом ярче, чтобы после светофильтра больше оставалось. От этого больше кушаем энергии, светофильтр больше греется и греет остальные куски дисплея и т. Либо энергоэффективность и яркость, либо неплохие цвета. Древнющее, дешёвое, прожорливое, очевидное и сердитое решение.

Встречается как в ЖК, так и в светодиодных телевизорах. Красящие квантовые точки Свет — это электромагнитные волны. Оранжевый свет имеет частоту около 480 000 ГГц Квантовые точки — это особое вещество, каждая частица которого работает как антенна для электромагнитных волн. Частица-точка устроена так, что может поймать волны с одной частотой, преобразовать их в волны с другой частотой, и излучить обратно.

Там и сегментов подсветки много было. А палки у меня в гараже валяются, но ума им не дал пока. А, вот, толстый лист пластика из лед-панели я положил на рабочий стол.

Пленка представляет собой совокупность квантовых точек, имеющих красный и зеленый цвета. Это позволяет иметь настроенный спектр оптических волн, ограниченный по диапазону.

За этот счет цветовая палитра расширяется, а яркость и интенсивность улучшается. В отличие от RGB-системы, эта технология энергоэффективнее. Ответ на вопрос, какой вариант подсветки использовать, неоднозначен. До сих пор имеют место различные спорные мнения, дискуссии на этот счет. Компания Toshiba считает, что белая подсветка по совокупности всех характеристик предпочтительней, чем RGB. Одноцветная система White LED , которая располагается по всему периметру либо по бокам, либо на одной стороне. Чаще всего на нижнем крае. Количество сторон и светодиодов зависит от размера экрана. Эта технология доступна для ультратонких панелей, толщиной до сантиметра.

К недостаткам можно отнести «пересветы» по краям и недостаточную контрастность. В некоторых моделях применяются рассеиватели, немного сглаживающие изображение. Но при этом повышающие цену телевизора. Direct LED. Расположены на задней панели за ЖК-матрицей. При этом варианте светодиоды равномерно распределены по всей площади изображения. Свет в итоге получается однородный. Это благоприятно сказывается на уровне контрастности. Кроме белых диодов, могут использоваться и другие цвета, что намного улучшает изображение.

Общие достоинства LED-телевизоров Эти устройства — несомненный шаг вперед в развитии телевидения. Они пользуются заслуженной популярностью в быту. Можно выделить несколько главных преимуществ: Толщина. Благодаря использованию миниатюрных светодиодов стали выпускаться тонкие телевизоры. Они легко монтируются на стены при помощи специальных кронштейнов. Контрастность и четкость изображения. Если ещё можно оспаривать и сравнивать эти параметры между различными моделями LED-телевизоров, то качество «картинки» однозначно лучше, чем у предшественников. Особенно это заметно при рассматривании объектов в движении. Изящный внешний вид.

Большое разнообразие моделей любого дизайна, любых форм и расцветок. LED-устройства красиво смотрятся в любом интерьере. Эти телевизоры обладают длительным сроком эксплуатации, ведь в них используются светодиоды, устойчивые к перегоранию. Компании производители постоянно работают над совершенствованием этих панелей.

Планка, на которой размещены светодиоды, крепится к боковым поверхностям матового рассеивателя, поэтому световой фон получается более равномерным. Благодаря торцевому расположению диодов получилось снизить толщину корпуса телевизора. Вместе с этим дополнительно снижается нагрузка на глаза. Но, светодиодные блоки должны быть технически правильно и точно размещены. Если допустить ошибку, на экране появятся засветы — световые пятна, появляющиеся в результате неравномерности свечения. Что такое Edge LED в телевизоре ясно, но какие плюсы у этой технологии: матрица стала компактнее.

Боковое размещение светодиодов позволило снизить общую толщину панели; высокая яркость, что обеспечивает комфортное считывание информации с экрана. Есть и минусы: могут появиться засветы. В новых телевизорах, чтобы равномернее распределять отраженный свет по поверхности матрицы, делают светоотражающую поверхность с матовым покрытием.

webOS Forums - форум пользователей телевизоров LG на webOS

А если будет столько же, сколько пикселей — то зачем нам вообще ЖК слой, у нас тут уже светодиодный телевизор. Локальное затемнение бывает у всех подсветок, кроме ртутных — эти слишком древние. Хотя, имхо, было бы забавно поставить в жидкокристаллический 8K дисплей вместо подсветки цветную плазменную панель FullHD. Жидкокристаллический плазменный телевизор не путать с PALC — там подсветка не плазменная. Спектр, цвета, контраст, яркость — всё это должно получиться идеальным. А если ещё сделать два слоя ЖК кристаллов, а цвета получать квантовыми точками... На EdgeLED локальное затемнение ставят, но от там от него толку маловато. Благодаря этой функции, они могут держать уровень чёрного на уровне OLED, обгоняя, при этом, его по яркости. Мухлёж выдают только противные ореолы, засветки, и провал контраста в местах соседства ярких и тёмных областей, особенно, если они маленькие и их много. Но, справедливости ради, все эти ореолы и провалы подсветки заметны не так сильно. В случае локального затемнения в SLED технологии, то здесь цветные светодиоды дополнительно помогают картинке окрашиваться нужным образом, а не просто меняют яркость.

Дальше цвет проходит через жидкие кристаллы и докрашивается дополнительно светофильтрами. Теоретически, у такой подсветки тоже проблемы с ореолами, причём, эти ореолы цветные, а у двух соседних областей с яркими, но разными цветами, на месте резкого перехода с цветами происходит цирк. Однако, в большинстве случаев, это малозаметно — разрешение глаза по цвету ниже, чем по яркости. Здесь можно отследить забавную закономерность: по мере приближения качества картинки жидкокристаллического дисплея к светодиодному, количество светодиодов в подсветке ЖК экрана возрастает настолько, что эта подсветка сама постепенно превращается в светодиодный дисплей. Жидкие кристаллы Жидкие кристаллы используются как электронная версия жалюзи, чтобы заслонять или не заслонять свет в определённых пикселях, как-бы меняя прозрачность. Это жидкость, состоящая из очень вытянутых молекул, с одной стороны, воздействующих на свет, с другой — поддающихся управлению с помощью электрического поля. ЖК используют не только в дисплеях — из них, например, делают детекторы химических соединений, измерители давления и датчики ультразвука. Оболочки живых клеток — это тоже лиотропные жидкие кристаллы. На деле эту аббревиатуру вешают только на старые-старые, первые, самые примитивные толстые ЖК телевизоры с подсветкой на ртутных лампах. Сами по себе жидкие кристаллы прозрачность менять не умеют, вместо этого они умеют поворачивать поляризацию света.

В комбинации с поляризационными фильтрами это свойство можно использовать для регулировки прозрачности. Что такое поляризация понятным языком и понятными картинками Поляризация — это одно из свойств света. Люди поляризацию не различают, потому что у нас нет нужных органов чувств. По этой причине феномен поляризации не является интуитивно понятным, и чтобы его объяснить, нужно много букв. Свет — это электромагнитные волны. Любые электромагнитные волны состоят из электрического и магнитного полей, которые колеблются с какой-то частотой, и при этом распространяются со скоростью света. В случае с видимым светом, эти колебания происходят сотни триллионов раз в секунду. Поля колеблются не «сильнее-слабее», а «выше-ниже», «левее-правее», то есть они ориентированы в пространстве. Направление колебаний электрического поля всегда перпендикулярно направлению колебаний магнитного поля. Оба направления колебаний одновременно перпендикулярны направлению их распространения.

В общем, все три направления перпендикулярны. Отсюда растут ноги таких картинок в учебнике физики. Типичные электромагнитные волны в типичном учебнике Электромагнитное поле, тем более волны электромагнитного поля — довольно сложный объёмный объект. Представьте себе, что из каждой точки некоторого объёмного трёхмерного пространства торчит сразу два вектора-стрелочки, при этом стрелочки не замерли, а шевелятся: колеблются волнами по определённым законам, как волна из болельщиков на стадионе. Если теперь взять какую-нибудь прямую, параллельную направлению распространения электромагнитных волн в этом объёмном пространстве, и скрыть все векторы-стрелочки, кроме тех, начальная точка которых лежит на этой прямой, то получится картинка выше. Но это не важно. Важно другое: направление колебания поля — это и есть поляризация. Именно направление колебания, а не направление распространения. Например, поляризация может быть горизонтальной, или вертикальной. Или диагональной.

Поляризация относительна и зависит от того, под каким углом смотришь — повернёшь голову на бок, и поляризация уже другая. Может даже существовать вариант, когда направление поляризации постоянно меняется вместе с колебаниями электромагнитного поля — тогда получается закрученная электромагнитная волна. Светящийся объект обычно состоит из очень большого количества источников электромагнитных волн говоря упрощённо, каждая молекула выступает «антенной» — самостоятельным источником волн видимого спектра. При этом, направления колебания поля — поляризация — у каждого источника-молекулы случайные. Поэтому суммарно светящийся объект излучает электромагнитные волны сразу под всеми возможными углами поляризации. Из всех имеющихся колебаний мы можем отсечь только те, которые происходят в определённом направлении. Для этого существуют поляризационные фильтры. Например, можно оставить только горизонтальную поляризацию, или вертикальную: Разумеется, возможны и промежуточные углы. В любом случае, поляризационный фильтр отсеет только волны, которые колеблются в определённом направлении. Остальные он не удалит полностью, вместо этого он будет их подавлять, и чем больше направление колебаний волны отклонено от направления поляризации в фильтре, тем сильнее он их подавит.

В пределе подавление света будет максимальным, если волна колеблется перпендикулярно направлению поляризации фильтра. Свет, отражённый от воды, поляризован — его легко убрать поляризационным фильтром Поляризационные фильтры активно используют на объективах фотоаппаратов. Свет, отражающийся от неметаллических поверхностей, поляризуется. При этом свет, падающий по касательной к поверхности, поляризуется сильнее, чем тот, который падает прямо. Этот эффект используется для удалений всяких бликов, туманов, дымок с отражениями на воде. В век вычислительной фотографии большую часть задач хорошо делают алгоритмы , но некоторые вещи оптика всё ещё делает лучше. Жидкие кристаллы не умеют менять прозрачность, вместо этого они поворачивают поляризацию света, проходящего через них. Или не поворачивают. Если поместить жидкие кристаллы в электрическое поле — то есть, подать напряжение — то так можно управлять, насколько именно они повернут или не повернут поляризацию. Из двух поляризационных фильтров и жидких кристаллов между ними мы можем создать бутерброд с изменяемой прозрачностью — те самые электронные жалюзи: Берём свет.

Горизонтальным поляризатором оставляем только горизонтальные волны. ЖК поворачиваем или не поворачиваем поляризацию вертикально. Вертикальным поляризатором удаляем всё, что не было повёрнуто вертикально. После горизонтального фильтра остаются горизонтальные волны — они не пробьются через стоящий дальше вертикальный фильтр. Но если в промежутке между горизонтальным и вертикальным фильтрами мы повернём волны с помощью жидких кристаллов — тогда они смогут пройти через второй фильтр. Гипотетически жидкие кристаллы можно заменить поляризационным фильтром с двигателем, который бы его поворачивал, но на сегодняшний день это слишком сложно, дорого, ненадёжно и неэффективно, даже если использовать MEMC. Жидкие кристаллы инертны, и поворачиваются не мгновенно, поэтому у жидкокристаллических дисплеев есть проблема со шлейфами от быстро движущихся обьектов. Время полного переключения кристалла между двумя крайними состояниями называется временем отклика. Раньше оно измерялось десятками миллисекунд, сейчас некоторые дисплеи вплотную подобрались к показателю в 1 мс. Теперь разберём виды жидких кристаллов.

Жидкие кристаллы TN TN англ. При подаче напряжения спиральки распрямляются, и перестают разворачивать поляризацию — свет начинает блокироваться вторым поляризационным фильтром. В настоящее время единственный плюс TN — скорость. Бешеные геймерские мониторы с разверткой 500 Гц сделаны как раз из таких кристаллов, просто потому, что другие так быстро переключаться не умеют. С остальными характеристиками всё плохо — контрастность ужасная, углы обзора ужасные, точность ужасная, яркость ужасная. Распрямление скрученных кристаллов тяжело контролировать точно, поэтому матрицы TN, зачастую, имеют 6-битный цвет, а 8 бит достигается путём той самой ШИМ — кристалл «дрожит» между двумя положениями, и достигается промежуточная яркость. Интересно, когда доберутся до 1 КГц. Впрочем, одна из возможных реализаций дисплеев светового поля потребует частоты обновления экрана в десятки МГц Когда говорят «TFT дисплей», зачастую, подразумевают именно TN-кристаллы. Напомню: TFT — это не тип дисплея, и не вид ЖК, а способ управления пикселями, он есть в любых дисплеях, даже в светодиодных. Чтобы хоть как-то улучшить углы обзора TN, на них стали наносить специальную плёнку.

Её так и называют — film. Кроме того, при увеличении разрешения углы обзора TN матриц улучшаются, поэтому в современных дисплеях дела с углами обзора обстоят не так плохо, как раньше. Кристаллы не скручиваются, а просто поворачиваются в плоскости экрана. Их положение можно очень точно регулировать, поэтому экраны с IPS-кристаллами имеют очень хорошие, точные и сочные цвета с 8-ми или даже 10-битной градацией. К недостаткам можно отнести медлительность и проблемы с чёрным цветом. Первые матрицы имели время отклика порядка 50 мс. Сейчас самые быстрые умеют переключаться за 5 мс — по современным меркам это не предел мечтаний, но неплохо. IPS в закрытом положении плохо блокирует свет, поэтому такие дисплеи вместо чёрного показывают серо-сине-фиолетовое марево. IPS дисплей может выручить подсветка с локальным затемнением, выключающая свет в областях, где он не нужен — тогда проблемы чёрного остаются только в виде ореолов вокруг ярких объектов. Samsung выпускает свою, немного улучшенную версию IPS, и называет её PLS — расстояние между субпикселями чуть меньше, сами они чуть больше, поэтому такой дисплей чуть ярче, чем IPS, и плотность пикселей у него может быть выше.

Это вещество немного сдвигает спектр в правильную сторону, благодаря чему цвета и улучшаются легче «пролезают» через светофильтры. Эти кристаллы тоже поворачиваются, только не в плоскости экрана, а перпендикулярно ему. Изначально кристаллы находятся в плоскости экрана вертикально. При подаче напряжения они поворачиваются перпендикулярно экрану, то есть как-бы смотрят торцом на наблюдателя. Долгое время VA означало, что у экрана средняя хуже, чем у TN, но лучше IPS скорость, средний уровень цветопередачи, отличный уровень чёрного и отличный контраст. Потом VA развилась, победили проблему углов обзора, научились добиваться высокой точности цветопередачи — у субпикселей появились субсубпиксели , выключая и включая их можно достичь большего числа промежуточных состояний — а это повышает точность цвета. Сейчас это одни из самых распространённых типов матриц и в мониторах и телевизорах. Как покрасить свет? ЖК у нас или светодиодный телевизор — свет получен и дозирован. Теперь надо его покрасить.

Красящие светофильтры Элементарно — это цветные стёкла. Если стараться не погружаться в толщу физики, смысл такой: белая подсветка — это смесь всех возможных цветов. Светофильтр может пропустить какой-то один цвет из этого света, а все остальные нет. При этом, всё, что не пропущено, не исчезает, а трансформируется в тепло. Закон сохранения энергии никто не отменял. У светофильтров может быть не только разный цвет, но и разная плотность Например, если мы светим белым светом сквозь красное стекло, то из белого цвета стекло пропустит красный, а зелёный и синий цвет превратит в тепло. В результате получаем два недостатка: плохая энергоэффективность и низкая яркость — мы тут большую часть света просто гасим. Если мы хотим сделать цвета точнее и насыщеннее, нам нужно сильнее фильтровать свет — для этого фильтр должен быть плотнее. Так мы сильнее погасим ненужные нам цвета, и оставим только то, что нужно. Но это влечёт за собой большую потерю яркости.

Если хотим сделать такой дисплей ярче, мы должны светить белым светом ярче, чтобы после светофильтра больше оставалось. От этого больше кушаем энергии, светофильтр больше греется и греет остальные куски дисплея и т. Либо энергоэффективность и яркость, либо неплохие цвета. Древнющее, дешёвое, прожорливое, очевидное и сердитое решение. Встречается как в ЖК, так и в светодиодных телевизорах. Красящие квантовые точки Свет — это электромагнитные волны. Оранжевый свет имеет частоту около 480 000 ГГц Квантовые точки — это особое вещество, каждая частица которого работает как антенна для электромагнитных волн. Частица-точка устроена так, что может поймать волны с одной частотой, преобразовать их в волны с другой частотой, и излучить обратно. В зависимости от размера частицы, она будет излучать ту или иную частоту. И происходит это всё в видимом спектре — то есть с теми электромагнитными волнами, которые наши органы чувств умеют ловить, а наш мозг интерпретирует сигналы от этих органов чувств как цвет.

На этих наномасштабах уже сильно заметно, что электромагнитная энергия не непрерывна — она квантуется на фотоны. Поймал один фотон с частотой побольше — излучил два с частотой поменьше, ну и всё в таком духе. Из-за существенного влияния квантовых эффектов, эти частицы порошка называются квантовыми точками. У квантовой точки антенной выступает сам шарик, торчащие палочки-молекулы нужны, чтобы это дело не распалось В дисплеях на квантовых точках свет, который пихают в точки, обычно либо синий, либо фиолетовый. Тут важно правило — мы можем только уменьшить частоту, увеличить не получится. Поэтому, мы можем из фиолетового сделать синий, зелёный и красный, из синего — только зелёный и красный. А из зелёного синий уже сделать не получится. В итоге, в отличие от светофильтров, утилизирующих большую часть света в тепло, мы тут всю световую энергию окрашиваем в тот свет, что нам нужно. Мы не греемся, мы энергоэффективны, мы очень яркие. Всё хорошо и замечательно.

Таким образом, в настоящее время квантовые точки — это просто технология окрашивания света, а не тип дисплея. Теоретически, квантовым точкам можно посылать энергию напрямую электричеством — если в неё передать электрон, она вполне может излучить фотон. Такой дисплей был бы восхитительным — не ЖК, не светодиоды, а новый способ эмиссии света. Но пока так не умеют. Комбинация светофильтров и квантовых точек Этот способ получения цвета встречается в некоторых ЖК-телевизорах. Смысл тут такой: у ЖК телевизора стоит синяя подсветка, на неё сверху ставят слой из смеси квантовых точек — красных, зелёных и синих. Получается белая подсветка, но с очень хорошим спектром, идеально подходящим для фильтрации светофильтрами. То есть квантовые точки тут не в роли красящего слоя, а как дополнительный обвес подсветки, чтобы её свет лучше переваривался светофильтрами. А дальше всё по накатанной — жидкие кристаллы фильтруют свет, светофильтры красят.

Третий недостаток: даже у самых быстрых на сегодня игровых ЖК-панелей время отклика едва укладывается в рамки 1,5 мс.

И последний, четвёртый: задержка ввода, или input lag, у ЖК-матриц также сравнительно высока, и это результат медленного отклика пикселей. Зональная подсветка на базе LED Зная о недостатках классических ЖК-матриц и в частности о проблеме с передачей глубокого чёрного, компании-производители поставили перед своими инженерами задачу это как-то решить. У традиционной ЖК-матрицы диоды никогда не отключаются и установлены по её периметру либо непосредственно за ней. Теперь же предлагалось сделать всё то же самое, но разбить их на зоны. Соответственно, такой ТВ может построить куда более контрастную картинку: к примеру, более правдоподобно показать яркую луну на ночном небе. В этот момент все зоны подсветки кроме той, в которую попадёт область с луной, станут неактивными, что поспособствует рендерингу более насыщенного чёрного. Кроме того, в его арсенале есть и ещё один интересный нюанс: квантовые точки. Это дополнительный слой матрицы, который взаимодействует со светом, излучаемым диодами, вследствие чего повышаются яркость и диапазон отображаемых цветов. Последний выходит за пределы миллиарда различных оттенков, называется DCI-P3 и используется в профессиональной киноиндустрии. У обычного ТВ или монитора этот спектр существенно уже, здесь же мы получаем практически полноценную палитру цветов, воспринимаемых человеческим глазом.

Помните о зонах локального затемнения у U7HQ? У него светодиоды так же разделены на группы, но и они сами, и зоны, в рамках которых они сгруппированы в 50 раз меньше обычного. Это позволяет управлять подсветкой гораздо точнее, получая ещё более достоверный чёрный цвет. Если вернуться к примеру с луной на ночном небе, то в случае с Mini-LED вокруг неё практически не будет заметно контура — яркий объект будет окружен темнотой. Для сравнения на ТВ с обычной зональной подсветкой та же сцена смотрится менее контрастно, поскольку сквозь матрицу просачивается больше света, чем это нужно в данный момент, как-раз за счёт большего размера групп подсветки и диодов в них. Но что это такое? В этом и есть основная фишка всей технологии: OLED-матрице не нужен внешний источник света. Она и есть этот источник! Следовательно, пиковой яркости можно достичь на одном пикселе и просто выключить соседний, если его работа сейчас не нужна. Из вышесказанного вытекает следующее: органические светодиоды — вершина эволюции дисплеев на текущий момент.

И главная их фишка — они позволяют получить идеальный черный цвет по всей площади экрана в любой точке и добиться высокой контрастности. Для сравнения: если взять самый быстрый сейчас игровой монитор, то это в 50 000 раз более быстрый отклик пикселей и до трёх раз сокращённое время задержки.

Ведь раньше телевизоры отрабатывали и по 10 лет и это был не предел их работоспособности. В современном мире развитие техники и экономики идет огромными шагами. Производителям не только телевизоров, но и другой бытовой техники не выгодно, чтобы потребитель пользовался их продукцией безмерно долго. Смелые умы могут даже предположить что такое поведение техники — результат достижения некоторой договорённости между производителями техники и электроники. Им нужно чтобы их клиенты потребители меняли бытовую технику и электронику каждые 3-4 года не из-за того что техника устаревает, а по причине поломки. В каждой технике есть своя ахиллесова пята.

Как она туда попала — случайным образом или была изначально заложена на этапе разработки агрегата — это уж можно думать, взвешивать, прикидывать. Но подсветка современного телевизора склонна к поломке и выходу из строя — это факт и его подтвердит любой практикующий мастер ремонта современных телевизоров. В данной статье мы рассматриваем именно современные ЖК телевизоры. Основная их проблема — это подсветка экрана которая может выйти из строя и через 2 года использования ТВ. А в среднем у ведущих производителей она выхаживает примерно 4-5 лет. А потом в один прекрасный момент БАМ и звук есть у вашего домашнего любимца, а изображения нет. И что делать? Покупать новый, так этот еще не старый и Вас он вполне устраивал….

Light-emitting Diode — тип подсветки экрана, матрица которого состоит из жидких кристаллов. Молекулы этого вещества характерны свойством текучести, при этом имеют упорядоченную структуру в виде кристаллической решетки. В матрице кристаллы расположены среди электродов. Когда на электрод поступает напряжение, молекула вещества меняет свое положение, пропуская при этом свет с определенной длиной волны что влияет на цвет. Но сперва волны «обрабатываются» поляризационными фильтрами: один отвечает за лучи в горизонтальной плоскости, второй — вертикальной. Такая работа проделывается для каждого отдельного пикселя. Что такое светодиодная LED подсветка в телевизоре — это источник света, ответственный за появление картинки на экране. Какие преимущества для потребителя дает светодиодный тип подсвечивания дисплея: повышается контрастность темные и светлые цвета отображаются точнее ; улучшается цветопередача; подсветка имеет низкий уровень энергопотребления; телевизоры стали тоньше и легче; картинка стала четче, так как снизилось время послесвечения пикселя; матрица изготавливается без применения ртути, что говорит о ее экологичности. Для этого необходимо изучить технические тонкости каждой технологии.

Смарт-подсветка для любого телевизора (14 фото + видео)

Вместо умной лампочки можно купить светодиодную ленту — с ней подсветка будет равномернее по периметру экрана. резко упала надежность. Люди, у которых домашний ТВ не оснащен технологией Ambilight, могут самостоятельно сделать подсветку для телевизора светодиодной лентой. Светодиодная лента 75"-85" адаптивная подсветка AmbiLight для телевизора 75"-85" 3NOD Trade Electronics Co Ltd.

Технологии подсветки в телевизоре

Технология доступная, что сделало ее популярной. Планка, на которой размещены светодиоды, крепится к боковым поверхностям матового рассеивателя, поэтому световой фон получается более равномерным. Благодаря торцевому расположению диодов получилось снизить толщину корпуса телевизора. Вместе с этим дополнительно снижается нагрузка на глаза.

Но, светодиодные блоки должны быть технически правильно и точно размещены. Если допустить ошибку, на экране появятся засветы — световые пятна, появляющиеся в результате неравномерности свечения. Что такое Edge LED в телевизоре ясно, но какие плюсы у этой технологии: матрица стала компактнее.

Боковое размещение светодиодов позволило снизить общую толщину панели; высокая яркость, что обеспечивает комфортное считывание информации с экрана. Есть и минусы: могут появиться засветы.

Кстати, сейчас на рынке цены на OLED панели неплохо подскочили и начинаются от 100 тысяч рублей за самые простые модели. Как работает QLED панель? Теперь давайте поговорим о QLED телевизорах и здесь не все так просто. Дело в том, что QLED телевизор — это по сути обычный телевизор, между матрицей и подсветкой которого находится Quantum-Dot прослойка, которая затемняет отдельные зоны телевизора, чтобы увеличить контрастность и выделить более яркие цвета в изображении. QLED телевизоры отличаются типом подсветки и конечный результат в качестве изображения зависит именно от неё. Другими словами, такая подсветка подсвечивает матрицу напропалую, а QD прослойка затемняет отдельный зоны, однако, очень часто она не справляется со своей задачей и подсветка все равно образует засветы на тёмных участках изображения. Телевизоры с Direct LED подсветкой являются одними из самых бюджетных телевизоров и идут после обычных телевизоров, в которые также установлена либо Direct LED подсветка, либо ещё более старая Edge подсветка, которая подсвечивает матрицу только по контуру, за счёт чего сильно страдает яркость, контрастность и другие характеристики изображения.

Так, приобрести самую актуальную 55 диагональ можно в пределах 35-50 тысяч рублей. Автор: sharfest.

Минусом такого решения является что по краям подсветка бывает не равномерной. Ниже мы приводим фотографию такой планки. Как долго служит светодиодная LED подсветка? Весьма сложный вопрос с массой всевозможных тонкостей. Сами по себе LED диоды являются весьма надежным решением. Перед монтажом в поддон обязательно вся поверхность планки промазывалась термопастой и сама планка надежной фиксировалось винтами.

Таким решениям уже лет 8 и техника благополучно работает и сейчас. Но со временем производители начали удешевлять производство — планки вместо алюминиевых стали изготавливать из простого текстолита. Вместо фиксации болтами стали использовать двухстороннюю липкую ленту, а то и вовсе простые зажимы в поддоне. Про термопасту вообще забыли. Ко всему прочему весьма упростили конструкцию LED — драйвера, который собственно и управляет подсветкой. В итоге всех этих изменений пришли к тому, что подсветка TVLED редко работает больше 5 лет, на практике как правило 2 — 4 года. Что такое телевизор с технологией SmartTV? SmartTV — это технология которая по сути дает телевизору функции компьютера.

А именно возможность пользоваться интернетом и устанавливать приложения. Насколько надежны телевизоры с функцией SmartTV? К сожаления данная функция сказывается не лучшим образом в плане надежности техники. Мы не будет утверждать, что телевизионные панели со SmartTV «ламучки», но вынуждены признать снижение надежности. На это имеются серьезные причины: C использованием сервисов для доступа в интернет и просмотра потокового видео возрастает нагрузка не центральный процессор материнской платы. Тем самым увеличивается вероятность его выхода их строя. Вот пример фотографии одной из таких систем. Микросхемы такого технологического стандарта используются для хранения прошивки майнплаты материнская плата телевизора.

По сути являются аналогом жесткого диска в компьютере. При использовании функций SmartTV в телевизионной технике увеличивается количество обращений центрального процессора к микросхеме, что сокращает срок ее жизни. Ниже мы приводим фотографию микросхемы Какие производители телевизоров самые лучшие? Мы постараемся ответить на этот вопрос с точки легкости проведения ремонтов и доступности запчастей. Благодаря простыми инженерными решениями и большим количество запчастей на специализированном рынке. В нашем сервисном центре в 95 случаях из 100 получается отремонтировать технику вышеназванных брендов.

Direct подсветку реализуют двумя способами.

Она может быть как статической, так и динамической, что зависит от модели телевизора. Второй предполагает использовать вместо белых — RGB светодиоды. С их помощью удаётся регулировать не только яркость, но и задавать любой цвет из всего видимого спектра. За счёт высокой скорости переключения светодиоды прекрасно отрабатывают подаваемый сигнал и успевают за быстро меняющейся картинкой на экране. RGB-подсветку строят только по динамическому принципу. Дисплеи с матричной подсветкой выделяются отличной контрастностью и цветопередачей по всей площади экрана. Это главный их плюс, который перекрывают сразу несколько недостатков, а именно: высокая стоимость; большое энергопотребление, сравнимое с CCFL технологией; толщина корпуса более одного дюйма.

При выходе из строя одного из светодиодов гаснет вся линейка. На экране это явление отразится в виде затемнения некоторой области. Самостоятельно заменить перегоревший элемент на аналогичный не получится, так как найти точную копию с такой же линзой практически невозможно. В итоге замене подлежит вся линейка. О недостатках для здоровья Сама по себе LED-подсветка независимо от способа реализации имеет несколько весомых недостатков, которые оказывают влияние не на качество изображения, а на зрение.

Навигация по записям

  • Преимущества и недостатки led-подсветки
  • ЖК и светодиоды
  • Технология подсветки LED в современных телевизорах
  • Типы, виды и недостатки LED-подсветки экранов
  • Подсветка Ambilight для телевизора LG : Аксессуары и внешние устройства
  • Смарт-подсветка для любого телевизора (14 фото + видео)

Задать вопрос

  • Edge LED или Direct LED? Direct LED или Edge LED: где лучше качество картинки
  • какая подсветка в телевизорах лучше и долговечней
  • Задать вопрос
  • Lightpack 2: фоновая динамическая подсветка для любых телевизоров и мониторов •
  • Технология подсветки LED в современных телевизорах

Светодиодные подстветки Direct LED и Edge LED: что это такое и что лучше

Чем заменить светодиоды в подсветке телевизора? Комплект подсветки телевизора добавляет эффекты внешней подсветки к телевизору, чтобы дополнить экранный видеоконтент.
Смарт-подсветка для любого телевизора (14 фото + видео) Подсветка первых жидкокристалических телевизоров была выполнена при помощи люминесцентных (CCFL) ламп.
Умный Свет - Ambilight подсветка телевизора 2024 | ВКонтакте Купить светодиодные ленты для телевизора по цене от 131 рубль со скидкой за бонусы от СберСпасибо на Мегамаркет. Реальные отзывы покупателей.

Самостоятельно ремонтируем LED подсветку в телевизоре LG

Технология LED TV - как это работает / Мониторы и проекторы Процесс выглядит так: от мотка светодиодной ленты необходимо отрезать куски правильных размеров, закрепить их на задней стенке телевизора, установить SmartCorners и начать просмотр.
Фоновая подсветка телевизора своими руками — статья от экспертов Apeyron Elelctrics Много приходит крупноформатных телевизоров с LED подсветкой и с дефектной матрицей, от таких телевизоров клиенты отказываются.
Лучшие светодиодные ленты 2024 Светодиодная лента для подсветки ТВ.
Умный Свет - Ambilight подсветка телевизора 2024 | ВКонтакте Почти двадцать лет назад компания Philips разработала и запатентовала технологию фоновой подсветки Ambilight для телевизоров.
Что такое direct led подсветка у телевизора Процесс выглядит так: от мотка светодиодной ленты необходимо отрезать куски правильных размеров, закрепить их на задней стенке телевизора, установить SmartCorners и начать просмотр.

Edge LED или Direct LED? Direct LED или Edge LED: где лучше качество картинки

Наиболее распространённым типом после ЖК-телевизоров 4К с боковой подсветкой идут модели со светодиодной подсветкой Direct-LED. На сегодняшний день большинство телевизоров работают по технологии светодиодной подсветки экрана. Светодиодная подсветка телевизора. 900 ₽. Светодиодная лента для подсветки клеится сзади телевизора по всему периметру. В светодиодной подсветке тоже не все просто, дело в том, что есть несколько типов ее, значительно разнящихся по принципу действия.

ФОНОВАЯ ПОДСВЕТКА ДЛЯ ТЕЛЕВИЗОРА

Несмотря на множество попыток улучшения, ни одному телевизору с подсветкой не удалось полностью избавиться от проблем просачивания света от ярко освещенного пикселя к его соседям. Читайте также: Рейтинг видеорегистраторов 2019-2020 года и 5 лучших моделей по отзывам «С LG OLED55B7V вы всегда будете чувствовать, что видите в точности то, что было задумано» Другими преимуществами технологии OLED являются более тонкие и легкие панели по сравнению с ЖК-телевизором со светодиодной подсветкой, значительно более широкий угол просмотра и намного более короткое время отклика. А главный недостаток OLED — высокая стоимость их производства. Цены постепенно становятся более реалистичными — в немалой степени благодаря компании LG, единственному на данный момент производителю OLED-панелей для телевизоров, продающему их другим брендам ТВ таким как Sony и Panasonic , повышая объем производства и конкуренцию на рынке — однако OLED-телевизоры по-прежнему остаются значительно более дорогими, чем модели на базе других технологий. Кроме того, на данный момент в продаже нет OLED-телевизоров с диагональю меньше 55 дюймов. И, наконец, OLED-телевизоры пока не могут сравниться пиковой яркостью с лучшими моделями с подсветкой. Читать также: Все, что вам необходимо знать об OLED-ТВ Что лучше выбрать Direct led или edge led — что лучше выбрать зависит от различных параметров, которые включают индивидуальные пожелания покупателя и условия размещения и эксплуатации. Можно дать некоторые советы по выбору телевизора: тонкий корпус с edge led лучше устанавливать на ровные стены; если экран будет располагаться в подвесном или наклонном состоянии, лучше покупать директ лед, чтобы избежать деформации рассеивателя света; edge лед обладают более высокой яркостью, чем приборы с ковровым типом. При покупке телевизора edge led проверку качества изображения требуется проводить прямо в магазине.

Засвеченные части будут видны на синем экране.

Яркость свечения OLED зависит от величины электротока. Управляя им, можно, не потеряв в качестве картинки, получить требуемую яркость. На LCD технологии это было невозможно. Поэтому на такой экран приятно смотреть в любое время. Однако на практике этот показатель меньше в 100 раз.

Потому что эксплуатационный срок светодиодов при таком режиме быстро сокращается. Уменьшаются вес и габариты ТВ; Оптимальное свечение пикселей, которыми можно еще и управлять; Малое потребление электроэнергии; Идеальные углы для обзора. Искажения отсутствуют; Улучшенная яркость и контрастность, по сравнению с подсветкой LCD; Возможность производства прозрачных экранов, способных функционировать в широком температурном диапазоне; Отсутствие подсветки. Минусы: Органические светодиоды отдельных цветов могут непрерывно функционировать в малом промежутке времени. Однако проблема уже решается; Существует эффект выжигания дисплея. Поэтому в новых моделях цветные пиксели имеют динамический сдвиг, что незаметно для глаз.

Далее подключив USB к разъёму который не жалко спалить на случай если что то пойдёт не так вращением подстроечного резистора выставляем необходимое ленте напряжение. Крайние положения будут соответствовать минимальной и максимальной яркости, вы подбираете их сами. После того как всё собрано нужно обязательно проверить потребляемый схемой ток при максимальной яркости, для этого можно использовать USB вольтамперметр или как в моём случае лабораторный блок питания. Напряжение на ленте не должно быть выше номинального.

Довольно бюджетный вариант для тех, кто хочет просто попробовать. Изображение на экране считывается сразу с HDMI-порта и обрабатывается через специальный бокс, который идёт в комплекте с подсветкой — информация передаётся отдельно каждому светодиоду, благодаря чему свет изменяется каждую секунду, а цвета соответствуют каждому сантиметру картинки на телевизоре. Без этого бокса подсветка не сможет выводить нужные цвета напрямую из-за закрытости операционной системы телевизоров. Поэтому если вы покупаете подсветку надолго, не стоит рассматривать варианты без такого бокса. Раньше я уже использовал обычную ленту без управления, но хотелось чего-то более продвинутого. После приобретения телевизора с большей диагональю и погружения в геймерство это стало ещё более актуально, ведь светодиодная подсветка не только создаёт идеальную атмосферу для просмотра фильмов, но и визуально расширяет пространство и даже выступает в роли дополнительного ночного освещения, помогая глазам меньше уставать от яркой картинки на экране. Когда я понял, насколько это может быть полезно, сразу же решил обновиться. Умная подсветка vs светодиоды Правильное название третьего типа подсветки — smart tv ambilight. Именно по такому запросу я нашёл её на AliExpress.

Умный Свет - Ambilight подсветка телевизора

Динамическая подсветка экрана Ambient Light | От 2 138 руб. за комплект! Если у Вас когда-либо был современный телевизор от Philips, то Вы наверняка сталкивались с технологией фоновой подсветки Ambilight.
Технологии в современных телевизорах | Канобу Канал о Смарт технике, роутерах, тв боксах, гаджетах, носимой электронике и не только.
Лучшие светодиодные ленты 2024 Технология подсветки LED в современных телевизорах, в чем преимущества и недостатки led экранов.
Динамическая подсветка для любого телевизора предлагает светодиодная лента для подсветки телевизора, 42399 видов.
ФОНОВАЯ ПОДСВЕТКА ДЛЯ ТЕЛЕВИЗОРА USB светодиодная лента 5 В SMD 2835 светодиодная фоновая подсветка для телевизора 1 м 2 м 3 м 4 м 5 м теплый белый гибкий светодиодный светильник Рождественская лампа для домашнего декора.

Похожие новости:

Оцените статью
Добавить комментарий