ИИ невероятно полезен для повышения эффективности обработки информации и принятия решений. Использование искусственного интеллекта в медицине — это один из эффективных методов профилактики различных заболеваний. Нормативное регулирование искусственного интеллекта в медицине.
Собянин: искусственный интеллект станет базовой медицинской технологией в Москве
Технологии на базе искусственного интеллекта охватывают всё больше сфер здравоохранения. Главная проблема будущего искусственного интеллекта в медицине заключается в том, насколько хорошо могут быть обеспечены конфиденциальность и безопасность данных. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Искусственный интеллект анализирует снимки за несколько секунд и определяет патологии органов грудной клетки по пяти клиническим направлениям.
Искусственный интеллект в медицине: главные тренды в мире
В этом случае пациент получит заключение специалиста в течение суток. С помощью применения искусственного интеллекта рассчитываем ускорить описание исследований и повысить точность диагностики. В случае успеха ИИ-технологии оставят работать автономно на постоянной основе.
Обращение медицинских изделий на территории РФ возможно только при условии государственной регистрации.
С 2020 по 2022 год перечень отечественных зарегистрированных медизделий на основе ИИ постепенно пополнялся, и к концу 2022 года включал в себя 16 программ. Также в указанном перечне присутствуют: программный модуль для анализа флюорограмм и рентгенограмм грудной клетки человека, система для диагностики ковида, нейросеть для анализа маммографии, нейросеть для определения продольного плоскостопия, системы для принятия врачебных решений и многое другое. В России медизделия на основе искусственного интеллекта применяются во многих регионах, однако не во всех.
Ситуация изменится совсем скоро: к концу этого года все субъекты РФ обязаны будут внедрить не менее одного медизделия с искусственным интеллектом в одну из централизованных подсистем государственной информационной системы в сфере здравоохранения. Это может быть, например, подсистема ведения интегрированной электронной медицинской карты или централизованный сервис информирования о взаимодействии лекарственных средств.
Статью с научным исследованием можно почитать тут. Предоставить доступ к еще большему разнообразию. С помощью AI появилась возможность экстраполировать на новые белковые пространства, которые еще не были освоены, тем самым выходя за рамки природных белков. Активировать новые функции, ранее не доступные ученым. OpenCRISPR-1, разработанный Profluent, представляет собой прорыв в области и обещает значительное ускорение процесса генной инженерии, уменьшение его стоимости и расширение возможностей модификации организмов. Общедоступность этого инструмента определенно поспособствует более широкому распространению и совершенствованию технологии CRISPR, что приведет к новым открытиям и достижениям в области. Перед наукой открываются безграничные возможности, и мы можем ожидать значительных продвижений в области медицины и биотехнологий в ближайшем будущем.
За счёт этого сокращается время и затраты на подбор идеальной рецептуры лекарства. Например, компании применяют технологии ИИ на стадии поиска и разработки ключевой молекулы drug discovery. С помощью собственной ИИ-платформы фармпроизводитель определил два препарата для лечения фиброза. Один из них уже находится на первой стадии клинических исследований. В целом, по данным Альянса в сфере ИИ, время от обнаружения лекарства до проведения испытаний сокращается с 6 лет до 1 года.
Искусственный интеллект может анализировать и предсказывать, как потенциальные лекарственные соединения будут взаимодействовать с белками, рецепторами и другими биологическими мишенями. Это позволяет исследователям фокусироваться на наиболее перспективных стратегиях для дальнейшего изучения, а также снизить риски во время испытаний препаратов.
Сейчас на главной
- Домен не добавлен в панели
- Хочу убедиться, что мне звонил ВЦИОМ
- Искусственный интеллект в медицине: добро или зло?
- Для чего в российских регионах используют ИИ в медицине - Российская газета
- Применение искусственного интеллекта в медицине
Перспективы применения ИИ
- Ставит диагнозы и придумывает лекарства
- Третье Мнение - искусственный интеллект в здравоохранении
- Искусственный интеллект в медицине: технологии, методы и польза
- Возможности ИИ в здравоохранении – 8 революционных изменений в 2024 году
- «Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине
- Правительство планирует поддержать рублём ИИ для медицины
Тайны искусственного интеллекта и сhatGPT в медицине
Топ-7 прорывов в медицине в 2023 году | Благодаря возможностям искусственного интеллекта (ИИ) здравоохранение в России постепенно трансформируется по мере того, как передовые технологии меняют медицинскую практику, включая диагностику, лечение пациентов и медицинские операции. |
Цельс | ИИ в медицине – Telegram | Лекторий ФКН в Библиотеке иностранной литературы им. М. И. Рудомино в рамках Дней компьютерных пересечение технологий и здравоохранения меняет будущ. |
ИИ в частных клиниках: как помогает врачам и пациентам | Искусственный интеллект в медицине: преображение здравоохранения в XXI веке. |
Минздрав рассказал о распространении искусственного интеллекта для медицины в России | Можно ли назвать научным направление Искусственный интеллект (ИИ) и сhatGPT4 вобравшим в себя достижения вычислительной математики, философии, нейрофизиологии для создания систем, которые бы обладали. |
Интеллектуальный подход. 7 задач, которые решает ИИ в здравоохранении и фарме | Искусственный интеллект приносит значительные инновации в медицину в России. |
Роман Душкин: «Медицина — это область доверия»
Рассказал о том, почему нейронные сети не очень хорошо подходят для врачебной практики, а также о том, как новые ГОСТы повлияют на распространение ИИ в российских больницах. Как ИИ помогает врачам ставить верные диагнозы — Расскажите, как возникла идея «Джейн»? Но потом оказалось, что она может быть полезна и другим людям, страдающим от различных эпилептических синдромов. Нам поступил запрос от знакомого врача на разработку компьютерной системы, предназначенной для выработки так называемого второго мнения по сложным случаям этого недуга. В результате пациенты погибают или становятся инвалидами. В таком случае компьютерная система может высказать своё непредвзятое мнение и либо подтвердить выводы врача, либо зародить в нём обоснованные сомнения в правильности предложенного им диагноза и схемы лечения.
В нашей практике были случаи, когда выводы системы кардинально отличались от выводов лечащего врача. И это спасло несколько пациентов. Поэтому нашими пациентами в основном были дети, в том числе и самые маленькие. Хотя и не только они. Эпилепсия известна человечеству с глубокой древности.
По состоянию на 2020 год около 50 миллионов человек по всему миру испытывали симптомы эпилепсии, из них более 350 тысяч — в России. Поэтому очень важно тщательно дифференцировать эпилептический синдром. Врач мог эту информацию изучить и принять верное решение. Это очень тяжёлый диагноз, при его наличии надо принимать несколько сильнодействующих препаратов с кучей побочных эффектов. Когда доктор ознакомился с заключением системы, он переосмыслил все вводные заново, собрал консилиум и представил новые результаты коллегам.
В результате консилиум срочно скорректировал программу лечения. Благодаря этому состояние пациента нормализовалось. Сейчас он уже ходит в третий класс. Что такое «персонализированная медицина» — Откуда система брала информацию о пациенте? Из электронной истории болезни?
Сама суть «Джейн» состоит в том, что она должна собирать полную и актуальную историю болезни пациента. Буквально всю информацию, до мельчайших подробностей. Чем больше система будет знать обо всех обстоятельствах происходящих с пациентом процессов, тем более качественные рекомендации она будет выдавать. Врач или пациент? Для быстрого добавления новых записей в «Джейн» был создан чат-бот, доступный со смартфона.
Можно, конечно, воспользоваться обычной веб-версией, но с чат-ботом процесс сильно ускоряется. Чат-бот — очень оперативный интерфейс: запустил, быстро ввёл туда всё, что нужно. А веб-приложение — уже более мощный инструмент. Он может использоваться на стационарной основе и предоставлять больше функций. Это трудоёмкий процесс?
Но от него зависят жизнь и здоровье человека, ребёнка. Если родители хотят ребёнку добра, то им придётся этим заниматься. Всё зависит от мотивации. Именно для облегчения этого процесса мы создали чат-бота. Работать с ним было проще, чем пользоваться обычным мессенджером.
Во многих случаях даже писать ничего было не нужно — только нажимать кнопки на экране. Туда же можно было отправить и результаты анализов например, общего анализа крови , полученные из лаборатории в виде стандартных PDF-файлов. Прикрепляете файл, система его парсит, извлекает текст и вносит в базу. Очень удобно! В этом как раз и состояла одна из фишек системы.
В целом, по данным Альянса в сфере ИИ, время от обнаружения лекарства до проведения испытаний сокращается с 6 лет до 1 года. Искусственный интеллект может анализировать и предсказывать, как потенциальные лекарственные соединения будут взаимодействовать с белками, рецепторами и другими биологическими мишенями. Это позволяет исследователям фокусироваться на наиболее перспективных стратегиях для дальнейшего изучения, а также снизить риски во время испытаний препаратов. В 6 раз уменьшается время от обнаружения лекарства до проведения испытаний В целом, по данным Альянса в сфере ИИ, время от обнаружения лекарства до проведения испытаний сокращается с 6 лет до 1 года.
В 6 раз уменьшается время от обнаружения лекарства до проведения испытаний Искусственный интеллект может анализировать и предсказывать, как потенциальные лекарственные соединения будут взаимодействовать с белками, рецепторами и другими биологическими мишенями. Камила Зарубина,.
Это касается рынка систем ИИ в целом, и медицинские организации не меньше других сталкиваются с дефицитом кадров, недостатком квалификации уже работающих сотрудников, а также нехваткой ресурсов для внедрения технологии. Недостаток структурированных данных. Далеко не во всех сферах здравоохранения достигнуты такие результаты, как, например, в борьбе с раком.
Действительно, в медицине очень много неструктурированных данных, но для использования в системах машинного обучения их необходимо сначала структурировать и разметить. Это большая работа для Data Scientists специалистов по классификации данных. Недостаточный уровень доверия. Искусственному интеллекту еще только предстоит заработать свой кредит доверия — как со стороны пациентов, так и практикующих специалистов. В своем большинстве люди пока еще скептически относятся к прогнозам, построенным алгоритмами. Для преодоления этого барьера необходимо появление большого количества успешных кейсов в сфере компьютерной диагностики для разных областей медицины, а также большая работа по формированию и соблюдению этических принципов использования ИИ для отрасли.
Потребность в повышенной защите данных. При внедрении ИИ в медицине возникают риски безопасности, связанные с возможными хакерскими атаками, компрометацией данных и нарушением врачебной тайны. Поэтому сегодняшние технологические решения должны отвечать самым строгим требованиям конфиденциальности и обеспечивать полную безопасность подобных данных. Так, ИИ в медицине не может считаться самостоятельной диагностической системой.
ИИ можно использовать для выявления факторов риска и потенциальных вспышек инфекционных заболеваний путем анализа больших объемов данных электронных медицинских карт. Роль ИИ в разработке лекарств ИИ можно использовать для анализа больших объемов данных из различных источников, таких как молекулярные базы данных, научная литература и клинические испытания, для определения новых мишеней для лекарств и потенциальных методов лечения. ИИ можно использовать для разработки новых лекарств. Прогнозируя, какие химические соединения будут наиболее эффективными и наименее токсичными, ИИ может улучшить дизайн лекарств.
Роль ИИ в персонализированном уходе ИИ может анализировать большие объемы данных о пациентах для выявления закономерностей, корреляций и взаимосвязей между различными переменными, такими как демографическая информация, история болезни и история лечения. Эта информация может помочь в разработке индивидуальных планов лечения. ИИ можно использовать для определения оптимальной дозы препарата для пациента путем анализа данных о конкретном пациенте. Это может улучшить результаты лечения за счет снижения риска побочных эффектов. ИИ можно использовать для разработки точных методов лечения рака путем анализа генетической информации пациента. Эти методы лечения могут быть адаптированы в соответствии с конкретной генетической мутацией, ответственной за конкретный рак. Роль ИИ в мониторинге пациентов ИИ можно использовать для постоянного наблюдения за пациентами, отслеживания состояния их здоровья и изменения планов лечения по мере необходимости. Собирая и отслеживая данные о здоровье пациентов с помощью носимых устройств и других датчиков, ИИ можно использовать для удаленного наблюдения за пациентами.
Это может помочь в раннем выявлении потенциальных проблем со здоровьем. Анализируя собранные данные, ИИ можно использовать для удаленной диагностики. Это могло бы улучшить доступ к диагностическим услугам, особенно в сельских или недостаточно обслуживаемых районах. Будущее ИИ в здравоохранении ИИ изменит здравоохранение в ближайшие годы. Что отличает ИИ от традиционных технологий в здравоохранении, так это способность собирать данные, обрабатывать их и предоставлять конечным пользователям четко определенные выходные данные. Основная цель приложений искусственного интеллекта в здравоохранении будет заключаться в анализе взаимосвязи между клиническими методами и результатами для здоровья пациентов. Методы искусственного интеллекта будут все чаще использоваться в таких областях, как диагностика, разработка протоколов лечения, разработка лекарств, персонализированная медицина, а также мониторинг и уход за пациентами. Полезная информация Какова роль ИИ в будущем здравоохранения?
ИИ может преобразовать здравоохранение за счет повышения эффективности, персонализации и результатов лечения пациентов. От диагностической визуализации, прогнозирования рисков для пациентов до автоматизации административных задач ИИ может обеспечить точность, скорость и экономичность. Кроме того, ИИ помогает разрабатывать персонализированные планы лечения и обеспечивает удаленный мониторинг пациентов, расширяя сферу применения телемедицины. Как ИИ меняет диагностические процедуры в здравоохранении? ИИ значительно улучшает диагностические процедуры, анализируя медицинские изображения с высокой точностью и скоростью. Алгоритмы машинного обучения могут распознавать закономерности и аномалии при сканировании, которые могут быть пропущены человеческим глазом. Это может привести к раннему выявлению таких состояний, как рак, болезни сердца и неврологические расстройства, что позволит своевременно принять меры. Какое влияние ИИ окажет на расходы на здравоохранение в будущем?
ИИ потенциально может снизить расходы на здравоохранение за счет повышения эффективности и сокращения потерь. Это может упростить административные задачи, уменьшить диагностические ошибки и свести к минимуму повторные госпитализации. Используя прогностическую аналитику, ИИ также может помочь в упреждающем уходе за пациентами, уменьшая бремя лечения хронических заболеваний. Может ли ИИ улучшить качество обслуживания пациентов в сфере здравоохранения? Да, ИИ может значительно улучшить качество обслуживания пациентов. Чат-боты на базе искусственного интеллекта могут оказывать помощь круглосуточно и без выходных, отвечая на вопросы и помогая пациентам в их лечении. Индивидуальные планы лечения и удаленный мониторинг с помощью ИИ могут обеспечить более удобное и индивидуальное медицинское обслуживание.
Применение искусственного интеллекта в медицине
Визуальная диагностика Искусственный интеллект. Исследователи из Огайо создадут «виртуальное» контрастное вещество на основе ИИ. Искусственный интеллект приносит значительные инновации в медицину в России. Приложения искусственного интеллекта Национальной службы здравоохранения. ИИ начинает использоваться во всех аспектах здравоохранения, при этом 34% случаев использования NHS являются диагностическими. Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением.
Росздравнадзор одобрил уже 17 российских медизделий с искусственным интеллектом
Некоторые из созданных с помощью искусственного интеллекта редакторов генов демонстрируют сравнимую или улучшенную активность. Анализ искусственного интеллекта в медицине включает прогноз рынка на 2024–2029 годы и исторический обзор. Технологии на базе искусственного интеллекта становятся все более востребованными в медицине и здравоохранении. Искусственный интеллект в медицине. Как может ИИ улучшить систему здравоохранения, по мнению Билла Гейтса? Во-первых, он освободит медицинских работников от рутинных задач и позволит врачам максимально эффективно использовать своё время. В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении.
Применение искусственного интеллекта в медицине
За счёт этого сокращается время и затраты на подбор идеальной рецептуры лекарства. Например, компании применяют технологии ИИ на стадии поиска и разработки ключевой молекулы drug discovery. С помощью собственной ИИ-платформы фармпроизводитель определил два препарата для лечения фиброза. Один из них уже находится на первой стадии клинических исследований. В целом, по данным Альянса в сфере ИИ, время от обнаружения лекарства до проведения испытаний сокращается с 6 лет до 1 года. Искусственный интеллект может анализировать и предсказывать, как потенциальные лекарственные соединения будут взаимодействовать с белками, рецепторами и другими биологическими мишенями. Это позволяет исследователям фокусироваться на наиболее перспективных стратегиях для дальнейшего изучения, а также снизить риски во время испытаний препаратов.
Алексей Кашпанов заместитель руководителя отдела продаж и развития компании «Нетрика Медицина» Один из примеров внедрения ИИ-решений в практическое здравоохранение —центр лучевой диагностики, созданный в Архангельской области. Специалисты центра проверяют снимки, полученные после маммографии и других исследований, с использованием технологий искусственного интеллекта. Это позволяет медицинским учреждениям, в которых выполнялись исследования, получать второе мнение в сложных ситуациях.
Работу центра в числе других информационных систем поддерживает сервис «N3. Обмен данными инструментальных исследований». В число спикеров и делегатов ITM-AI вошли организаторы здравоохранения из разных регионов страны, представители национальных медицинских исследовательских центров и федеральных университетов, разработчики продуктов на базе ИИ и других решений для цифровой медицины.
Также будет внедрен "умный" проактивный подход, в рамках которого ИИ будет анализировать медкарты пациентов и выявлять риски возникновения заболеваний, "подсвечивая" их медикам. Мэр отметил, что телемедицина станет обычной практикой, когда значительную часть рутинных проблем со здоровьем можно будет решить онлайн, без личного визита к врачу.
Собянин подчеркнул, что это основные положения Стратегии развития московского здравоохранения до 2030 года. По его словам, работы много, но все поставленные цели конкретны и достижимы. Мэр напомнил, что еще 10—15 лет назад цифровизацию здравоохранения рассматривали как вспомогательную технологию, чтобы решить организационные проблемы — сократить очереди к врачам, наладить контроль, навести порядок с ведением документации.
Виртуальные консультанты Такие системы с ИИ расширяют возможности медпомощи.
Они способны круглосуточно получать заявки и консультировать по вопросам, касающимся здоровья, напоминать о важных событиях, давать различные рекомендации. Такие помощники очень удобны для людей, к тому же они снижают нагрузку на персонал медучреждений. Ускоренная разработка медикаментов Технологии ИИ ускоряют процессы создания лекарственных препаратов, традиционно занимающие много времени и требующие внушительных финансовых вложений. Благодаря анализу сложных биохимических взаимодействий алгоритмы машинного обучения способны мгновенно определять лучшие составы лечебных средств.
Ускорение процессов максимально важно для адаптации в условиях кризисов в здравоохранении и быстрой разработки эффективных методов лечения новых болезней. Мониторинг за психическим здоровьем Традиционные модели здравоохранения часто игнорируют факторы психического здоровья пациентов, которые становятся одними из самых важных благодаря возможностям ИИ. Уникальные приложения позволяют заблаговременно выявлять психические отклонения за счет комплексного анализа речевых шаблонов, текстовых сообщений, социальной активности человека. Такие инструменты очень важны для своевременного вмешательства и решения психических нарушений до начала обострения.
Будущее здравоохранения с искусственным интеллектом
Помогает медикам не пропустить патологию пациента. Да и занимает такое описание меньше времени, а значит больному результаты исследований придут быстрее. На расшифровку снимков у «машины» есть шесть минут, но на деле она справляется всего за две. Игорь Шулькин, заместитель директора по перспективному развитию Центра диагностики и телемедицины: «Компьютерная томография головного мозга: искусственный интеллект четко оконтурил выявленное кровоизлияние и померил объем. Другой пример: компьютерная томография грудной клетки, где комплексный сервис, обрабатывающий исследования сразу на восемь патологий и наличие жидкости в полости, обнаружил аневризму грудного отдела аорты». По словам Шулькина, многие страны разрабатывают искусственный интеллект или пытаются его применять в том числе в здравоохранении, но в таком масштабе и по такому количеству направлений, как в Москве, технологии искусственного интеллекта в здравоохранении в мире нигде не используют. С этого года в столичных клиниках использование искусственного интеллекта при исследованиях по ОМС стало обязательным. Касается это маммографии. Юрий Васильев, директор Центра диагностики и телемедицины: «Наша научная составляющая — это понимание того, как работает система ИИ.
Два года назад было непонятно: что-то он выявляет или что-то он не выявляет. И на этом все. На сегодняшний день мы смотрим на ИИ с разных сторон. Абсолютно постоянно изучаю то, что может он делать, то, где он может принести для нас пользу или эффект».
Роботы-ассистенты в хирургии Искусственный интеллект все чаще используется при проведении хирургических операций. За счет роботизированных систем обеспечивается повышенная ловкость и улучшенный контроль выполнения манипуляций для хирургов, что делает многие сложные вмешательства малоинвазивными. Применение роботов-ассистентов способствует улучшению результатов операций, сокращению времени восстановления организма и минимизации риска осложнений. Виртуальные консультанты Такие системы с ИИ расширяют возможности медпомощи. Они способны круглосуточно получать заявки и консультировать по вопросам, касающимся здоровья, напоминать о важных событиях, давать различные рекомендации. Такие помощники очень удобны для людей, к тому же они снижают нагрузку на персонал медучреждений. Ускоренная разработка медикаментов Технологии ИИ ускоряют процессы создания лекарственных препаратов, традиционно занимающие много времени и требующие внушительных финансовых вложений. Благодаря анализу сложных биохимических взаимодействий алгоритмы машинного обучения способны мгновенно определять лучшие составы лечебных средств. Ускорение процессов максимально важно для адаптации в условиях кризисов в здравоохранении и быстрой разработки эффективных методов лечения новых болезней.
Далее раскрываются цели внедрения дистанционного мониторинга: «…расширены возможности дистанционного мониторинга состояния здоровья граждан; увеличивается популярность как носимых устройств специфического применения глюкометры, системы мониторирования артериального давления , так и общего фитнес-браслеты ; расширены возможности дистанционного мониторинга состояния здоровья граждан; увеличивается популярность как носимых устройств специфического применения глюкометры, системы мониторирования артериального давления , так и общего фитнес-браслеты ; повышается сознательное отношение граждан к состоянию своего здоровья». Вот оно что — наше сознательное отношение к состоянию здоровья оказывается сильно повысится, если будем постоянно вставленный в тело датчик носить, который по беспроводной связи будет постоянно наши биоданные передавать «кому следует». А риски отказа от этого связаны у них со «сдерживанием перехода от реактивной на превентивную модель контроля». Знакомая тема — профилактика и раннее выявление превыше всего. Именно такие "инновации" активно двигают Всемирный экономический форум, Всемирная организация здравоохранения в рамках их глобального тренда на "цифровую медицину", "цифровое здоровье" и т. Не к ночи и не к Пасхе помянутые Клаус Шваб, Ноэль Харрари и прочие "спикеры четвертой промреволюции" постоянно "пророчествуют" нам, что скоро настанет эра "человека взломанного", когда электронные устройства будут монтироваться прямо в тела людей. История с дистанционным мониторингом, призванная вроде как помочь нашему здоровью, полностью вписывается в их концепцию. Ну и напоследок — целевые показатели проекта, несколько конкретных цифр. К 2030 г. Надеемся, что перед прикреплением к нашим телам датчиков, хотя бы поинтересуются нашим мнением? Еще приходит на ум, что крайняя конференция в московском офисе ВОЗ, перед тем, как он был закрыт в связи с односторонними санкциями ВОЗ против России из-за проведения СВО, была посвящена как раз «цифровому здравоохранению». Так что не подумайте, что эту повестку внедряют какие-то айтишники — нет, это самое настоящее цифролобби в медицине, цель которого — трансформировать до неузнаваемости так и хочется сказать — уничтожить медицину традиционную. Мы конечно попробуем и дальше жить и лечиться, при необходимости, без цифровых профилей, но пора уже ставить заслон этой глобальной антисуверенной повестке в работе Правительства РФ. И выход из ВОЗ будет лучшим лекарством от нее.
Для лечения некоторых болезней например, туберкулеза или онкологии единственными эффективными препаратами выступают довольно токсичные вещества. Из-за низкой селективности такие лекарства оказывают побочные действия, пагубно влияют на печень, почки и сердечно-сосудистую систему. И если ранее альтернатив не существовало и применение агрессивных препаратов считалось допустимым с причинением ущерба для здоровья в процессе лечения, то сейчас методика меняется. Развитие медицины и медицинской химии позволяет работать не только над поиском принципиально новых лекарств, но и над подбором оптимальных схем лечения по уже известным методикам. Индивидуальная дозировка препаратов, имеющих сильные побочные эффекты, могла бы снизить негативное влияние на пациентов, но сложность расчетов не позволяет проводить их массово. К тому же их нужно проводить несколько раз в день. Нейросети способны проводить такие расчеты быстро и качественно. AI для комбинационной терапии раковых больных с помощью искусственного интеллекта. Уже во время первого тестирования система показала свою эффективность. Для пациента с прогрессирующим раком простаты система рассчитывала индивидуальную комбинацию препаратов на протяжении всего курса лечения. Как результат — рост опухоли значительно замедлился, а затем болезнь и вовсе перешла в стадию ремиссии. При этом дозировки препаратов были практически в два раза меньше, чем при стандартной терапии таких случаев. Персонализация терапии открывает невообразимые возможности для медицины. При наличии достаточного количества данных нейросети и другие методы машинного обучения могут помочь не только оперативно решать задачу оптимизации дозы, но и подбирать комбинации препаратов для повышения эффективности лечения, определять наиболее результативную тактику лечения и предотвращать критические состояния пациента уже на самых ранних стадиях. Подобные системы уже используются для контроля состояний пациентов и сбора долговременных медицинских данных, но со временем они будут все сильнее интегрированы в отрасль здравоохранения. Важно отметить, что в последние годы всё больше внимания привлекают именно методы профилактики и ранней диагностики заболеваний. Искусственный интеллект — это сильный инструмент, который способен принести пользу во многих отраслях и сферах медицины. Нейросети и другие методы машинного обучения уже сегодня помогают создавать новые лекарства, исследовать болезни, мониторить состояние пациентов.
Что хотите найти?
Напомним, цифровизация здравоохранения происходит благодаря нацпроекту «Здравоохранение», который реализуется по решению президента. Искусственный интеллект (ИИ) — это чудо современной технологии, которое уже не просто фантастика из фильмов, но и реальность, влияющая на множество сфер нашей жизни от смартфонов и голосовых помощников до систем автоматизации в производстве и медицине. ИИ невероятно полезен для повышения эффективности обработки информации и принятия решений. В российской системе здравоохранения большие возможности для применения искусственного интеллекта (ИИ), он уже активно внедряется по всей стране.