Новости теория струн кратко и понятно

меньших, чем атомы, электроны или кварки. Стромиджер и Вафа, струнные теоретики, с помощью теории струн смогли отыскать микроскопические компоненты чёрных дыр экстремального типа. Теория струн в принципе может нам это объяснить, и вывести параметры элементарных частиц и их взаимодействий через фундаментальные физические константы типа скорости света или постоянной Планка. Главное преимущество теории струн является ее способность объединить общую теорию относительности Эйнштейна и квантовую механику. Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на развлекательном портале

Что такое теория струн

Вот некоторые из них: Связь с теорией поля и инфляцией Вселенной Квантовая теория струн предлагает новый подход к объединению теории гравитации и теории поля. Она позволяет описывать гравитацию в терминах квантовых объектов — струн, что открывает новые возможности для понимания взаимодействия между элементарными частицами и гравитацией. Это может привести к разработке единой теории, объединяющей все фундаментальные взаимодействия в природе. Квантовая теория струн также имеет важное значение для теории инфляции Вселенной. Инфляция — это модель, которая объясняет быстрое расширение Вселенной в первые моменты ее существования. Квантовая теория струн может предложить новые механизмы, которые могут объяснить происхождение и свойства инфляционного поля. Вклад в единое поле физики элементарных частиц Квантовая теория струн играет важную роль в поиске единой теории, объединяющей все фундаментальные взаимодействия и элементарные частицы. Она предлагает новый подход к объединению гравитации и других фундаментальных сил, таких как электромагнитная, сильная и слабая силы. Квантовая теория струн может быть ключом к пониманию природы и происхождения всех фундаментальных частиц и взаимодействий. Кроме того, квантовая теория струн может предложить новые модели элементарных частиц, которые могут быть проверены экспериментально.

Она может предсказать существование новых частиц, таких как суперсимметричные партнеры известных частиц, которые могут быть обнаружены на ускорителях частиц или в космических экспериментах. Перспективы и возможности для дальнейших исследований Квантовая теория струн остается активной областью исследований, и у нее есть много перспектив и возможностей для дальнейших разработок. Ученые продолжают исследовать различные аспекты теории струн, такие как сверхсимметрия, дополнительные измерения и свойства струнных моделей. Одной из перспективных областей исследований является разработка математических методов и техник, которые позволят более точно описывать и анализировать свойства и поведение струнных моделей. Это может привести к новым математическим открытиям и развитию смежных областей физики и математики. Кроме того, квантовая теория струн может иметь практические применения в различных областях, таких как квантовые вычисления, криптография и материаловедение. Исследования в этих областях могут привести к разработке новых технологий и приложений, которые могут иметь значительный вклад в науку и технологию. Критика и альтернативные подходы Квантовая теория струн, несмотря на свою значимость и потенциал, также подвергается критике и вызывает дискуссии среди ученых. Вот некоторые из основных критических моментов и альтернативных подходов, которые были предложены: Ограничения и проблемы квантовой теории струн Одним из основных ограничений квантовой теории струн является ее сложность и математическая трудность.

Формализм теории струн требует использования высокоабстрактных математических концепций, таких как теория операторов и топология. Это делает ее трудно доступной для понимания и применения в практических расчетах. Кроме того, квантовая теория струн страдает от проблемы отсутствия экспериментального подтверждения. В настоящее время нет прямых экспериментальных данных, которые могли бы подтвердить или опровергнуть предсказания теории струн. Это ограничивает ее статус как научной теории и вызывает сомнения в ее достоверности. Альтернативные модели и гипотезы Существуют альтернативные модели и гипотезы, которые предлагают альтернативные подходы к объединению гравитации и квантовой механики. Некоторые из них включают: Петлевая квантовая гравитация: Это альтернативная теория, которая основана на квантовании гравитационного поля в терминах петель. Она предлагает другой математический формализм и подход к описанию гравитации, который может быть более фундаментальным и ближе к экспериментальным данным.

Основные положения одной из наиболее известных «теорий всего» сводятся к следующему: Основу мироздания составляют протяженные объекты, которые по форме напоминают струны; Этим объектам свойственно совершать различные колебания, словно на музыкальном инструменте; В результате этих колебаний образуются различные элементарные частицы кварки, электроны и т. Масса полученного объекта прямо пропорциональна амплитуде совершенного колебания; Теория помогает по-новому взглянуть на черные дыры; Также с помощью нового учения удалось раскрыть силу тяжести во взаимодействиях между фундаментальными частицами; В отличии господствующих ныне представлений о четырехмерном мире, в новой теории вводятся дополнительные измерения; В настоящее время концепция еще не принята официально в широком научном сообществе. Не известно ни одного эксперимента, который бы подтверждал эту гармоничную и выверенную на бумаге теорию. Историческая справка История данной парадигмы охватывает несколько десятилетий интенсивных исследований. Благодаря совместным усилиям физиков по всему миру, была разработана стройная теория, включающая концепции конденсированных сред, космологию и теоретическую математику. Основные этапы ее развития: 1943—1959 гг. Появилось учение Вернера Гейзенберга об s-матрице, в рамках которого предлагалось отбросить понятия пространства и времени для квантовых явлений. Гейзенберг впервые обнаружил, что участники сильных взаимодействий представляют собой протяженные объекты, а не точки; 1959—1968 гг. Были обнаружены частицы с высокими спинами моментами вращения. Итальянский физик Туллио Редже предложит группировать квантовые состояния в траектории которые были названы его именем ; 1968—1974 гг.

На нее обратил пристальное внимание физик-теоретик, который работал в середине прошлого века в научном центре в Швейцарии. Габриэлле Венециано работал над созданием ускорительной установки и пытался выдвинуть различные предположения относительно существования законов Вселенной. Взглянув на старую формулу, ученый осознал, что она способна объяснить все многочисленные свойства частиц, которые участвуют в сильном ядерном взаимодействии. Однако разгадать, почему происходит такое взаимодействие и укладывается в рассчитанную формулу он не смог. Через несколько лет ряд американских ученых смогли выявить закономерности, которые стояли за формулой Эйлера все это время. Оказалось, что при представлении элементарных частиц маленькими колеблющимися одномерными струнами идет сильное взаимодействие этих частиц, что в точности описывается с помощью функции Эйлера. Исследователи предположили, что раз отрезки струн являются достаточно малыми, то они смогут выглядеть точечными частицами, и не будут противоречить результатам экспериментальных наблюдений. Однако через короткое время и эти предположения не смогли полностью объяснить всех происходящих процессов, поскольку выяснились дополнительные несостыковки. Эта формула нуждалась в дополнительном объяснении. Через некоторое время даже пришлось забыть о перспективной теории струн, так как возникали новые предпосылки в квантовой хромодинамики. В ней использовалась точечная модель частиц.

Приготовьте вашу голову! История озарения В 1960-е годы молодой итальянец Габриеле Венециано, работающий физиком-теоретиком в ЦЕРН в Женеве, искал способ объяснить сильное ядерное взаимодействие андронов тогда об андронах знали гораздо меньше, ведь Большой адронный коллайдер еще не изобрели. В какой-то момент случилось озарение: ученый вдруг понял, что для объяснения наблюдаемых процессов подходит так называемая бета-функция — математическая формула, придуманная еще в 1730 году Леонардом Эйлером, швейцарским математиком, который полжизни прожил в России. Вскоре обнаружилось, что эта формула позволяет описать огромное количество данных, накопленных при изучении особенностей сильного взаимодействия. Это был лишь первый кусочек пазла, который еще предстояло сложить другим. Физики Йохиро Намбу, Холгер Нильсен и Леонард Сасскинд размышляли: почему старинная формула так легко подошла и какой физический смысл таится в этой сложной математике? К 1970 году им стало ясно, что сильное взаимодействие элементарных частиц превосходно описывается с помощью бета-функции Эйлера, если представлять их в виде крошечных колеблющихся одномерных струн. Эти невидимые человеческому глазу нити ученые воображали как замкнутые — в виде колец — и как открытые. Было решено, что длина струн настолько мала, что их с натяжкой можно рассматривать как точки, а значит, для фундаментальной физики ничего не изменилось. Так возникло понятие «квантовая струна» — под ним подразумевается бесконечно тонкие одномерные объекты длиной в 10—35 м, колебания которых воспроизводят все многообразие элементарных частиц. Это была настоящая революция в мире физики, так как все ранее открытые «ингредиенты Вселенной» электроны, протоны, нейтроны и пр. Струны более массивных частиц совершают более интенсивные колебания, а струны более легких частиц колеблются менее интенсивно. В конечном итоге колебания на определенной частоте определяют свойства струн: массу и электрический заряд, что позволяет отнести их к определенной разновидности фундаментальных частиц, будь то кварк, фотон, глюон и др. Уровни строения мира.

Теория струн. Теория всего

Сравнительно недавно появился подход, дающий возможность разрешить это противоречие — теория струн. Причина, по которой теория струн является потенциальной теорией всего, заключается в том, что она предсказывает, что все формы материи состоят из струн, и, следовательно, все на самом деле состоит из одного и того же «вещества». Теория струн — это теория о том, что фундаментальными составляющими Вселенной являются одномерные "струны", а не точечные частицы (как это принято наукой). Первый вариант теории струн назвали бозонным, так как он описывал струнную природу бозонов, ответственных за взаимодействия материи, и не касался фермионов, из которых материя состоит. Не так давно физический мир облетела новость: знаменитая теория струн несовместима с существованием тёмной энергии, какой её себе представляет большинство космологов. Теория струн расширила симметрию до суперсимметрии, из которой следовало, что моды колебаний струны реализуются парами суперпартнёров, спин которых отличается на.

Теория струн: кратко и понятно о сложном. В чем она заключается?

Если теория струн это, в том числе, и теория гравитации, то как она соотносится с теорией тяготения Эйнштейна? Квантовая теория струн возникла в начале 1970-х годов в результате осмысления формул Габриэле Венециано[7], связанных со струнными моделями строения адронов. А теория струн может объединить эти две теории, например если сказать что световая волна это и есть струна с набором гармоник, которая и соответствует фотону.

Квантовая механика – следствие теории струн?

Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого. Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили конструктивный подход [2]. Суть в том, что они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путём кропотливой сборки в один механизм точного набора бран , открытых во время второй суперструнной революции. Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд , остаются неизменными. Тогда энтропия этого состояния по определению равна логарифму полученного числа — числа возможных микросостояний термодинамической системы. Затем они сравнили результат с площадью горизонта событий чёрной дыры — эта площадь пропорциональна энтропии чёрной дыры, как предсказано Бекенштейном и Хокингом на основе классического понимания [2] , — и получили идеальное согласие [67]. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Это открытие оказалось важным и убедительным аргументом в поддержку теории струн.

Разработка теории струн до сих пор остаётся слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварков или электрона. Теория струн, тем не менее, даёт первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу , Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг. Данный подход впервые использован в работах Габриэле Венециано [68] , который показал, каким образом инфляционная модель Вселенной может быть получена из теории суперструн. Инфляционная космология предполагает существование некоторого скалярного поля , индуцирующего инфляционное расширение. В струнной космологии вместо этого вводится так называемое дилатонное поле [69] [70] , кванты которого, в отличие, например, от электромагнитного поля , не являются безмассовыми , поэтому влияние данного поля существенно лишь на расстояниях порядка размера элементарных частиц или на ранней стадии развития Вселенной [71]. Существует три основных пункта, в которых теория струн модифицирует стандартную космологическую модель.

Во-первых, в духе современных исследований, всё более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод меняет представление о структуре Вселенной непосредственно в момент Большого взрыва , для которого в стандартной модели получается нулевой размер Вселенной. Во-вторых, понятие T-дуальности , то есть дуальности малых и больших радиусов в его тесной связи с существованием минимального размера в теории струн, имеет значение и в космологии [72]. В-третьих, число пространственно-временных измерений в теории струн больше четырёх, поэтому космология должна описывать эволюцию всех этих измерений. Вообще, особенность теории струн состоит в том, что в ней, по-видимому, геометрия пространства-времени не фундаментальна, а появляется в теории на больших масштабах или при слабой связи [73]. Косвенные предсказания Несмотря на то, что арена основных действий в теории струн недоступна прямому экспериментальному изучению [74] [75] , ряд косвенных предсказаний теории струн всё же можно проверить в эксперименте [76] [77] [78] [79]. Во-первых, обязательным является наличие суперсимметрии.

Ожидается, что запущенный 10 сентября 2008 года , но полноценно [80] вступивший в строй в 2010 году Большой адронный коллайдер сможет открыть некоторые суперсимметричные частицы. Во-вторых, в моделях с локализацией наблюдаемой вселенной в мультивселенной изменяется закон гравитации тел на малых расстояниях. В настоящее время проводится ряд экспериментов, проверяющих с высокой точностью закон всемирного тяготения на расстояниях в сотые доли миллиметра [81]. Обнаружение отклонения от этого закона было бы ключевым аргументом в пользу суперсимметричных теорий.

Причина в том, что они описывают лишь низкоэнергетическое приближение к действительно фундаментальной теории.

В структуре Стандартной модели элементарных частиц имеются указания на её происхождение из более фундаментальной теории при высоких энергиях. Теория струн предоставляет развитую технику для формулировки и изучения подобных гипотез. Простейшие модели теории плохо описываются пертурбативными методами, а непертурбативные пока недостаточно развиты. Выход из положения состоит в использовании моделей с суперсимметрией. Пять простейших моделей суперструн оказались связаны простыми дуальностями друг с другом и с простейшей моделью мембран, т.

Главным препятствием для использования этой теории в качестве обобщения Стандартной модели элементарных частиц является то, что она 10- или 11-мерна, а число 4-мерных фаз, полученных компактификацией лишних пространственных измерений, велико.

Главная » Статьи и полезные материалы » Телескопы » Статьи » Теория струн простыми словами Теория струн простыми словами Как известно, во Вселенной существует четыре измерения — время и три, связанные с пространством. Но теория струн, одна из самых популярных и сложных в современной физике, гласит, что измерений на самом деле может быть больше.

Струны Вселенной: суть теории В основе теории струн Вселенной — попытки физиков найти универсальную силу, которая объединяла бы основные взаимодействия, существующие в природе — гравитацию, сильные и слабые ядерные силы, электромагнетизм. Теория струн вполне может претендовать на роль такой силы. Согласно ей, элементарные неделимые частицы, из которых состоят все предметы и вещества, — это не точки, а струны, вибрирующие по определенным шаблонам.

В процессе этой вибрации они, в отличие от музыкальных струн, не издают звук, а вырабатывают новые частицы.

В теоретической физике часто приходится иметь дело с уравнениями, которые либо слишком сложны для понимания, либо с трудом поддаются решению. Обычно в такой ситуации физики не пасуют и пытаются получить приближённое решение этих уравнений. Положение дел в теории струн намного сложнее. Даже сам вывод уравнений оказался столь сложным, что до сих пор удалось получить лишь их приближённый вид. Таким образом, физики, работающие в теории струн, оказались в ситуации, когда им приходится искать приближённые решения приближённых уравнений. После нескольких лет поражающего воображение прогресса, достигнутого в течение первой революции теории суперструн, физики столкнулись с тем, что используемые приближённые уравнения оказались неспособными дать правильный ответ на ряд важных вопросов, тормозя тем самым дальнейшее развитие исследований.

Не имея конкретных идей по выходу за рамки этих приближённых методов, многие физики, работавшие в области теории струн, испытали растущее чувство разочарования и вернулись к своим прежним исследованиям. Для тех, кто остался, конец 1980-х и начало 1990-х гг. Красота и потенциальная мощь теории струн манили исследователей подобно золотому сокровищу, надёжно запертому в сейфе, видеть которое можно лишь через крошечный глазок, но ни у кого не было ключа, который выпустил бы эти дремлющие силы на свободу. Долгий период «засухи» время от времени прерывался важными открытиями, но всем было ясно, что требуются новые методы, которые позволили бы выйти за рамки уже известных приближённых решений. Конец застою положил захватывающий дух доклад, сделанным Эдвардом Виттеном в 1995 г. В нём он обнародовал план следующего этапа исследований, положив тем самым начало «второй революции в теории суперструн». Сейчас специалисты по теории струн энергично работают над новыми методами, которые обещают преодолеть встреченные препятствия.

Трудности, которые лежат впереди, будут серьёзным испытанием для учёных, работающих в этой области, но в результате свет в конце тоннеля, хотя ещё и отдалённый, может стать видимым. В этой и в нескольких последующих главах мы опишем открытия теории струн, явившиеся результатом первой революции и поздних исследований, выполненных до начала второй революции. Время от времени мы будем упоминать достижения, сделанные в ходе второй революции; подробное описание этих новейших достижений будет приведено в главах 12 и 13.

Теория струн простыми словами

1) «Теория струн» в первоначальном виде сама по себе уже устарела и сейчас это название закрепилось не за первоначальной теорией, а за целым семейством – собственно теория струн, теория суперструн и М-теория. Не так давно физический мир облетела новость: знаменитая теория струн несовместима с существованием тёмной энергии, какой её себе представляет большинство космологов. Антропный принцип в теории струн.

Похожие новости:

Оцените статью
Добавить комментарий