Статья Квантовая физика, Квантовые точки принесли ученому из России Нобелевскую премию, Разработан первый в мире квантовый аналог механического двигателя.
Новости квантовой физики
«ФИЗИКА ПОЛУПРОВОДНИКОВ БУДЕТ НУЖНА ВСЕГДА» | Новости физики в Интернете — раздел журнала Успехи физических наук, ежемесячно публикующего обзоры современного состояния наиболее актуальных проблем физики и смежных с нею наук. В данном обзоре новостей представлены последние открытия в физике. |
Квантовая физика о Боге, душе и Вселенной | Квантовый – последние новости. В 1964 году физик Джон Белл придумал, как различить в эксперименте две версии квантовой механики — ортодоксальную и со скрытыми параметрами. |
Новости по теме: квантовая физика | Читайте последние новости на тему в ленте новостей на сайте РИА Новости. В стране полным ходом прокладывают сети квантовой связи. В данном обзоре новостей представлены последние открытия в физике и астрофизике. |
Новости физики в Интернете | квантовая физика. воздух6 августа 2015. Как создаются щит и меч квантовой физики. |
Новости по теме: квантовая физика
В своё время отсутствие должной степени внимания к некоторым областям, таким как микроэлектроника, сейчас привело к определённым сложным последствиям. И совершенно понятно, что все развитые страны много инвестируют в квантовые технологии не случайно, поскольку видят в них очень серьёзный потенциал. Здесь основное финансирование — и в России, и в мире — идёт от государства. Понятно почему: оно фундаментальное и достаточно наукоёмкое. С другой стороны, есть и подвижники, частные компании. Например, я могу сказать, что Газпромбанк сильно помогает Российскому квантовому центру, Росатом направляет свои частные средства на финансирование Дорожной карты квантовых вычислений.
Важно увеличивать эту пропорцию частного финансирования — не в абсолютном значении денег, а скорее в росте возможности сфокусироваться на тех задачах, которые в будущем будут интересны индустриальному партнёру, инвестору. Не просто создать квантовый компьютер, а создать квантовый компьютер с алгоритмами и методами, делающими возможным следующий этап его применения. Я думаю, что без вовлечения частных инвесторов и их участия деньгами и экспертизой это так не заработает. Какие препятствия есть у квантовой науки, чтобы перейти из плоскости теории и чисто научных изысканий к созданию реального продукта, меняющего общество? В общем и целом сейчас есть два основных препятствия.
С одной стороны, квантовые технологии развивать сложно, здесь много есть сложных наукоёмких вопросов, на которые ещё предстоит найти ответы. Например, мы до сих пор ищем ту элементную базу, тот физический принцип, на котором квантовые компьютеры будут построены. Если в какой-то момент в микроэлектронике мы стали использовать кремниевые интегральные схемы и пошли по пути их совершенствования и масштабирования, здесь этот аналог ещё не найден. В данный момент мы идём по нескольким направлениям. В Дорожной карте выделены четыре основные направления: атомы, ионы, фотоны и сверхпроводники.
Важно отметить, что до конца никто не знает, какое направление станет лидером. Может быть один победитель, а может быть и несколько: например, квантовые компьютеры на различных физических принципах будут решать разные задачи. При этом ожидания уже очень высоки. Государственные и частные компании по всему миру, заинтересованные люди ждут появления коммерческих квантовых компьютеров. Поэтому область в каком-то смысле находится между двух огней.
С одной стороны — необходимость решать сложные задачи, а с другой — завышенные ожидания, которые поторапливают учёных. Как вообще может измениться общество и мир с развитием этих технологий? Что касается изменения жизни, при появлении масштабируемого квантового компьютера станет возможным решение самых разных сложных задач, принципиально недоступных для классических суперкомпьютеров. Искать новые материалы, моделируя их на квантовом уровне, новые типы батарей, лекарств, новые способы получения различных химических соединений. Очень точно измерять параметры окружающей среды.
Решать сложные оптимизационные задачи — для такой страны, как Россия, те же логистические задачи приводят к очень большому эффекту в связи с масштабом. Или построить новые методы долгосрочной защиты информации на основе квантовой и постквантовой криптографии, которые будут устойчивы к широкому классу атак, поскольку их надёжность сводится к фундаментальным законам физики. А это, с учётом тренда на рост количества данных, требующих защиты, очень важно. А не оставит ли широкое внедрение квантовых технологий без работы каких-то специалистов? Пока сложно себе это представить.
Пока что это инструмент для решения сложных вычислительных задач, и на этом этапе человек для программирования квантового компьютера будет необходим. Сможет ли он сделать какие-то рутинные задачи более лёгкими в исполнении — да, как и искусственный интеллект. Но как мы видим на примере ИИ, даже с ним пока не произошло массового высвобождения человеческого ресурса. Люди просто переквалифицируются на более сложные и творческие задачи, с квантовыми технологиями произойдёт нечто похожее. Одной из тем ваших научных изысканий был квантовый блокчейн.
В чём преимущества квантового блокчейна перед обычным и где его можно применять? Как раз потому, что технология блокчейн в какой-то момент набрала очень большую популярность, мы обратили на неё внимание. Нам было интересно понять перспективы развития и внедрения этой технологии. Основной хайп вокруг блокчейна был связан с приписываемой ему большой степенью защищённости данных, прозрачности и т. Но когда мы стали подробно анализировать, стало понятно, что все эти замечательные свойства так или иначе сводятся к определённым криптографическим элементам, например цифровым подписям, механизмам консенсуса.
Таким образом блокчейн оказывается устойчив ровно в той мере, в какой устойчива его криптография. А одно из применений квантовых компьютеров — возможность быстрого криптоанализа попросту говоря, взлома , сводящая на нет защищённость многих традиционных криптографических алгоритмов. И многие традиционные блокчейны неустойчивы перед атаками квантовых компьютеров. И мы поняли, что при построении блокчейнов нужно использовать метод с использованием квантовых же технологий, конкретно — квантовых цифровых подписей или постквантовой криптографии, которые делают блокчейн устойчивым перед такими атаками.
Аспирант Кристофер Остфельдт объясняет далее: «Представьте себе различные способы реализации квантовых состояний как своего рода зоопарк различных реальностей... Если, например, мы хотим построить какое-то устройство, чтобы использовать различные качества, которыми все они обладают и в которых они выполняют разные функции, решают разные задачи, необходимо будет изобрести язык, на котором все они смогут разговаривать. Квантовые состояния должны иметь возможность общаться, чтобы мы могли использовать весь потенциал квантового устройства". Теперь у учёных фактически есть способ заставить двух зверей такого зоопарка рычать на одном языке. Ещё один конкретный, хотя, пожалуй, и сложный для понимания перспектив пример. Квантовое зондирование. Оно позволит у знать о микромире много нового и интересного. Ведь когда только один из двух запутанных объектов будет подвергаться внешнему воздействию, запутанность позволит измерить нужные свойства второго объекта с невероятной по современным меркам чувствительностью, не ограниченной нулевыми колебаниями. Это как заглянуть в удивительный квантовый мир с помощью микроскопа.
Официальная формулировка комитета: «за эксперименты со спутанными фотонами, установку нарушения неравенств Белла и основополагающие работы в области квантовой информации». Физики проводили основополагающие эксперименты со спутанными квантовыми состояниями — системами, в которых квантовые частицы ведут себя как одно целое, даже находясь на значительном удалении друг от друга. Самые известные объекты такого типа — спутанные фотоны, с которыми, по-видимому, сейчас проводят большинство экспериментов. Квантовую запутанность, хоть и реже, но пробуют реализовать и на других объектах — отдельных атомах. Подчеркнём, что квантовая запутанность — специфическое свойство материи, которое следует из законов квантовой механики и очень непросто объясняется интуитивно. Долгое время теоретиков волновал вопрос о природе такой корреляции частиц в спутанной паре. Одно из возможных объяснений — так называемые скрытые переменные. Теория скрытых переменных предполагает, что парадоксы квантовой механики являются следствием неполноты описания природы — отсюда якобы и следует вероятностный характер квантовых предсказаний. Сторонником такой интерпретации был и Эйнштейн, которому приписывают максиму «Бог не играет в кости». В 1960 году Джон Стьюарт Белл вывел математическое неравенство, носящее теперь его имя. Оно чётко формализует эту проблему: если существуют скрытые переменные, корреляция между результатами значительного количества измерений не может превысить некоторого предела. А квантовая механика, в свою очередь, утверждает, что в экспериментах определённого типа неравенство Белла нарушается, то есть возможна более сильная корреляция квантовых частиц.
Полученные ими результаты проложили путь новым технологиям, основанным на квантовой информации», — говорится в заявлении Нобелевского комитета. Комитет напомнил, что сейчас квантовые эффекты начинают находить практическое применение — уже ведутся работы по созданию квантовых компьютеров, а также линий связи, защищённых квантовым шифрованием. Принцип неопределённости Одно из ключевых явлений квантовой физики — квантовая запутанность частиц: изменение, произошедшее с одной частицей, приводит к изменению другой частицы, находящейся на расстоянии от первой. Точно рассчитать координаты и скорость квантовых частиц невозможно — этот принцип квантовой неопределённости сформулировал в 1927 году немецкий физик-теоретик Вернер Гейзенберг. Однако не все учёные были готовы смириться с неопределённостью. К примеру, с этим постулатом спорил Альберт Эйнштейн, который считал, что науке пока просто неизвестны скрытые параметры, заставляющие частицы вести себя определённым образом. Неравенство, в которое требуется подставить результаты экспериментальных измерений, составлено так, что будет нарушаться, только если скрытые параметры не существуют.
Ученые продолжили попытки понять квантовую запутанность: есть большой прогресс
Физика: 10 научных прорывов 2023 года со всего мира | Вокруг Света | Показав, что квантово-механические объекты, которые находятся далеко друг от друга, могут быть гораздо сильнее коррелированы друг с другом, чем это возможно в обычных системах, исследователи предоставили дополнительное подтверждение квантовой механике. |
Будущее квантовых компьютеров: перспективы и риски // Новости НТВ | Статья Квантовая физика, Квантовые точки принесли ученому из России Нобелевскую премию, Разработан первый в мире квантовый аналог механического двигателя. |
Новости по тегу квантовая физика, страница 1 из 2 | Отличная новость! Физики нашли элементарную частицу, "размазанную" на 735 километров. Ученые из MIT выяснили, что нейтрино могут находиться в состоянии квантовой суперпозиции, находясь одновременно в двух разных. |
Квантовая механика – Новости науки | Одним из самых ярких открытий является новость о том, что команда National Institute of Standards and Technology (NIST) представила новое устройство, которое может стать переломным моментом в разработке квантовых компьютеров. |
Квантовые технологии - новости и статьи | Rusbase | Новости. Фото дня. |
О связи Канта с современной квантовой физикой рассказали в БФУ
Новости физики в сети Internet: май 2023 (по материалам электронных препринтов). Ученые МФТИ совершили прорыв в области квантовой физики. Новости науки и техники/. Принципы квантовой физики, ставящие в тупик ученых: парадоксальная физика и ее главные загадки. Китайские физики объявили о доказательствах существования новой субатомной частицы, обнаруженной при распаде (J/psi)-мезона на пару положительных и отрицательных пионов. Центр передового опыта в области квантовой информации и квантовой физики Китайской академии наук (CAS) поставил 504-кубитный сверхпроводящий квантовый вычислительный чип под названием Xiaohong компании QuantumCTek Co., Ltd., сообщило агентство Xinhua.
Распутать квантовую запутанность: за что дали «Нобеля» по физике
Простыми словами любое вмешательство внешней среды мешает работе таких систем, делая их невозможными. Это не дает реализовать квантовые компьютеры повсеместно. Решение есть, но не все так просто Квантовая коррекция ошибок, которую теоретически открыли в 1995 году, предлагает средства для борьбы с этой декогерентностью. Он защищает квантовый бит информации, кодируя его в системе большего размера, чем в принципе необходимо для представления одного кубита. IBM 16 Qubit Processor. Фото: Flickr Однако эта более крупная система делает влияние окружающей среды еще более агрессивным, а закодированный кубит — более хрупким. Из-за этого эффекта и осложнений, связанных с дополнительными компонентами для исправления ошибок, этот процесс не продливал срок службы квантового бита на практике. Исследователи говорят, что на самом деле безубыточность даже с неисправленным кубитом — редкое событие. Вопреки теоретическим обещаниям, в большинстве экспериментов исправление ошибок ускоряет декогерентность квантовой информации. Что сделали ученые? В ходе эксперимента ученые впервые показали, что увеличение избыточности системы, активное обнаружение и исправление квантовых ошибок обеспечило повышение устойчивости квантовой информации.
Читайте последние новости высоких технологий, науки и техники. Перепечатка материалов без согласования допустима при наличии активной ссылки на страницу-источник. Направляя нам электронное письмо или заполняя любую регистрационную форму на сайте, Вы подтверждаете факт ознакомления и безоговорочного согласия с принятой у нас Политикой конфиденциальности.
Кот Шредингера — "участник" мысленного эксперимента, который был предложен австрийским физиком Эрвином Шредингером в 1935 году. Во время него в закрытый ящик помещаются кот и механизм, открывающий емкость с ядом в случае распада радиоактивного атома что может случиться или не случиться. В соответствии с принципами квантовой физики кот является одновременно и живым, и мертвым. Отсюда берет свое начало термин "квантовая суперпозиция" — совокупность всех состояний, в которых может одновременно находиться кот. Сегодня физики активно пытаются создать такого кота Шредингера, которого можно было бы увидеть невооруженным глазом.
Интернет-журнал Новая Наука каждый день сообщает о последних открытиях и достижениях в области науки и новых технологий. Читайте последние новости высоких технологий, науки и техники. Перепечатка материалов без согласования допустима при наличии активной ссылки на страницу-источник.
Нобелевская премия по физике — 2022
Новости квантовой физики. 14 августа 2023 года. Главные Заголовки. Массивы квантовых стержней могли бы улучшить телевизоры или устройства виртуальной реальности. Новости физики в Интернете — раздел журнала Успехи физических наук, ежемесячно публикующего обзоры современного состояния наиболее актуальных проблем физики и смежных с нею наук. В данном обзоре новостей представлены последние открытия в физике. Или построить новые методы долгосрочной защиты информации на основе квантовой и постквантовой криптографии, которые будут устойчивы к широкому классу атак, поскольку их надёжность сводится к фундаментальным законам физики. Новости и события Физики предложили новый способ безыгольных инъекций Ученые Центра фотоники и двумерных материалов МФТИ с коллегами представили инновационный способ безыгольных инъекций.
О связи Канта с современной квантовой физикой рассказали в БФУ
Центр передового опыта в области квантовой информации и квантовой физики Китайской академии наук (CAS) поставил 504-кубитный сверхпроводящий квантовый вычислительный чип под названием Xiaohong компании QuantumCTek Co., Ltd., сообщило агентство Xinhua. Квантовая физика – это раздел физики, который изучает поведение элементарных частиц на микроуровне, используя квантовую механику. Хроники жизни. Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода. Новости физики в сети Internet: май 2023 (по материалам электронных препринтов). Миром станут править квантовые компьютеры", – заявил физик, популяризатор науки и футуролог Мичио Каку. Миром станут править квантовые компьютеры", – заявил физик, популяризатор науки и футуролог Мичио Каку.
Новости по теме: квантовая физика
Если что-то случится с одним, другой в точности повторит состояние первого. Причем он «узнает» об этом мгновенно, быстрее скорости света. Это уже не теория: инженеры вот-вот представят новое поколение связи, которая заменит Интернет и сотовую телефонию, а опыты по квантовой запутанности в хороших школах учитель показывает просто на столе. Чтобы «пощупать» то, Единое, надо вернуться в состояние Большого взрыва, когда господствовали колоссальные энергии. А где, как? Пока что лучший инструмент — Большой адронный коллайдер.
Протон в коллайдере — больше, чем протон. Мы почти научились превращать его в первоматерию, накачивая колоссальными энергиями. Тут на сцену выходят страхи, что мы устроим черную дыру в центре Европы, или спровоцируем «эффект бабочки», и все вокруг расплывется, как на картинах Сальвадора Дали. Если вы думаете, что это досужие разговоры, а сами физики не обсуждают это за чашкой кофе, то заблуждаетесь. Что из этого следует?
Дежавю, исчезающие предметы, двойники, которые понятия не имеют о существовании друг друга, призраки — все это может оказаться проявлением неизвестных частиц и энергий. Просто пока нет инструмента, чтобы это измерить. Не хватает энергии. Или нужен в принципе другой инструмент. Вообразим, например, что есть такое понятие, как «душа», у нее есть энергия, и есть частицы, которые эту энергию переносят.
Слово «душа» все чаще фигурирует в исследованиях физиков. Упомянутый Джо Дэвис говорит о «термодинамической душе»: это «энергетическая память» хоть человека, хоть камня, которая делает одушевленной всю Вселенную. Идея одушевленности мира следует из принципов квантовой механики: фотон каким-то образом «сознательно» выбирает свой путь от лампы до страниц вашей книги. Если попытаться проконтролировать дорогу каждого фотона, они поменяют свое поведение — «ребята, за нами следят». Разумно и «частицу души» искать на больших энергиях.
А что это за энергии? Войны, гибель миллионов людей. Любовь матери к ребенку. С ребенком что-то случилось на другом конце света, мать чувствует. Мы удивляемся: экстрасенсорика!
При этом нас не удивляет, что «запутанные» фотоны точно так же чувствуют друг друга. Так может, «фотоны души» матери и ребенка тоже находятся в состоянии квантовой запутанности? Пока что лучшим «коллайдером» для исследования этих вещей остается сам человек. Сидит человек вечером один, вспоминает умершего родственника. Посмотрел на его портрет, сконцентрировался.
Настроил свой «коллайдер». Он один, дневные дела позади, ничто не отвлекает. И…что-то изменилось. Мы не знаем, что именно. Шорох, упала тень, сдвинулась книга, которую любил покойный.
Что это, игра воображения? А если попытаться описать эти феномены в формулах квантовой механики, так никакой мистики и нет. Если «квант души» существует, ваши кванты запутанны. Вот вы и вступили во взаимодействие. Мы можем предположить, что некоторые могут настраивать свой «коллайдер» эффективнее других.
Пророки, святые, любимые толпой диктаторы или лидеры вроде Илона Маска — люди, которые лучше управляют гипотетическими, еще не открытыми, энергиями. Мне кажется, самоизоляция сильно нас изменила. Все человечество взяли, и отрезали от суеты, погрузили каждого в себя. Если я прав, последствия будут колоссальными. Переход на удаленную работу, изменения в экономике — все это мелочи.
Человек станет другим.
Можно общаться быстрее скорости света. Путешествовать во времени. Телепатировать и телепортировать. Возможно вообще все. Сотни опытов подтвердили, что все так и есть. Ни единого свидетельства против. Профессор Джонатан Оппенгейм выступил с революционной теорией, которая призвана спасти физику. Фото: Личная страница героя публикации в соцсети Если бы квантовые физики и сторонники Эйнштейна сели играть в фантастические шахматы, где каждая фигура — спор и противоречие между ними, стороны выставили бы по несколько сотен фигур. Но среди них была бы одна, Король, который есть суть непримиримого спора.
Между нами все порвато и ногами растоптато. Имя Королю — гравитация. Эйнштейн считает, что гравитация — это искривление пространства-времени, и вообще этой «силы» как таковой нет. Гравитация это скорее форма. Квантовая механика говорит, что гравитация - это поле, как электрическое, магнитное, и его переносит квант, единица гравитационного воздействия. Которого никто не видел. Взять ту же теорию струн. Но профессор Оппенгейм решил ударить в самое сердце. Имя этому сердцу неопределенность. Гравитация Эйнштейна заранее задана и понятна.
Она не меняется просто так. Гравитация квантовой теории непредсказуема и постоянно меняется. Оппенгейм говорит: а что, если пространство-время не есть кисель холодный, устоявшийся. А — кисель на конфорке, и его постоянно варят. Пространство-время слегка колеблется. Создается квантовая неопределенность там, где Эйнштейн видел статику. Это в самом деле решило бы все.
Хотя для атомов Ce было найдено объяснение таких аномалий как колебательных возбуждений атомов водорода, прикрепляющихся к атомам Ce, для Co это объяснение оказалось неприменимо. В случае атомов Co аномалии интерпретировались как эффект Кондо коллективное экранирование спинов примесей электронами проводимости и резонанс Фано.
Новые теоретические вычисления методом функционала плотности и эксперимент F. Friedrich и др. Атомы Co были помещены на поверхность меди при температуре 1,4 К и магнитном поле до 12 Т, и измерялся текущий через них туннельный ток как со спиновым усреднением, так и с поляризацией. В последнем случае использовались магнитные кластеры из атомов железа на кончике иглы микроскопа. В спектре туннельного тока были обнаружены признаки сразу нескольких спинаронных состояний, а зависимость от магнитного поля оказалась противоположной той, которая была бы в случае эффекта Кондо. Возможно, что и многие другие явления, ранее интерпретировавшиеся на основе эффекта Кондо, на самом деле объясняются спинаронами. Спинароны могут найти полезные применения в наноэлектронике. Nature Physics, онлайн-публикация от 26 октября 2023 г. Оптический эффект Штарка в паре квантово запутанных фотонов 1 декабря 2023 Генерация пар фотонов в запутанном квантовом состоянии важна для применения в устройствах квантовой инофрмации.
В квантовых точках запутанные по поляризации фотоны рождаются в процессе двухфотонного резонансного возбуждения в биэкситонно-экситонном каскаде, однако эффективность этого метода остается пока ниже, чем в методе параметрической вниз-конверсии.
И ещё через три года этому последовало вящее доказательство. Вот пожалуйста. Пучок электронов пропущен через некое препятствие, в котором два просвета.
И попал на этот экран. Но почему-то на экране в итоге получается вот такое нечто, которое рисуется только при распространении волн. Дифракция электронов. Вот в этом научно-популярном фильме физик Джим Аль-Халили объясняет, что будет, если из особой пушки через такое же препятствие с двумя просветами стрельнуть всего лишь ОДНИМ-единственным электроном.
Но как только сие непонятно что сталкивается с беспросветным препятствием — превращается в добропорядочную частичку. А дальше — со всеми остановками. За эти сотню с лишним лет после "отчаянного" выступления Планка человечество погрузилось в бездну неизвестности уже довольно глубоко. Выяснилось, что кванты могут состоять в непостижимых отношениях, как некоторые люди: у одного в далёкой дали что-то меняется, другой немедленно это ощущает и тоже начинает вести себя по-другому.
Так называемая квантовая запутанность. Выяснилось, что эти частицы одновременно могут находиться в разных состояниях, отсюда — кот Шрёдингера: суть мысленного эксперимента в том, что кот сидит в коробке, и механизм его убийства сработает в случае распада одного атома, а поскольку квантовые частицы в этом атоме одновременно находятся в разных состояниях, выходит, что кот одновременно и жив, и мёртв.
Квантовая механика
Лауреатом в номинации «Инженерное решение» стал Гамлет Ходжибагиян, директор по научной работе Лаборатории физики высоких энергий Объединенного института ядерных исследований ОИЯИ , кандидат физико-математических наук. Премия присуждена за разработку магнитов на основе высокотемпературного сверхпроводящего материала для сверхмощных хранилищ электроэнергии и исследований новой физики.
Например, если мы измерили направление спина одного из пары запутанных фотонов, то информация о спине второго оно будет противоположным по направлению становится известна мгновенно, где бы этот второй фотон из пары не находился. Это также называют эффектом квантовой телепортации. Для определения системы на наличие скрытых параметров в 60-х годах прошлого века физик Джон Белл предложил мысленный эксперимент, который уже в семидесятые годы поставил Джон Клаузер за что ему, в частности, была присуждена Нобелевская премия по физике за 2022 год. В классической системе нашем с вами мире неравенства Белла соблюдаются всегда, тогда как в квантовом мире они нарушаются.
Если применить неравенства Белла к запутанным частицам, то случайное измерение двух запутанных частиц одновременно должно либо удовлетворять неравенствам, либо нарушать их. В последнем случае это будет доказательством, что никаких скрытых параметров нет и частицы «передают информацию» по законам квантовой физики — быстрее скорости света. Учёные из Швейцарской высшей технической школы Цюриха ETH Zurich создали криогенную установку, в которой фотон путешествует дольше, чем ведутся локальные измерения связанных частиц.
Эта теория квантовой физики весьма красивая, но она имеет ряд парадоксов.
Во-вторых, в природе атомы сталкиваются миллионы раз в секунду, что ничуть не вредит им — чем объяснить удивительную прочность всей системы? Говоря словами одного из «отцов» квантовой механики Гейзенберга, «никакая планетная система, которая подчиняется законам механики Ньютона, никогда после столкновения с другой подобной системой не возвратится в свое исходное состояние». Кроме того, размеры ядра, в котором собрана практически вся масса, в сравнении с целым атомом чрезвычайно малы. Можно сказать, что атом — пустота, в которой с бешеной скоростью вращаются электроны.
При этом такой «пустой» атом предстает как весьма твердая частица. Объяснение этому явлению выходит за рамки классического понимания. На самом деле на субатомном уровне скорость частицы возрастает тем больше, чем больше ограничивается пространство, в котором она движется. Так что чем ближе электрон притягивается к ядру, тем быстрее он движется и тем больше отталкивается от него.
Скорость движения настолько велика, что «со стороны» атом «выглядит твердым», как выглядят диском лопасти вращающегося вентилятора. Впервые подобная «дуэль» состоялась между Ньютоном и Гюйгенсом, которые пытались объяснить свойства света. Ньютон утверждал, что это поток частиц, Гюйгенс считал свет волной. В рамках классической физики примирить их позиции невозможно.
Ведь для нее волна — это передающееся возбуждение частиц среды, понятие, применимое лишь для множества объектов. Ни одна из свободных частиц не может перемещаться по волнообразной траектории. Но вот в глубоком вакууме движется электрон, и его перемещения описываются законами движения волн. Что здесь возбуждается, если нет никакой среды?
Квантовая физика предлагает соломоново решение: свет является одновременно и частицей, и волной. Строение ядра и ядерные частицы Постепенно становилось все более ясно: вращение электронов по орбитам вокруг ядра атома совершенно не похоже на вращение планет вокруг звезды. Обладая волновой природой, электроны описываются в терминах вероятности. Мы не можем сказать об электроне, что он находится в такой-то точке пространства, мы можем только описать примерно, в каких областях он может находиться и с какой вероятностью.
Вокруг ядра электроны формируют «облака» таких вероятностей от простейшей шарообразной до весьма причудливых форм, похожих на фотографии привидений. Составляющие его крупные элементарные частицы — положительно заряженные протоны и нейтральные нейтроны — также обладают квантовой природой, а значит, движутся тем быстрее, чем в меньший объем они заключены. Поскольку размеры ядра чрезвычайно малы даже в сравнении с атомом, эти элементарные частицы носятся со вполне приличными скоростями, близкими к скорости света. Для окончательного объяснения их строения и поведения нам понадобится «скрестить» квантовую теорию с теорией относительности.
К сожалению, есть одна проблема - такая теория до сих пор не создана и нам придется ограничиться несколькими общепринятыми моделями. Энергия — величина динамическая, связанная с процессами или работой. Поэтому элементарную частицу следует воспринимать как вероятностную динамическую функцию, как взаимодействия, связанные с непрерывным превращением энергии. Это дает неожиданный ответ на вопрос, насколько элементарны элементарные частицы, можно ли разделить их на «еще более простые» блоки.
Если разогнать две частицы в ускорителе, и затем столкнуть, мы получим не две, а три частицы, причем совершенно одинаковые. Третья просто возникнет из энергии их столкновения — таким образом, они и разделятся, и не разделятся одновременно!
Строение ядра и ядерные частицы Постепенно становилось все более ясно: вращение электронов по орбитам вокруг ядра атома совершенно не похоже на вращение планет вокруг звезды. Обладая волновой природой, электроны описываются в терминах вероятности. Мы не можем сказать об электроне, что он находится в такой-то точке пространства, мы можем только описать примерно, в каких областях он может находиться и с какой вероятностью. Вокруг ядра электроны формируют «облака» таких вероятностей от простейшей шарообразной до весьма причудливых форм, похожих на фотографии привидений.
Составляющие его крупные элементарные частицы — положительно заряженные протоны и нейтральные нейтроны — также обладают квантовой природой, а значит, движутся тем быстрее, чем в меньший объем они заключены. Поскольку размеры ядра чрезвычайно малы даже в сравнении с атомом, эти элементарные частицы носятся со вполне приличными скоростями, близкими к скорости света. Для окончательного объяснения их строения и поведения нам понадобится «скрестить» квантовую теорию с теорией относительности. К сожалению, есть одна проблема - такая теория до сих пор не создана и нам придется ограничиться несколькими общепринятыми моделями. Энергия — величина динамическая, связанная с процессами или работой. Поэтому элементарную частицу следует воспринимать как вероятностную динамическую функцию, как взаимодействия, связанные с непрерывным превращением энергии.
Это дает неожиданный ответ на вопрос, насколько элементарны элементарные частицы, можно ли разделить их на «еще более простые» блоки. Если разогнать две частицы в ускорителе, и затем столкнуть, мы получим не две, а три частицы, причем совершенно одинаковые. Третья просто возникнет из энергии их столкновения — таким образом, они и разделятся, и не разделятся одновременно! Для того чтобы сказать что-то о ней, нам придется «вырвать» ее из первоначальных взаимодействий и, подготовив, подвергнуть другому взаимодействию — измерению. Так что мы меряем в итоге? И насколько правомерны наши измерения вообще, если наше вмешательство меняет взаимодействия, в которых участвует частица, — а значит, меняет и ее саму?
Правомернее было бы называть его «участником» или «наблюдателем». Отсюда и название явления, о котором мы будем говорить дальше — «Эффект наблюдателя» или «Парадокс наблюдателя» в квантовой физике. Стоит ему выбрать способ, каким он будет проводить измерения, и в зависимости от этого реализуются возможные свойства частицы. Стоит сменить наблюдающую систему, и свойства наблюдаемого объекта также изменятся — парадокс квантовой физики. Этот важный момент раскрывает глубинное единство всех вещей и явлений. Сами частицы, непрерывно переходя одна в другую и в иные формы энергии, не имеют постоянных или точных характеристик — эти характеристики зависят от способа, каким мы решили их видеть.
Если понадобится измерить одно свойство частицы, другое непременно изменится. Такое ограничение не связано с несовершенством приборов или другими вполне исправимыми вещами. Это характеристика действительности. Попробуйте точно измерить положение частицы, и вы ничего не сможете сказать о направлении и скорости ее движения — просто потому, что у нее их не будет. Опишите точно движение частицы — вы не найдете ее в пространстве. Так современная физика ставит перед нами проблемы уже совершенно метафизического свойства.
Место или импульс, энергия или время Мы уже говорили, что разговор о субатомных частицах нельзя вести в привычных нам точных терминах, в квантовом мире нам остается лишь вероятность — это, можно сказать, один из принципов квантовой физики. Это, конечно, не та вероятность, о которой говорят, делая ставки на скачках, а фундаментальное свойство элементарных частиц. Они не то чтобы существуют, но скорее — могут существовать.
Квантовые технологии
Нобелевскую премию по физике присудили за квантовую запутанность | Новости и мероприятия. |
С приставкой «супер-»: обзор новостей квантовой физики | Миром станут править квантовые компьютеры", – заявил физик, популяризатор науки и футуролог Мичио Каку. |
Распутать квантовую запутанность: за что дали «Нобеля» по физике
Новости физики в Интернете — раздел журнала Успехи физических наук, ежемесячно публикующего обзоры современного состояния наиболее актуальных проблем физики и смежных с нею наук. В данном обзоре новостей представлены последние открытия в физике. Изобретен квантовый радар для работы в условиях плохой видимости НОВОСТИ Наука и Технологии. Интерфакс: Лауреатами Нобелевской премии по физике за 2022 год стали французский ученый Ален Аспе, американский физик Джон Клаузер и австрийский ученый Антон Цайлингер за исследования в квантовой механике, а именно за "эксперименты с запутанными фотонами.
Будущее квантовых компьютеров: перспективы и риски
Ален Аспе Alain Aspect из университета Париж — Сакле и Высшей школы политехники развил схему эксперимента, устранив некоторые подводные камни. Он использовал новый способ возбуждения атомов, так, что удалось добиться более высокой интенсивности испущенных фотонов. Более важно, что он нашёл способ переключения схемы измерения после того, как спутанная пара вылетает за пределы источника. В этом случае исключается влияние на корреляцию фотонов со стороны самой установки, которая существовала в момент запуска пары. Антон Цайлингер Anton Zeilinger из Венского университета также проводил множество экспериментов по проверке неравенства Белла, усовершенствовав методику обоих предшественников. Он создавал спутанные пары фотонов, направляя луч лазера на специальные кристаллы, а также пошёл дальше, чем Ален Аспе — он также переключал схемы экспериментов, чтобы они не могли повлиять на поведение уже вылетевших фотонов, и при этом использовал генератор случайных чисел для переключения между несколькими схемами. В одном из экспериментов для управления фильтрами были задействованы сигналы от удалённых галактик — в таком случае можно было наверняка сказать, что они не влияют друг на друга. Также Аспе сделал шаг к практическому использованию спутанных состояний.
В частности, его группа первой продемонстрировала эффект, который сейчас у многих на слуху — «квантовую телепортацию». Схемы экспериментов Дж. Клаузера, А. Аспе и А.
Никакая информация по классическим законам не могла передаться за это время, тогда как эффект квантовой запутанности частиц себя полностью проявил. До этого применение неравенств Белла предполагало лазейки в постановке экспериментов. Устранить все спорные места мог только эксперимент, в ходе которого измерения должны проводиться за меньшее время, чем требуется свету, чтобы пройти от одного конца к другому — это доказывает, что между ними не было обмена информацией. У поставленного эксперимента была и другая цель — убедиться, что сравнительно большие сверхпроводящие системы могут обладать квантовыми свойствами.
В опыте участвовали две сверхпроводящие схемы, которые играли роль связанных частиц, тогда как обычно речь идёт о запутывании элементарных частиц типа электронов, фотонов или атомов. В эксперименте использовались объекты нашего большого мира, и они отыграли по законам квантовой физики. Это означает, что на основе сверхпроводящих макросистем можно строить квантовые компьютеры, осуществлять квантовую связь и делать много другого интересного не углубляясь до таких тонких и пугливых сверхчувствительных материй, как элементарные частицы.
Доказать квантовую запутанность частиц с помощью эксперимента можно, проверив выполнение неравенств Белла по имении физика Джона Белла. Они позволяют узнать о наличии в квантово-механической системе скрытых параметров, определяющих состояние, которое примет одна из частиц. Если неравенства не выполняются, частицы можно считать запутанными. Эксперименты, которые доказали нарушение неравенств Белла, первым провел американец Клаузер. Заслуга француза Аспе состоит в том, что ему удалось доказать, что неравенства действительно не выполняются. Австриец Цайлингер смог экспериментально показать возможность квантовой телепортации, то есть изменение квантового состояния частицы из запутанной пары при изменении состояния другой, которая находится далеко от нее.
Если вы думаете, что это досужие разговоры, а сами физики не обсуждают это за чашкой кофе, то заблуждаетесь. Что из этого следует? Дежавю, исчезающие предметы, двойники, которые понятия не имеют о существовании друг друга, призраки — все это может оказаться проявлением неизвестных частиц и энергий. Просто пока нет инструмента, чтобы это измерить. Не хватает энергии. Или нужен в принципе другой инструмент. Вообразим, например, что есть такое понятие, как «душа», у нее есть энергия, и есть частицы, которые эту энергию переносят. Слово «душа» все чаще фигурирует в исследованиях физиков. Упомянутый Джо Дэвис говорит о «термодинамической душе»: это «энергетическая память» хоть человека, хоть камня, которая делает одушевленной всю Вселенную. Идея одушевленности мира следует из принципов квантовой механики: фотон каким-то образом «сознательно» выбирает свой путь от лампы до страниц вашей книги. Если попытаться проконтролировать дорогу каждого фотона, они поменяют свое поведение — «ребята, за нами следят». Разумно и «частицу души» искать на больших энергиях. А что это за энергии? Войны, гибель миллионов людей. Любовь матери к ребенку. С ребенком что-то случилось на другом конце света, мать чувствует. Мы удивляемся: экстрасенсорика! При этом нас не удивляет, что «запутанные» фотоны точно так же чувствуют друг друга. Так может, «фотоны души» матери и ребенка тоже находятся в состоянии квантовой запутанности? Пока что лучшим «коллайдером» для исследования этих вещей остается сам человек. Сидит человек вечером один, вспоминает умершего родственника. Посмотрел на его портрет, сконцентрировался. Настроил свой «коллайдер». Он один, дневные дела позади, ничто не отвлекает. И…что-то изменилось. Мы не знаем, что именно. Шорох, упала тень, сдвинулась книга, которую любил покойный. Что это, игра воображения? А если попытаться описать эти феномены в формулах квантовой механики, так никакой мистики и нет. Если «квант души» существует, ваши кванты запутанны. Вот вы и вступили во взаимодействие. Мы можем предположить, что некоторые могут настраивать свой «коллайдер» эффективнее других. Пророки, святые, любимые толпой диктаторы или лидеры вроде Илона Маска — люди, которые лучше управляют гипотетическими, еще не открытыми, энергиями. Мне кажется, самоизоляция сильно нас изменила. Все человечество взяли, и отрезали от суеты, погрузили каждого в себя. Если я прав, последствия будут колоссальными. Переход на удаленную работу, изменения в экономике — все это мелочи. Человек станет другим. Допустим, призраки существуют. Кто они: просто энергия, или личность? Недавно публично сцепились два друга-физика. Адам Франк заявил, что души и загробной жизни не существует, потому что мы не можем получить «оттуда» никакой информации. Альва Ноэ жестко возразил: наука хвалится, что может предсказывать. Рассчитали, что корабль поплывет — и он в самом деле не тонет. Но наука не может предсказать итог боксерского поединка. Значит, по твоей логике боксеров не существует! Разнимали друзей всем научным миром.