Новости применение искусственного интеллекта в медицине

Сегодня искусственный интеллект помогает находить признаки заболеваний по более чем 20 направлениям, а количество обработанных с помощью него лучевых исследований уже превысило 11 миллионов. Искусственный интеллект в медицине: применение, технологии, вызовы, перспективы практического внедрения. Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины

Что хотите найти?

Роман Душкин: «Медицина — это область доверия» Возможность делать прогнозы с помощью искусственного интеллекта в медицине применяют и иначе.
Национальная база медицинских знаний Искусственный интеллект в медицине: применение, технологии, вызовы, нормативное обеспечение и регулирование, программы практического внедрения.
Применение искусственного интеллекта в медицине | ComNews "Искусственный интеллект для психического здоровья" Искусственный интеллект находит свое применение в психиатрии, помогая диагностировать и лечить пациентов с психическими расстройствами.
Искусственный интеллект в медицине. Настоящее и будущее | Образовательная социальная сеть По прогнозу генерального директора Ассоциации разработчиков и пользователей систем искусственного интеллекта в медицине «Национальная база медицинских знаний» Бориса Зингермана, ИИ будет активно закрывать ниши, в которых не хватает квалифицированных.

Искусственный интеллект в медицине и здравоохранении

Инструменты искусственного интеллекта помогли обнаружить онкогенные соматические мутации и понять сложность взаимодействия генов клеток раковых опухолей. Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает. Возможности нейросетей и искусственного интеллекта активно тестируют в самых разных отраслях медицины: от диагностики и профилактики болезней до вирусологии и генетики.

Повышение качества

  • Искусственный интеллект в медицине — не конкурент, но помощник
  • Точные результаты
  • Платформа ИИ Минздрав
  • Искусственный интеллект в медицине и здравоохранении | Примеры
  • Искусственный интеллект в медицине: преображение здравоохранения в XXI веке
  • ОБ АССОЦИАЦИИ

Искусственный интеллект в медицине: преображение здравоохранения в XXI веке

У здоровых людей расположение областей, отвечающих за движение, речь, зрение, плюс-минус известно. Но даже у здоровых людей они могут немного варьироваться, их расположение может отличаться на несколько сантиметров. У людей со структурными патологиями, такими как опухоль, эти зоны могут смещаться ввиду нейропластичности, и до операции это неизвестно. Во время операции нужно соблюдать баланс: убрать как можно больше пораженной ткани и оставить как можно больше здоровой, чтобы не повредить важные мозговые центры. Чтобы не вырезать лишнего, прямо во время операции пациента будят, разговаривают с ним, дотрагиваются электродами до поверхности мозга и смотрят на результат. Например, когда попадают в речевую зону, человек начинает запинаться, а если воздействуют на моторную зону, он не может пошевелить рукой. В мозге нет болевых рецепторов, поэтому пациенту в сознании не больно. Я сам несколько раз был на таких операциях, чтобы понимать, как это работает. Хирург о чём-то говорит с человеком и при этом удаляет какие-то участки.

И так несколько часов. Желательно локализацию этих зон хотя бы примерно знать до операции, когда череп еще не вскрыт. Здесь и выручает ФМРТ, которая при наложении на структурную МРТ позволяет получить карту функциональных зон, которые для наглядности можно раскрасить в разные цвета. Если нейрохирург увидит такую трехмерную модель до операции, он сможет спланировать ее ход. А если мы загрузим эту модель в нейронавигационную систему, то хирург в реальном времени будет видеть на экране, где находится его скальпель относительно конкретных зон. Лаборатория изучает мозг человека, больше половины проектов связаны с нейровизуализацией Источник: Анастасия Пешкова — Недавно вы начали совместный проект с Университетом Шарджи ОАЭ. Это ваше первое сотрудничество с арабскими коллегами? Российскую часть возглавляю я, а арабскую — Рифат Хамуди, профессор и директор Научно-инновационного центра точной медицины в Университете Шарджи.

Они в большей степени отвечают за медицину и биологию, сбор данных, мы как центр ИИ — за анализ данных, обработку и построение моделей. Стартовым проектом совместной лаборатории стало создание методов и моделей исследования гетерогенности раковых опухолей. Но проблема в том, что в этом образце присутствует много разных типов клеток, которые содержат разную информацию. Если мы берем полностью часть ткани и проводим генетический или транскриптомный анализ, то мы смотрим «среднюю температуру». Мы считаем, что всё гомогенно и однообразно, но это не так.

Сегодня искусственный интеллект не может решать сложные медицинские задачи: он самостоятельно не придумает и не спроектирует прибор из будущего, который сможет за пару секунд отсканировать организм человека, выявить любые проблемы и назначить оптимальное лечение.

Однако и нынешние возможности очень интересны для врачей, пациентов и клиник. Врачам Сегодня искусственный интеллект отлично справляется с простыми задачами. Например, он способен выявить наличие инородного тела или патологии по рентгеновскому снимку, а также определить наличие раковых клеток в цитологическом материале. Интересно еще и то, что сейчас разрабатывается все большее количество проектов, ориентированных именно на врачей: 1 IBM: Watson Это суперкомпьютер, способный отвечать на вопросы, которые задаются не на языке программирования, а на простом человеческом языке. Позднее было запущено подразделение Watson Health, главное направление которого — использование суперкомпьютера в медицине. Компьютеру обеспечили доступ к огромному количеству данных: энциклопедиям, базам научных статей, а также медицинским картам и снимкам.

Машина проанализировала свыше 50 миллионов анонимных медкарт и более 30 миллиардов снимков. Вся эта информация использовалась для дальнейшего применения в онкологии, для поиска на УЗИ признаков порока сердца. IBM запустило облачную платформу Watson Health Cloud, благодаря которой технологии доступны для врачей и исследователей по всему миру. ИИ используют для анализа анонимных глазных снимков и выявления первичных симптомов слепоты. Новый проект от израильских разработчиков призван помочь правильно диагностировать инсульт — система сравнивает снимок мозга пациента со снимками сотен тысяч других людей для выявления и подтверждения отклонений. Пациентам Системы ИИ в медицине разрабатываются не только для врачей, но и для их пациентов.

Многие современные разработки позволяют людям самостоятельно отслеживать свое состояние здоровья, следить за динамикой пульса, давления, дыхания и прочих показателей. Причем необходимо не просто собирать данные, но и анализировать и интерпретировать их. С этими задачами неплохо справляются многие современные мобильные приложения: 1 AliveCor Карманный кардиолог. Приложение, которое позволяет в домашних условиях обработать сведения с датчика, снимающего кардиограммы. Искусственный интеллект анализирует данные пациента, отслеживает любые тревожные сигналы и рекомендует пользователю обратиться к врачу, если предвидит скорый инфаркт. На основе полученных от человека данных программа отправляет информацию лечащему врачу или рекомендует обратиться к определенному специалисту.

Может рассказать о правилах приема лекарств или связать пациента по видеосвязи с врачом. Управление больницей Работа больницы требует быстрой координации персонала и имеющихся ресурсов, ведь на кону стоит не только здоровье, но и жизни людей. ИИ в здравоохранении может существенно помочь в управлении клиникой. Уже сегодня существуют проекты, предназначенные именно для этого: 1 Bright. Он предназначен для быстрого решения важных задач: организации встреч, назначения времени сдачи анализов, получения ответов больных по опросному листу и т. С его помощью врач освобождается от выполнения многих бюрократических процедур и может сосредоточиться на спасении жизней людей.

Она умеет анализировать многочисленные данные здоровья, может предсказывать ухудшение состояния, а также резервировать врачей и оборудование в случае возникновения критических ситуаций. Искусственный интеллект в российской медицине Применение искусственного интеллекта в медицине сегодня становится естественным для многих стран. Конечно, передовые технологии зачастую внедряются в США и Азии, однако и Европа Россия в том числе применяет многочисленные инновации и выстраивает стратегию использования ИИ в здравоохранении. Самые актуальные для нашей страны методы искусственного интеллекта в медицине — это распознавание речи и онлайн-диагностика заболеваний по медицинским картам и снимкам.

В 2023 году в нескольких исследованиях оценивалось влияние ИИ на труд, и было высказано предположение, что ИИ позволяет работникам быстрее выполнять задачи и повышать качество своей продукции. Эти исследования также продемонстрировали потенциал ИИ для преодоления разрыва в навыках между низкоквалифицированными и высококвалифицированными работниками. Благодаря искусственному интеллекту научный прогресс ускоряется еще сильнее. В 2022 году ИИ начал ускорять научные открытия. Однако в 2023 году были запущены еще более значимые приложения искусственного интеллекта, связанные с наукой, — от AlphaDev, который делает алгоритмическую сортировку более эффективной, до GNoME, который облегчает процесс обнаружения материалов. Количество нормативных актов, связанных с искусственным интеллектом, в США значительно выросло за последний год и за последние пять лет.

В 2023 году было принято 25 нормативных актов, связанных с искусственным интеллектом, по сравнению с одним в 2016 году. Люди во всем мире лучше осведомлены о потенциальном влиянии ИИ и больше нервничают.

Задача Минздрава — создать условия для расширения внедрения технологий искусственного интеллекта в клиническую практику. Рассчитываем, что меры поддержки, предусмотренные в федеральном проекте, позволят реализовывать конкретные проекты в области искусственного интеллекта», — отметил замминистра здравоохранения России Павел Пугачев. Как меняются поликлиники Москвы Подробнее «Использование технологий ИИ позволяет на раннем этапе выявить заболевание, а соответственно — дешевле и проще его вылечить. Это снижает финансовую нагрузку на систему здравоохранения в целом, упрощает работу врачей и повышает продолжительность и качество жизни нас, обычных граждан», — подчеркнул директор по направлению «Цифровая трансформация отраслей и компаний» АНО «Цифровая экономика» Алексей Сидорюк.

Вот лишь некоторые возможности применения технологий искусственного интеллекта ИИ в здравоохранении. Анализ медицинских изображений. Компьютерное зрение позволяет находить закономерности и отклонения от нормы в снимках различных органов на КТ, МРТ, рентгенографии, маммографии и т. Это существенно экономит время для врачей при постановке диагноза, а также повышает его точность, снижает вероятность ошибок. Например, некоторые сервисы, помимо анализа изображений, автоматически заполняют врачебное заключение. Если сервис выявляет патологию, то ещё помогает врачу составить маршрутизацию пациента — к каким специалистам дальше его необходимо направить.

Прогноз течения заболевания. ИИ-технологии помогают врачам обнаружить неизвестные корреляции и скрытые закономерности течения заболевания путем изучения больших массивов данных, после чего подбирается индивидуальный план лечения с наиболее подходящими препаратами.

Собянин: Цифровые технологии спасают жизни и повышают качество лечения москвичей

На экране телефона пациента появляется анимированная медсестра, которая задает вопросы о самочувствии, узнает нет ли жалоб. Приложение может сразу отправить результаты опроса врачу, напомнить о приеме лекарств, помочь в случае необходимости связаться с доктором по видеосвязи. Для людей, страдающих сердечно-сосудистыми заболеваниями разработана программа AliveCor, способная делать запись ЭКГ в любом месте с помощью смартфона и специальных детекторов, а после сообщать об отклонениях. В первую очередь, ИИ направлен на выявление аритмий. Еще одним полезным мобильным приложением является Babylon Health, позволяющим из любой точки Земли и в любое время получить онлайн-консультацию врача со стажем не менее 10 лет.

А чат-бот поможет предварительно по симптомам, которые ему опишет пациент, поставить диагноз, а также даст краткую справку об этом заболевании. ИИ для распознавания заболеваний по фотографиям Создаются программы, которые с помощью анализа фотографии и сопоставления их с загруженной базой данных, смогут обнаружить наличие патологии. Face2Gene - это основанная на ИИ программа, позволяющая диагностировать по фотографии многие генетические заболевания. Для ИИ составлен алгоритм определения фенотипических признаков различных синдромов, с которыми нейронная сеть сравнивает снимок и делает заключение о наличии отклонений.

Для этого более миллиона анонимных снимков были предоставлены Глазной клиникой Мурфилдс. В первую очередь проект ориентирован на два заболевания: диабетическую ретинопатию и возрастную дегенерацию желтого пятна, которые являются наиболее распространенными. ИИ для распознаваний психических отклонений по голосу ИИ находит применение и в психиатрической практике: проект NeuroLex. Целью является обучение нейронных сетей определять соответствие между психиатрическим диагнозом и речевыми паттернами, чтобы сделать процесс постановки диагноза более быстрым и точным.

ИИ в разработке лекарственных средств Важнейшим направлением в медицине является разработка новых лекарственных средств, где также может помочь ИИ. К примеру, алгоритм машинного обучения Массачусетского технологического института открыл новые антибиотики, которые способны побороть клостридиозы, туберкулез и более 30 видов антибиотикорезистентных бактерий. Также компания Atomwise, используя алгоритмы ИИ и машинного обучения, создала нейронную сеть AtomNet, которая способна проанализировать более 100 миллионов химических соединений и сократить время на открытие новых лекарственных препаратов, а также сеть может прогнозировать эффективность препаратов и их возможные побочные эффекты.

Эти вопросы «МВ» адресовал члену наблюдательного совета ассоциации «Национальная база медицинских знаний» и участнику рабочей группы по подготовке проекта приказа об электронном медицинском документообороте Александру Гусеву. Искусственный интеллект преодолевает препятствия Ассоциация разработчиков и пользователей ИИ в медицине «Национальная база медицинских знаний» НБМЗ , созданная несколько лет назад при поддержке РВК, поставила перед собой цель способствовать внедрению новейших технологий в клиническую практику. Мы встретились с директором по проектной деятельности ассоциации, научным сотрудником НИИ общественного здоровья имени Н.

Кроме того, планируется внедрить проактивный подход, в рамках которого искусственный интеллект будет анализировать медкарты пациентов и выявлять риски возникновения заболеваний. Задача врача в этом случае — инициативная работа с пациентом: позвонить, пригласить на прием, порекомендовать различные формы профилактики заболеваний.

Обычной практикой станет телемедицина. Значительную часть несложных проблем со здоровьем можно будет решить онлайн, без личного визита к врачу. Работы много, но все поставленные нами цели абсолютно конкретны и достижимы», — заключил Сергей Собянин.

Москва, ул. Правды, д. Почта: mosmed m24.

Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией

Но что такое ИИ для здравоохранения? Как вписать его в нормативно-правовые документы? Заместитель начальника Управления организации государственного контроля и регистрации медицинских изделий Федеральной службы по надзору в сфере здравоохранения Мария Суханова рассказала, что после выхода указа Президента Росздравнадзор совместно с Минздравом и профессиональным сообществом образовали рабочую группу, которая создала критерии отнесения программных продуктов к медицинским изделиям и ввела классификацию медицинских изделий как по классам потенциального риска применения, так и по видам номенклатуры Приказ Минздрава России от 06. Важным результатом совместной работы стало введение одноэтапной процедуры государственной регистрации программных продуктов для медицины. Говорит заместитель руководителя Федеральной службы по надзору в сфере здравоохранения Дмитрий Павлюков: «Нам нужно понимать, насколько вообще несет в себе риски этот продукт и как его дальше регулировать. Мы вывели на рынок 11 программных продуктов с искусственным интеллектом. Почти все они были зарегистрированы в Росздравнадзоре в 2021 году. На сегодня не было ни одного неблагоприятного события, связанного с их применением. Но вместе с тем, так как мы относим эти программные продукты к высокому классу риска, до февраля 2022 года все производители должны предоставить подробные отчеты об их применении в медицинской практике, чтобы мы могли аккумулировать данные и понять, как развивается эта технология». Здравоохранение — лидер по применению искусственного интеллекта Эксперт по искусственному интеллекту «Центрального научно-исследовательского института организации и информатизации здравоохранения» Минздрава России Александр Гусев отмечает: «Сейчас сфера искусственного интеллекта является мировым рекордсменом в мире по размеру инвестиций, вливаемых в программные продукты с использованием технологий ИИ, и по количеству сделок. Здравоохранение — это та отрасль, где инвесторы имеют максимальные надежды на то, что эти продукты будут востребованы и популярны».

По словам А. Это абсолютный рекорд по сравнению с другими отраслями. А по размеру привлеченных средств у здравоохранения второе место — 2,766 млрд. Впереди только транспорт и логистика. Но, несмотря на эти рекорды, с прошлого года все острее становится дискуссия о доверии и ответственном отношении всех участников сферы ИИ. Слишком много спекуляций.

Помогает в этом утверждённый президентом федеральный проект «Искусственный интеллект» национального проекта «Цифровая экономика». Проект начал реализовываться в 2021 году. Меры поддержки предусматривают подготовку кадров в этой области, стимулирование научных исследований, финансовую поддержку разработки новых и внедрения существующих решений. Эти продукты уже используются медицинскими организациями при диагностике пациентов.

Задача Минздрава — создать условия для расширения внедрения технологий искусственного интеллекта в клиническую практику. Рассчитываем, что меры поддержки, предусмотренные в федеральном проекте, позволят реализовывать конкретные проекты в области искусственного интеллекта», — отметил замминистра здравоохранения России Павел Пугачев. Как меняются поликлиники Москвы Подробнее «Использование технологий ИИ позволяет на раннем этапе выявить заболевание, а соответственно — дешевле и проще его вылечить. Это снижает финансовую нагрузку на систему здравоохранения в целом, упрощает работу врачей и повышает продолжительность и качество жизни нас, обычных граждан», — подчеркнул директор по направлению «Цифровая трансформация отраслей и компаний» АНО «Цифровая экономика» Алексей Сидорюк. Вот лишь некоторые возможности применения технологий искусственного интеллекта ИИ в здравоохранении. Анализ медицинских изображений. Компьютерное зрение позволяет находить закономерности и отклонения от нормы в снимках различных органов на КТ, МРТ, рентгенографии, маммографии и т. Это существенно экономит время для врачей при постановке диагноза, а также повышает его точность, снижает вероятность ошибок.

Для быстрого добавления новых записей в «Джейн» был создан чат-бот, доступный со смартфона. Можно, конечно, воспользоваться обычной веб-версией, но с чат-ботом процесс сильно ускоряется. Чат-бот — очень оперативный интерфейс: запустил, быстро ввёл туда всё, что нужно. А веб-приложение — уже более мощный инструмент. Он может использоваться на стационарной основе и предоставлять больше функций. Это трудоёмкий процесс? Но от него зависят жизнь и здоровье человека, ребёнка. Если родители хотят ребёнку добра, то им придётся этим заниматься. Всё зависит от мотивации. Именно для облегчения этого процесса мы создали чат-бота. Работать с ним было проще, чем пользоваться обычным мессенджером. Во многих случаях даже писать ничего было не нужно — только нажимать кнопки на экране. Туда же можно было отправить и результаты анализов например, общего анализа крови , полученные из лаборатории в виде стандартных PDF-файлов. Прикрепляете файл, система его парсит, извлекает текст и вносит в базу. Очень удобно! В этом как раз и состояла одна из фишек системы. Есть мощный тренд: мы от статистической доказательной медицины переходим к персональной медицине , но тоже доказательной. Однако пока ни в одной стране полного перехода к ней так и не произошло. И вот «Джейн» попыталась сделать шаг к светлому будущему, когда мы сможем собирать все показатели здоровья человека, а компьютерная система будет находить в них закономерности, которые важны для успешного лечения. Вы ему что-то отвечаете. Хотя откуда вы можете достоверно знать о противопоказаниях? Но если у нас будет возможность пользоваться «Джейн» или подобной программой, то все данные о пациенте рано или поздно станут известны системе и она сможет указать врачу на эти аспекты, индивидуальные особенности. Причём, в отличие от доктора-человека, компьютерная система не может что-то забыть или потерять, она способна запомнить информацию о тысячах пациентов с абсолютной точностью. Персонализация является одной из частей современного подхода к здравоохранению, известного как концепция 4П-медицины. Название происходит от четырёх английских слов, начинающихся с буквы П: персонализация, прогнозирование, профилактика и преемственность Инфографика: Skillbox Media — Что из этого было реализовано в «Джейн»? Мы взяли базу РЛС, распарсили и ввели в систему. Так у «Джейн» появились знания о показаниях, противопоказаниях и побочных явлениях приёма лекарственных средств. Далее врач, когда решал, какой препарат назначить, давал алгоритму задание: «Подбери лекарство для этого ребёнка». И система рассчитывала интегральный показатель для каждого вещества, который показывал степень риска приёма средства для конкретного пациента. Вещества, которые могут ухудшить состояние больного, компьютер подсветит красным. Более того, лекарственные средства взаимодействуют друг с другом. Если врач попытается назначить несовместимые препараты, то «Джейн» и об этом просигнализирует. Так алгоритм подбирает лекарство, наилучшим образом подходящее конкретному пациенту. Это наглядный пример персонализированной медицины. Её можно модифицировать под другие болезни, не только для эпилепсии? Это отдельный модуль, который был встроен в «Джейн» и работал очень успешно. Кстати, им пользовались не только неврологи, но и врачи других специализаций. Как «Джейн» помогала предсказать приступы эпилепсии — Из каких частей состояла «Джейн»? Перечислю основные модули: диагностика; разработка плана лечения и подбор лекарств; контроль принятия лекарств; Также был дневник пациента. Поскольку эпилепсия требует пристального внимания к состоянию пациента, были необходимы инструменты контроля. Сегодня все системы делаются с веб-доступом.

Также мы занимаемся так называемой персонализированной медициной. По каждому человеку можно собрать огромное количество данных: геномные, транскриптомные, МРТ мозга, энцефалограмма, анализы крови и так далее. Суммарно это даст очень информативный индивидуальный портрет человека. А методы машинного обучения ИИ позволяют эти данные объединить и сделать полезный вывод для науки или для лечения человека. Пока это поиск общих тенденций, но мы надеемся, что со временем получится давать конкретные рекомендации. Максим много сотрудничает с зарубежными коллегами Источник: Анастасия Пешкова — Где это может применяться? Тогда берется анализ патологической ткани и проводится ее детальный анализ. Какие-то части этой сложной неоднородной структуры могут откликаться на терапию, какие-то — нет. Если это понять заранее, в теории можно намного более успешно, прицельно и качественно назначать препараты. В идеале это может позволить создать системы поддержки врачебных решений: опираясь на большое число фактов, давать рекомендации доктору, какая терапия в этом случае предпочтительна. А специалист, соединяя их с другими фактами, принимает решение. Расскажите, пожалуйста, об этом проекте. Также эта система позволяет составить карту функциональных зон мозга, отвечающих за движение, зрение, речь и так далее. Бывает форма эпилепсии, когда лекарства не помогают, и таких больных довольно много. Их проблема зачастую заключается в том, что в мозге есть маленькая область, которая вследствие разных причин вызывает поразительную активность и приступ. Если говорить о детях, то они догоняют сверстников, нормально ходят в школу. У взрослых прекращаются приступы, возвращаются когнитивные способности. Но одна из проблем в том, что такие области очень похожи на здоровую ткань и их сложно найти. Заказчиками многих исследований являются известные медицинские научные институты Источник: Анастасия Пешкова По отзывам наших медицинских партнеров, в России есть единицы опытных рентгенологов, которые могут найти такие патологии на снимках МРТ. Эти врачи есть в крупных городах: в Москве, Питере, Новосибирске. Каждый из них может просматривать в день снимки не более трех-четырех пациентов. Соответственно, ожидание растягивается более чем на полгода.

Комплексный анализ работы сервисов ИИ в медицине провели в Москве

Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны. Искусственный интеллект в медицине: преображение здравоохранения в XXI веке. «Открытие Центра искусственного интеллекта ознаменовало важный шаг движения в сторону пациента, движения в сторону той медицины, которая называется персонализированной. Искусственный интеллект (ИИ) сделают базовой медицинской технологией, эта задача вошла в Стратегию развития московского здравоохранения до 2030 года.

Искусственный интеллект в медицине: главные тренды в мире

6 случаев, когда искусственный интеллект может творить чудеса в здравоохранении. Однако внедрение искусственного интеллекта в медицину сопряжено с некоторыми рисками и ограничениями. Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую.

Эксперт объяснил провал искусственного интеллекта в медицине

Помогают врачам и ученые из ИТМО. Они создали алгоритм, который может определить признаки инфаркта миокарда. Чтобы создать такой алгоритм, ученые обучили модель более чем на 20 тысячах записях ЭКГ. Вот она обратила внимание на эти изменения, и когда врач смотрит, и у него эта кардиограмма с подписью инфаркт, он смотрит на кардиограмму, эти отведения, и согласен с тем, что сделала нейросеть», — отметила доцент факультета инфокоммуникационных технологий ИТМО Александра Ватьян. Однако юристы убеждены — несмотря на пользу и помощь искусственного интеллекта, работу главного звена в этой цепочке — врача, он не заменит.

Если мы рассматриваем искусственный интеллект как автономную систему, которая подменяет работу врача, об этом речи не идет. Все системы-роботы на сегодня управляются человеком», — прокомментировала медицинский юрист Наталья Патрушева. К слову, в феврале этого года Госдума приняла в первом чтении законопроект, в котором говорится о создании специальной комиссии в случае причинения вреда искусственным интеллектом. Она будет заниматься выявлением обстоятельств, в результате которых был причинен вред.

Авторы отмечают, что существует ряд условий, необходимых для дальнейшего развития ИИ в сфере здравоохранения: совершенствование нормативного регулирования, разработка единых стандартов по распоряжению биомедицинскими данными, их контролю и определению границ использования ИИ, этических норм; создание общедоступных датасетов, репрезентативных, релевантных и корректно структурированных медицинских данных, необходимых для обучения моделей, которые должны быть разработаны совместно с экспертным сообществом; стимулирование спроса со стороны государственных органов и медицинских организаций в виде грантов и субсидий на использование ИИ-продуктов и сбора данных для общего пользования внутри медицинских организаций; разработка ускоренных процедур сертификации и регистрации или решений на основе ИИ в медицине с четко определенной процедурой, сроками, алгоритмами для тестирования и апробации систем. Документы pdf16. Более подробную информацию об использовании файлов cookies можно найти здесь , наши правила обработки персональных данных — здесь.

В первую очередь проект ориентирован на два заболевания: диабетическую ретинопатию и возрастную дегенерацию желтого пятна, которые являются наиболее распространенными. ИИ для распознаваний психических отклонений по голосу ИИ находит применение и в психиатрической практике: проект NeuroLex. Целью является обучение нейронных сетей определять соответствие между психиатрическим диагнозом и речевыми паттернами, чтобы сделать процесс постановки диагноза более быстрым и точным. ИИ в разработке лекарственных средств Важнейшим направлением в медицине является разработка новых лекарственных средств, где также может помочь ИИ. К примеру, алгоритм машинного обучения Массачусетского технологического института открыл новые антибиотики, которые способны побороть клостридиозы, туберкулез и более 30 видов антибиотикорезистентных бактерий. Также компания Atomwise, используя алгоритмы ИИ и машинного обучения, создала нейронную сеть AtomNet, которая способна проанализировать более 100 миллионов химических соединений и сократить время на открытие новых лекарственных препаратов, а также сеть может прогнозировать эффективность препаратов и их возможные побочные эффекты.

Так, проект Sophia Genetics направлен на визуализацию результатов исследования генетического материала и дальнейшее определение склонности человека к тем или иным заболеваниям, возможности передачи заболеваний по наследству, а также одной из приоритетных задач является выявление генетических мутаций у плода на ранних стадиях беременности. На стадии разработки находится другая система - Deep Gemonics. Этот проект позволит анализировать и прогнозировать влияние генетических вариаций и мутаций на внутриклеточные процессы, в первую очередь, на ядерные процессы транскрипция, сплайсинг и др. Подобные разработки смогут помочь понять патогенез многих заболеваний и лучше составлять их терапию. ИИ в борьбе с COVID-19 В период пандемии коронавирусной инфекции стали разрабатывать и внедряться технологии ИИ, помогающие выявить заболевших, оценить тяжесть течения заболевания, произвести дифференциальную диагностику, подобрать оптимальное лечение, создать вакцины и лекарства. Для мониторинга числа заболевших и определения очагов инфекции используется HealthMap. Программа позволяет отследить динамику распространения заболевания, оценить распространенность COVID-19 в разных странах и в мире. Также создана система на основе ИИ для выявления людей с повышенной температурой или без медицинской маски. Обнаружив у проходящего поблизости человека признаки жара, система автоматически оповещает об этом медицинские организации.

Приоритетной задачей ИИ в борьбе с коронавирусной инфекцией стала точная и быстрая диагностика, поэтому во многих странах мира ИИ применяется для оценки КТ-снимков и определения стадии заболевания и тяжести его течения.

Анализ такого снимка занимает у врача от одного до нескольких часов, что связано со сложностью данного вида исследований. Программа же выдаёт результат практически мгновенно, анализируя изображение по заданным алгоритмам. Врач видит уже размеченный снимок, на котором подсвечены опасные зоны, а также предварительные диагнозы, поставленные на основе анализа этого снимка. Главная ценность таких программ состоит в том, что они значительно сокращают время рутинных задач врача. Это позволяет сделать диагностику пациента более персонализированной и быстрой: СППВР ранжирует пациентов по степени тяжести, что также позволяет врачам своевременно реагировать на эти данные и оказывать помощь в первую очередь тем, кто нуждается в ней больше всего. Как создать медицинский сервис с использованием ИИ Как происходит разработка медицинских сервисов с использованием ИИ — с момента постановки задачи до выхода готового продукта в клиническую практику? Сбор данных. В первую очередь следует начать со сбора огромного массива данных реальных пациентов из тех медицинских учреждений, в которых они когда-либо проходили лечение. Для этого понадобится: выявить проблему и определить диагноз, с которым вы хотите работать; найти группы врачей, которые помогут вам валидировать вашу модель; собрать группу разработки, которая сможет выстроить эту модель и «обучить» её.

Прежде чем обработать данные, предстоит подготовить их. Для этого их нужно обезличить: в ходе этого процесса пациент получает код, а также убираются персональных данных ФИО, номер паспорта и т. При этом год рождения и диагноз, не обезличиваются. Разметка данных. После того, как данные прошли процедуру обезличивания, они передаются врачам на разметку. Прежде чем приступить к разметке данных, врачи определяют методологию, по которой они будут работать с разметкой. Они определяют диагноз, симптоматику, а также зоны и маркеры, с которыми они будут работать. Только после этого врачи вручную размечают снимки. Сегодня разметка данных, как правило, происходит с помощью программ, где врач в специальном интерфейсе очерчивает необходимые зоны. Повторная разметка.

После первичной разметки данных те же снимки проходят аналогичную процедуру, которую проводит уже другая группа врачей. На этом этапе отсеиваются сомнительные, спорные или неверные диагнозы, а также снимки, которые не могут быть валидированы в выбранной модели исследования. Обучение нейросети. Когда все снимки прошли разметку, этот набор данных попадает к разработчикам, которые на их основе начинают обучать нейронную сеть. Даже если сервис достиг определённого уровня работоспособности, он не может быть сразу использован на практике. Прежде он проходит этап валидации: группе врачей и обученной нейросети выдаются новые данные, которые им предстоит разметить. После этого результаты, полученные врачами и нейросетью, сопоставляются между собой, и модель получает класс точности. Регистрация в Министерстве здравоохранения. По завершении этапа валидации прототип должен пройти регистрацию в Минздраве и получить регистрационное утверждение. На этом этапе экспертная группа — на этот раз со стороны Минздрава — вновь внимательно проверяет работу модели и её алгоритмов.

Интеграция в систему здравоохранения. Только если сервис пройдёт проверку в Минздраве и получит регистрационное утверждение, он может использоваться в медицинских учреждениях. Диагностика заболеваний Чат-боты уже могут с высокой эффективностью помогать пациентам самостоятельно ставить диагноз, а также помогать в постановке диагноза и врачам. Например, ИИ компании Babylon Health предоставляет соответствующую информацию о здоровье на основе симптомов, описанных самим пациентом. Понятно, что симптомы могут быть описаны неверно или пациент может попытаться ввести ИИ в заблуждение умышленно. Поэтому в компании прямо заявляют, что их компьютерный ассистент не ставит диагноз. Это сделано для того, чтобы свести к минимуму юридическую ответственность компании, но в будущем мы наверняка увидим, как чат-боты будут ставить диагнозы по мере повышения точности их работы. А на перспективы ИИ в Babylon Health смотрят оптимистично, заявляя, что они уже доказали эффективность своего ИИ в первичной медико-санитарной помощи, а также смогли создать такую систему искусственного интеллекта для медицины, которая не является «черным ящиком». Это отличает их, например, от Alphabet, материнской компании Google, представители которой еще сравнительно недавно заявляли о том, что до сих пор не знают, что конкретно изучают их модели машинного обучения, о чём мы писали в статье, посвященной LLM. И пока сложно сказать, насколько они продвинулись в понимании алгоритмов работы своих программ глубокого обучения.

А вот исследователи из Babylon Health продвинулись совершенно точно. Также современные ИИ решают проблемы приоритизации и медицинской сортировки. Рекомендации на основе глубокого анализа данных поступающих пациентов для обеспечения точной приоритизации и медицинской сортировки ИИ дает очень быстро в режиме реального времени. Наиболее известные решения для этих целей предлагает Enlitic. ИИ Enlitic Curie сканирует поступающих пациентов, обрабатывая множество клинических данных в том числе учитываются и старые диагностические карты и определяя приоритет на лечение, после чего сразу же направляет больных к наиболее подходящему врачу. Трудно переоценить пользу этих алгоритмов, исключающих из анализа человеческий фактор, ведь после того как они будут усовершенствованы, они помогут спасти тысячи жизней. Стоит рассказать и о новом алгоритме ИИ, который поможет диагностировать рак легких. Много лет человечество проигрывало борьбу с онкологическими заболеваниями, которые ежегодно убивают около 10 миллионов человек по всему миру. Одной из самых страшных форм онкологии является рак легких, распознавание которого на ранних стадиях и до сих пор является для ученых сложнейшей задачей. Но весьма вероятно, что справиться с этим человеку поможет искусственный интеллект.

Исследователи из Бостонского университета разработали ИИ, который долгое время обучался на полноформатных фотографиях легочных тканей пациентов размеры таких изображений составляют обычно более 1 Гб, что делает их анализ человеком крайне сложным. ИИ на примере фото обучали распознавать аденокарциному легкого, плоскоклеточный рак легкого и соседнюю не раковую ткань.

Искусственный интеллект в медицине: преображение здравоохранения в XXI веке

Это открывает новые возможности в медицинской практике и способствует развитию прогрессивных методов диагностики и лечения заболеваний. Как искусственный интеллект помогает в определении редких и генетических заболеваний Искусственный интеллект играет все более важную роль в области медицины, особенно в обнаружении и диагностике редких и генетических заболеваний. Благодаря своим вычислительным возможностям и способности обрабатывать и анализировать большие объемы данных, искусственный интеллект может помочь в определении и понимании этих сложных и необычных состояний. Искусственный интеллект использует алгоритмы машинного обучения и глубокого обучения для анализа различных типов данных, таких как медицинские изображения, генетическая информация, результаты лабораторных анализов и многое другое. При помощи этих данных искусственный интеллект может выявлять корреляции, паттерны и скрытые взаимосвязи между различными заболеваниями и их симптомами. Одной из самых важных функций искусственного интеллекта в диагностике редких и генетических заболеваний является распознавание нежелательных генетических вариантов. Используя мощные алгоритмы, искусственный интеллект может анализировать генетическую информацию пациента и сравнивать ее с базами данных геномов, чтобы идентифицировать редкие или мутационные гены, которые могут быть связаны с заболеванием.

Благодаря такому анализу искусственный интеллект может помочь в определении вероятности развития определенного генетического заболевания у пациента, что позволяет врачам принимать ранние меры по предупреждению или лечению. Он также может помочь в выборе наиболее эффективных методов лечения, учитывая индивидуальные особенности пациента и его генетическую предрасположенность. Кроме того, искусственный интеллект может помочь в исследованиях редких и генетических заболеваний путем анализа большого объема данных о пациентах. Это позволяет ученым выявлять новые паттерны и корреляции, определять новые подтипы заболеваний и разрабатывать инновационные методы лечения. Искусственный интеллект является мощным инструментом в борьбе с редкими и генетическими заболеваниями, обеспечивая более точную диагностику, персонализированное лечение и новые направления исследований. Это открывает новые перспективы для пациентов, страдающих от этих сложных состояний, и помогает предотвратить прогрессирование заболевания и улучшить качество их жизни.

Искусственный интеллект в процессе лечения: персонализированная медицина и индивидуальные прогнозы Искусственный интеллект ИИ в медицине привносит новые возможности в процесс лечения, делая его более персонализированным и эффективным. Благодаря ИИ, врачи и исследователи получают доступ к огромным объемам данных, анализ и обработка которых помогают прогнозировать результаты лечения и предсказывать индивидуальные характеристики пациентов. Использование ИИ в процессе лечения способствует развитию персонализированной медицины, где каждому пациенту предлагается индивидуальный подход и оптимальный план лечения. Алгоритмы машинного обучения и искусственные нейронные сети позволяют анализировать множество факторов, таких как генетическая предрасположенность, медицинская история, прогнозируемые реакции на определенные лекарственные препараты и другие факторы, которые могут влиять на эффективность лечения. Искусственный интеллект также помогает врачам прогнозировать и предотвращать возможные осложнения и побочные эффекты лечения. Анализ данных, полученных от предыдущих пациентов с аналогичными характеристиками и диагнозами, позволяет предсказывать вероятность возникновения определенных проблем и рекомендовать соответствующие меры по их предотвращению.

Применение ИИ в медицине также способствует улучшению диагностики. Алгоритмы искусственного интеллекта могут сравнивать медицинские снимки и анализировать отклонения, которые человеческий глаз может упустить. Таким образом, ИИ помогает врачам выявлять заболевания на более ранних стадиях и принимать соответствующие меры для лечения их. Искусственный интеллект в медицине — это один из инновационных инструментов, который помогает улучшить процесс лечения пациентов. Персонализированная медицина и индивидуальные прогнозы, основанные на анализе данных, позволяют врачам предоставлять наиболее оптимальные варианты лечения каждому пациенту в зависимости от его индивидуальных потребностей и рисков. Это открывает новые возможности для более эффективного и успешного лечения пациентов в будущем.

Глава государства сообщил об утверждении обновленной Национальной стратегии развития искусственного интеллекта, включающей участие ИИ в создании цифровых платформ для здравоохранения. Например, на основе данных цифрового профиля он сможет получить дистанционное заключение специалиста федерального медицинского центра, а доктор, семейный врач — оценить именно целостную картину здоровья человека, прогнозировать возникновение заболеваний, предотвращать осложнения, выбирать индивидуальную и потому наиболее эффективную тактику лечения», - указал в своем послании глава государства. Ранее вице-премьер Дмитрий Чернышенко обозначил основные глобальные тренды в сфере искусственного интеллекта. Первый тренд - стремление к технологическому суверенитету; второй - ужесточение борьбы за ИИ-специалистов; третий — движение к безопасному ИИ с упором на конкретного человека; четвертый — развитие больших языковых моделей и генеративного ИИ и пятый - рост экономического эффекта от использования ИИ. Интеллектуальные технологии помогают прогнозировать возникновение и развитие заболеваний, выявлять их на раннем этапе, что увеличивает шанс на успешное лечение. Также ИИ-решения упрощают работу врачей при профилактических обследованиях, помогают в подборе оптимальных дозировок лекарств и увеличивают точность хирургических вмешательств.

В перспективе, как считают специалисты, решения на основе ИИ позволят создать средства и методы лечения, персонализированные под каждого отдельного пациента. Наиболее активно в медучреждениях внедряется технология компьютерного зрения, позволяющая находить закономерности и аномалии в изображениях, получаемых с помощью рентгена, КТ и МРТ. Другая технология на основе ИИ - предиктивная аналитика, дающая возможность путем изучения больших массивов данных обнаружить скрытые связи, повысить точность диагностики и подобрать индивидуальный план лечения. Еще одно направление — создание цифрового двойника пациента: на котором можно проверить различные методы лечения без риска навредить реальному больному. Также двойники используются при тестировании новых лекарств.

В 2023 году было принято 25 нормативных актов, связанных с искусственным интеллектом, по сравнению с одним в 2016 году. Люди во всем мире лучше осведомлены о потенциальном влиянии ИИ и больше нервничают. Подробнее о результатах исследования мы расскажем подробнее в отдельной статье в ближайшие недели! В условиях быстро меняющейся ситуации в сфере цифровизации сектор здравоохранения переживает глубокую трансформацию, характеризующуюся растущей интеграцией технологий цифрового здравоохранения, телемедицины, единых реестров и ИИ. Этот сдвиг не только предлагает множество преимуществ, но и меняет динамику отношений между пациентами и поставщиками медицинских услуг в рамках системы здравоохранения. Отчет представляет из себя большой обзор всех стран - участников региона по основным показателям. В профилях указаны важнейшие компоненты цифрового здравоохранения на национальном уровне, включая цифровое управление здравоохранением, электронные медицинские карты, порталы пациентов, телемедицину, мобильное здравоохранение, а также большие данные и аналитику. Всего в рамках награды было подано более 100 заявок.

В классической практике врач с помощью камеры эндоскопа исследует слизистые оболочки органов и самостоятельно ищет отклонения. В силу сложности данного исследования врач может упустить детали, важные для постановки верного диагноза. Компьютерное зрение помогает врачу замечать такие детали. Работа сервиса выглядит следующим образом: к камере эндоскопа подключается специальный алгоритм на базе искусственного интеллекта. На специальном мониторе он подсвечивает врачу области с возможными отклонениями и даёт рекомендации дополнительно сфотографировать и исследовать выделенные области. После обследования врач загружает снимки в СППВР, которая помогает подтвердить или скорректировать ранее поставленный диагноз. Анализ такого снимка занимает у врача от одного до нескольких часов, что связано со сложностью данного вида исследований. Программа же выдаёт результат практически мгновенно, анализируя изображение по заданным алгоритмам. Врач видит уже размеченный снимок, на котором подсвечены опасные зоны, а также предварительные диагнозы, поставленные на основе анализа этого снимка. Главная ценность таких программ состоит в том, что они значительно сокращают время рутинных задач врача. Это позволяет сделать диагностику пациента более персонализированной и быстрой: СППВР ранжирует пациентов по степени тяжести, что также позволяет врачам своевременно реагировать на эти данные и оказывать помощь в первую очередь тем, кто нуждается в ней больше всего. Как создать медицинский сервис с использованием ИИ Как происходит разработка медицинских сервисов с использованием ИИ — с момента постановки задачи до выхода готового продукта в клиническую практику? Сбор данных. В первую очередь следует начать со сбора огромного массива данных реальных пациентов из тех медицинских учреждений, в которых они когда-либо проходили лечение. Для этого понадобится: выявить проблему и определить диагноз, с которым вы хотите работать; найти группы врачей, которые помогут вам валидировать вашу модель; собрать группу разработки, которая сможет выстроить эту модель и «обучить» её. Прежде чем обработать данные, предстоит подготовить их. Для этого их нужно обезличить: в ходе этого процесса пациент получает код, а также убираются персональных данных ФИО, номер паспорта и т. При этом год рождения и диагноз, не обезличиваются. Разметка данных. После того, как данные прошли процедуру обезличивания, они передаются врачам на разметку. Прежде чем приступить к разметке данных, врачи определяют методологию, по которой они будут работать с разметкой. Они определяют диагноз, симптоматику, а также зоны и маркеры, с которыми они будут работать. Только после этого врачи вручную размечают снимки. Сегодня разметка данных, как правило, происходит с помощью программ, где врач в специальном интерфейсе очерчивает необходимые зоны. Повторная разметка. После первичной разметки данных те же снимки проходят аналогичную процедуру, которую проводит уже другая группа врачей. На этом этапе отсеиваются сомнительные, спорные или неверные диагнозы, а также снимки, которые не могут быть валидированы в выбранной модели исследования. Обучение нейросети. Когда все снимки прошли разметку, этот набор данных попадает к разработчикам, которые на их основе начинают обучать нейронную сеть. Даже если сервис достиг определённого уровня работоспособности, он не может быть сразу использован на практике. Прежде он проходит этап валидации: группе врачей и обученной нейросети выдаются новые данные, которые им предстоит разметить. После этого результаты, полученные врачами и нейросетью, сопоставляются между собой, и модель получает класс точности. Регистрация в Министерстве здравоохранения. По завершении этапа валидации прототип должен пройти регистрацию в Минздраве и получить регистрационное утверждение. На этом этапе экспертная группа — на этот раз со стороны Минздрава — вновь внимательно проверяет работу модели и её алгоритмов. Интеграция в систему здравоохранения. Только если сервис пройдёт проверку в Минздраве и получит регистрационное утверждение, он может использоваться в медицинских учреждениях. Диагностика заболеваний Чат-боты уже могут с высокой эффективностью помогать пациентам самостоятельно ставить диагноз, а также помогать в постановке диагноза и врачам. Например, ИИ компании Babylon Health предоставляет соответствующую информацию о здоровье на основе симптомов, описанных самим пациентом. Понятно, что симптомы могут быть описаны неверно или пациент может попытаться ввести ИИ в заблуждение умышленно. Поэтому в компании прямо заявляют, что их компьютерный ассистент не ставит диагноз. Это сделано для того, чтобы свести к минимуму юридическую ответственность компании, но в будущем мы наверняка увидим, как чат-боты будут ставить диагнозы по мере повышения точности их работы. А на перспективы ИИ в Babylon Health смотрят оптимистично, заявляя, что они уже доказали эффективность своего ИИ в первичной медико-санитарной помощи, а также смогли создать такую систему искусственного интеллекта для медицины, которая не является «черным ящиком». Это отличает их, например, от Alphabet, материнской компании Google, представители которой еще сравнительно недавно заявляли о том, что до сих пор не знают, что конкретно изучают их модели машинного обучения, о чём мы писали в статье, посвященной LLM. И пока сложно сказать, насколько они продвинулись в понимании алгоритмов работы своих программ глубокого обучения. А вот исследователи из Babylon Health продвинулись совершенно точно. Также современные ИИ решают проблемы приоритизации и медицинской сортировки. Рекомендации на основе глубокого анализа данных поступающих пациентов для обеспечения точной приоритизации и медицинской сортировки ИИ дает очень быстро в режиме реального времени. Наиболее известные решения для этих целей предлагает Enlitic. ИИ Enlitic Curie сканирует поступающих пациентов, обрабатывая множество клинических данных в том числе учитываются и старые диагностические карты и определяя приоритет на лечение, после чего сразу же направляет больных к наиболее подходящему врачу. Трудно переоценить пользу этих алгоритмов, исключающих из анализа человеческий фактор, ведь после того как они будут усовершенствованы, они помогут спасти тысячи жизней.

Искусственный интеллект в медицине. Настоящее и будущее

Цельс — Медицинские скрининг системы | CELSUS Искусственный интеллект на рынке медицины прогнозируемая нехватка врачей и специалистов в единицах, США, 2032 г.
ИИ в медицине: тренды и примеры применения - Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования.

Врачам и пациентам: как искусственный интеллект помогает в медицине

Нейросеть для медиков: искусственный интеллект научился ставить диагнозы В частности, Всемирная организация здравоохранения указала на негативные последствия применения искусственного интеллекта в медицине, если в основе его разработки и использования не будут заложены этические принципы и защита прав человека.
Искусственный интеллект в сфере здравоохранения — Википедия Использование искусственного интеллекта (ИИ) для анализа данных в целях фармаконадзора.

Обзор Российских систем искусственного интеллекта для здравоохранения

«Открытие Центра искусственного интеллекта ознаменовало важный шаг движения в сторону пациента, движения в сторону той медицины, которая называется персонализированной. Актуальные направления по применению искусственного интеллекта в медицине реализует компания СберМедИИ. Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. Использование искусственного интеллекта в медицине во всем мире вызывает активный интерес и надежду на успехи в лечении. Попробуем проанализировать, как решения на основе искусственного интеллекта применяются в медицинских учреждениях и как они влияют на качество диагностики и лечения.

Похожие новости:

Оцените статью
Добавить комментарий