Новости период что такое в химии

это группа элементов, расположенных в одной горизонтальной строке периодической таблицы. Периодическая система имеет семь периодов. Первый период, содержащий 2 элемента, а также второй и третий, насчитывающие по 8. На этой странице сайта вы найдете ответы на вопрос Что означает Nn в химии (нулевой период)?, относящийся к категории Химия.

Период периодической системы

В третьей группе побочной подгруппе (IIIB) шестого и седьмого периодов находятся сразу несколько металлов, сходных по строению внешнего энергетического уровня и близких по химическим свойствам. Смотреть что такое «Период периодической системы» в других словарях: Четвёртый период периодической системы — К четвёртому периоду периодической системы относятся элементы четвёртой строки (или четвёртого периода) периодической системы химических элементов. Что такое 14n в химии Азот (N) — это химический элемент 15 группы (или подгруппы V(a) короткой формы), 2-го периода таблицы Менделеева с атомным номером 7. Чистый азот N2 представляет безцветный газ, без вкуса и запаха, плохо растворимый в воде. Внутри одной подгруппы химических элементов электроотрицательность убывает, а при движении по ряду одного периода вправо электроотрицательность возрастает.

Что такое период и какие бывают периоды в химии

Химический период является важной концепцией в химии, поскольку элементы в одном периоде обычно имеют схожие свойства, связанные с их электронной конфигурацией. Характеристика натрия по положению в Периодической системе химических элементов. Изучая неорганическую химию в школе или вузе, вы всегда будете иметь перед глазами огромную и совершенно законную подсказку – таблицу Менделеева. Статья рассказывает об одном из основных понятий химии — периоде, описывая его значение, связь с таблицей Менделеева и особенности периодической системы элементов. Следует отметить, что период полураспада первого порядка реакции постоянна и не зависит от исходной концентрации реагента.

Что означает Nn в химии (нулевой период)

Что такое "период" в периодической таблице элементов химии? Главная» Новости» Что такое период в химии.
§4.6 Закономерности в Периодической таблице элементов. Статья рассказывает об одном из основных понятий химии — периоде, описывая его значение, связь с таблицей Менделеева и особенности периодической системы элементов.
Что такое период в химии и какие варианты периодов существуют? Закон и периодическая система химических элементов своим появлением разделили химию на два периода: до появления периодической системы Менделеева и после открытия.
Периодическая таблица химических элементов Д.И.Менделеева Следует отметить, что период полураспада первого порядка реакции постоянна и не зависит от исходной концентрации реагента.

Порядок реакции

Закономерности изменений свойств химических элементов в группах и периодах: слева направо по периоду, сверху вниз по группе. Период строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки. Еще в школе, сидя на уроках химии, все мы помним таблицу на стене класса или химической лаборатории. Эта таблица содержала классификацию всех известных человечеству химических элементов, тех фундаментальных компонентов, из которых состоит Земля и вся Вселенная. Периодическая система химических элементов — это таблица, в которой все химические элементы расположены в порядке возрастания атомных номеров. Элементы в правой части периода менее склонны отдавать свои электроны для образования металлической связи и вообще в химических реакциях.

ПЕРИОДИЧЕСКАЯ ТАБЛИЦА МЕНДЕЛЕЕВА

Подгруппы также имеют названия по элементу с наименьшим зарядом ядра как правило, по элементу второго периода для главных подгрупп и элементу четвртого периода для побочных подгрупп. С возрастанием заряда ядра у элементов одной группы из-за увеличения числа электронных оболочек увеличиваются атомные радиусы, вследствие чего происходит снижение электроотрицательности, усиление металлических и ослабление неметаллических свойств элементов, усиление восстановительных и ослабление окислительных свойств образуемых ими веществ. Горизонтальные строки в табл. Менделеева Горезонтальна линия та шо злева табл. Менделева Эволюция периодической системы химических элементов Особым и важным для эволюции периодической системы химических элементов оказалось введённое Менделеевым представление о месте элемента в системе; положение элемента определяется номерами периода и группы. Опираясь на это представление, Менделеев пришёл к выводу о необходимости изменения принятых тогда атомных весов некоторых элементов U, In, Ce и его аналогов , в чём состояло первое практическое применение П.

Классическим примером является предсказание «экаалюминия» будущего Ga, открытого П. Лекоком де Буабодраном в 1875 , «экабора» Sc, открытого шведским учёным Л. Нильсоном в 1879 и «экасилиция» Ge, открытого немецким учёным К. Винклером в 1886. Во многом представляла эмпирическое обобщение фактов, поскольку был неясен физический смысл периодического закона и отсутствовало объяснение причин периодического изменения свойств элементов в зависимости от возрастания атомных весов.

Так, неожиданным явилось открытие в конце 19 в. Открытие многих «радиоэлементов» в начале 20 в. Это противоречие было преодолено в результате открытия изотопов. Наконец, величина атомного веса атомной массы как параметра, определяющего свойства элементов, постепенно утрачивала своё значение. Структура периодической системы химических элементов.

Современная 1975 П. За всю историю П. Наибольшее распространение получили три формы П. Длинную форму также разрабатывал Менделеев, а в усовершенствованном виде она была предложена в 1905 А. Лестничная форма предложена английским учёным Т.

Бейли 1882 , датским учёным Ю. Томсеном 1895 и усовершенствована Н. Бором 1921. Каждая из трёх форм имеет достоинства и недостатки. Фундаментальным принципом построения П.

Каждая группа в свою очередь подразделяется на главную а и побочную б подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы а- и б-подгрупп в каждой группе, как правило, обнаруживают между собой определённое химическое сходство, главным образом в высших степенях окисления, которые, как правило, соответствуют номеру группы. Периодом называется совокупность элементов, начинающаяся щелочным металлом и заканчивающаяся инертным газом особый случай - первый период ; каждый период содержит строго определённое число элементов. Первый период периодической системы элементов Специфика первого периода заключается в том, что он содержит всего 2 элемента: H и He.

Место H в системе неоднозначно: водород проявляет свойства, общие со щелочными металлами и с галогенами, его помещают либо в Ia-, либо предпочтительнее в VIIa-подгруппу. Гелий - первый представитель VIIa-подгруппы однако долгое время Не и все инертные газы объединяли в самостоятельную нулевую группу. Второй период периодической системы элементов Второй период Li - Ne содержит 8 элементов. Он начинается щелочным металлом Li, единственная степень окисления которого равна I. Затем идёт Be - металл, степень окисления II.

Металлический характер следующего элемента В выражен слабо степень окисления III. Идущий за ним C - типичный неметалл, может быть как положительно, так и отрицательно четырёхвалентным. Последующие N, O, F и Ne - неметаллы, причём только у N высшая степень окисления V соответствует номеру группы; кислород лишь в редких случаях проявляет положительную валентность, а для F известна степень окисления VI. Завершает период инертный газ Ne. Третий период периодической системы элементов Третий период Na - Ar также содержит 8 элементов, характер изменения свойств которых во многом аналогичен наблюдающемуся во втором периоде.

Однако Mg, в отличие от Be, более металличен, равно как и Al по сравнению с В, хотя Al присуща амфотерность. Si, Р, S, Cl, Ar - типичные неметаллы, но все они кроме Ar проявляют высшие степени окисления, равные номеру группы. Таким образом, в обоих периодах по мере увеличения Z наблюдается ослабление металлического и усиление неметаллического характера элементов. Менделеев называл элементы второго и третьего периодов малых, по его терминологии типическими.

Калий и кальций являются незаменимыми элементами для многих живых организмов, так как участвуют в работе клеток и регулируют обмен веществ. Железо служит главным компонентом гемоглобина, который необходим для транспортировки кислорода в организме. Магний, в свою очередь, является неотъемлемой составляющей многих ферментов и участвует в процессах синтеза ДНК и РНК.

Третий период также включает в себя элементы главной подгруппы, такие как бор B и алюминий Al. Бор используется в производстве стекла и применяется в ядерной энергетике. Алюминий широко используется в промышленности благодаря своим высоким прочностным характеристикам и легкости. Таким образом, третий период периодической системы химических элементов включает в себя элементы, играющие важную роль в химических реакциях и биологических процессах. Четвёртый период Особенностью четвёртого периода является то, что в нём заполняются электронные оболочки элементов d- и p-блока. В результате этого, в периоде представлены как металлы, так и неметаллы. Некоторые из них являются основными компонентами нашей окружающей среды и широко используются в промышленности.

Среди элементов четвёртого периода наиболее известными являются железо Fe , никель Ni , медь Cu и цинк Zn. Вместе с тем, этот период также включает в себя элементы, такие как карбонат K , аргон Ar и криптон Kr , которые имеют важное значение в научных и технических областях.

В современной таблице химические элементы выстроены по возрастанию атомного номера элемента количество протонов в ядре атома. Смотреть таблицу в натуральную величину. Атомный номер изображен над символом химического элемента, под символом - его атомная масса сумма протонов и нейтронов. Обратите внимание, что атомная масса у некоторых элементов является нецелым числом! Помните об изотопах! Атомная масса - это средневзвешенное от всех изотопов элемента, встречающихся в природе в естественных условиях. Под таблицей расположены лантаноиды и актиноиды. Горизонтальные строки Периодической таблицы называют периодами.

Периоды имеют номера от 1 до 7. Вертикальные столбцы Периодической таблицы называют группами семействами. Ныне для обозначения групп используют номера от 1 до 18.

В нём помимо 10 d-элементов La, Hf — Hg содержится совокупность из 14 f-элементов, лантаноидов, от Ce до Lu символы чёрного цвета. Элементы от La до Lu химически весьма сходны. В короткой форме П. Этот приём несколько неудобен, поскольку 14 элементов оказываются как бы вне таблицы. Подобного недостатка лишены длинная и лестничная формы П.

Особенности периода: 1 в триаде Os — Ir — Pt только осмий проявляет степень окисления VIII; 2 At имеет более выраженный по сравнению с 1 металлический характер; 3 Rn, по-видимому его химия мало изучена , должен быть наиболее реакционноспособным из инертных газов. Следующие 14 элементов, f-элементы с Z от 90 до 103 , составляют семейство актиноидов. В связи с этим в химическом отношении ряды лантаноидов и актиноидов обнаруживают заметные различия. Вертикальными чертами разделены периоды П. Под обозначениями подоболочек проставлены значения главного n и орбитального l квантовых чисел, характеризующие последовательно заполняющиеся подоболочки. Из вышеприведённой схемы легко определяются ёмкости последовательных периодов: 2, 8, 8, 18, 18, 32, 32… Каждый период начинается элементом, в атоме которого появляется электрон с новым значением n. Первый — третий периоды П. Особый случай представляют собой элементы первого периода H и He.

Высокая химическая активность атомарного водорода объясняется лёгкостью отщепления единственного ls-электрона, тогда как конфигурация атома гелия 1s2 является весьма прочной, что обусловливает его химическую инертность. Поскольку у элементов а-подгрупп происходит заполнение внешних электронных оболочек с n, равным номеру периода , то свойства элементов заметно меняются по мере роста Z. Так, во втором периоде Li конфигурация 2s1 — химически активный металл, легко теряющий валентный электрон, a Be 2s2 — также металл, но менее активный. Металлический характер следующего элемента B 2s2p выражен слабо, а все последующие элементы второго периода, у которых происходит застройка 2р-подоболочки, являются уже неметаллами. Восьмиэлектронная конфигурация внешней электронной оболочки Ne 2s2p6 чрезвычайно прочна, поэтому неон — инертный газ. Аналогичный характер изменения свойств наблюдается у элементов третьего периода и у s-и р-элементов всех последующих периодов, однако ослабление прочности связи внешних электронов с ядром в а-подгруппах по мере роста Z определённым образом сказывается на их свойствах. Так, у s-элементов отмечается заметный рост химической активности, а у р-элементов — нарастание металлических свойств. В VIIIa-подгруппе ослабляется устойчивость конфигурации ns2np6, вследствие чего уже Kr четвёртый период приобретает способность вступать в химические соединения.

Специфика р-элементов 4—6-го периодов связана также с тем, что они отделены от s-элементов совокупностями элементов, в атомах которых происходит застройка предшествующих электронных оболочек. У переходных d-элементов б-подгрупп достраиваются незавершённые оболочки с n, на единицу меньшим номера периода. Конфигурация внешних оболочек у них, как правило, ns2. Поэтому все d-элементы являются металлами. Аналогичная структура внешней оболочки d-элементов в каждом периоде приводит к тому, что изменение свойств d-элементов по мере роста Z не является резким и чёткое различие обнаруживается лишь в высших степенях окисления, в которых d-элементы проявляют определённое сходство с р-элементами соответствующих групп П. Специфика элементов VIIIб-подгруппы объясняется тем, что их d-подоболочки близки к завершению, в связи с чем эти элементы не склонны за исключением Ru и Os проявлять высшие степени окисления. У элементов Iб-подгруппы Cu, Ag, Au d-подоболочка фактически оказывается завершенной, но ещё недостаточно стабилизированной, эти элементы проявляют и более высокие степени окисления до III в случае Au. В атомах лантаноидов и актиноидов происходит достройка ранее незавершённых f-подоболочек с n, на 2 единицы меньшим номера периода; конфигурация внешние оболочки сохраняется неизменной ns2 ; f-электроны у лантаноидов не оказывают существенного влияния на химические свойства.

Лантаноиды проявляют преимущественно степень окисления III за счёт двух 6s-электронов и одного d-электрона, появляющегося в атоме La ; однако такое объяснение не является достаточно удовлетворительным, так как 5d-электрон содержится только в атомах La, Ce, Gd и Lu; поэтому считается, что в др. Оценка химических свойств К и и элемента 105 позволяет считать, что в этой области П. Cходство электронных конфигураций свободных атомов коррелирует с подобием химического поведения соответствующих элементов. Задача строгого количественного объяснения всей специфики проявляемых химическими элементами свойств и периодичности этих свойств оказывается чрезвычайно сложной, поэтому нельзя утверждать, что создана количественная теория П. Отдельные аспекты такой теории разрабатываются в русле современных методов квантовой механики см. Квантовая химия, Валентность. Верхняя граница П. Вопрос о пределе искусственного синтеза элементов также пока не решен.

Ядерная химия. Это даёт основания рассчитывать на осуществление синтеза таких элементов. Оценка электронных конфигураций и важнейших свойств неизвестных элементов седьмого периода показывает, что эти элементы, по-видимому, должны быть аналогами соответствующих элементов шестого периода. Напротив, для восьмого периода состоящего, согласно теории, из 50 элементов предсказывается весьма сложный характер изменения химических свойств по мере роста Z, связанный с резким нарушением последовательности заполнения электронных подоболочек в атомах. Литературные источники: — Менделеев Д. Основные статьи, М. Закон Менделеева, М. История и теория, М.

Менделеева, М. Открытия и хронология, М. Сборник статей, М. Доклады на пленарных заседаниях, М. A history of the first hundred years, Amst. Периодическая система химических элементов Менделеева Классификация хим. Санкт-Петербург, ул. Швецова, д.

Б, пом.

Период периодической системы. Что такое период в химии — domino22 Периоды бывают в химии

Короткая форма таблицы Д. Менделеева полудлинный вариант таблицы Д. Менделеева Существует ещё и длинный вариант таблицы, он похож на полудлинный, но только лантаноиды и актиноиды не вынесены за пределы таблицы. Оригинал таблицы Д.

Менделеева 1. Период — химические элементы, расположенные в строчку 1 — 7 Малые 1, 2, 3 — состоят из одного ряда элементов Большие 4, 5, 6, 7 — состоят из двух рядов — чётного и нечётного Периоды могут состоять из 2 первый , 8 второй и третий , 18 четвертый и пятый или 32 шестой элементов. Последний, седьмой период незавершен.

Элементы первых трёх периодов относятся к главным подгруппам короткого варианта периодической системы химических элементов. Элементы групп 1 и 2 длинной формы называются s-элементами, групп 13—18 — p-элементами, групп 3—12 — d-элементами; d-элементы за исключением цинка, кадмия и ртути называют также переходными элементами. Четвёртый период K — Kr содержит 18 элементов. После K и Са s-элементы следует ряд из десяти Sc — Zn 3d-элементов побочные подгруппы короткого варианта периодической системы химических элементов. Переходные элементы проявляют высшие степени окисления , в основном равные номеру группы короткого варианта периодической системы химических элементов исключая Co, Ni и Cu. Элементы от Ga до Kr относятся к главным подгруппам р-элементы. Пятый период Rb — Xe построен аналогично четвёртому; в нём также имеется «вставка» из десяти переходных 4d-элементов Y — Cd. Шестой период Сs — Rn содержит 32 элемента.

В него, помимо десяти 5d-элементов La, Hf — Hg , входит семейство из четырнадцати 4f-элементов — лантаноидов лантанидов, Ln. Лантаноиды размещены в группе 3 длинной формы, клетка La, и для удобства вынесены под таблицу. Седьмой период, подобно шестому, содержит 32 элемента. Актиний — аналог лантана. В периодической системе химических элементов их размещают в клетке Ас и, подобно Ln, записывают отдельной строкой под таблицей. Этот приём предполагает наличие существенного химического сходства элементов двух f-семейств. Именно на этом основывалась «актинидная концепция» Г. Сиборга 1944 , сыгравшая ведущую роль при разработке методов разделения продуктов деления урана и поиске новых элементов.

Я начертал здесь план химической философии, который надеюсь выполнить и усовершенствовать своими опытами и наблюдениями». Книга построена в форме беседы между четырьмя философами: Фемистом, перипатетиком последователем Аристотеля , Филопоном, спагириком сторонником Парацельса , Карнеадом, излагающим взгляды "мистера Бойля", и Элевтерием, беспристрастно оценивающим аргументы спорщиков. Дискуссия философов подводила читателя к выводу, что ни четыре стихии Аристотеля, ни три принципа алхимиков не могут быть признаны в качестве элементов. Бойль подчёркивал: "Нет никаких оснований присваивать данному телу название того или иного элемента только потому, что оно похоже на него одним каким-либо легко заметным свойством; ведь с тем же правом я мог бы отказать ему в этом названии, поскольку другие свойства являются разными".

Исходя из опытных данных, Бойль показал, что понятия современной химии должны быть пересмотрены и приведены в соответствие с экспериментом. Элементы, согласно Бойлю — практически неразложимые тела вещества , состоящие из сходных однородных состоящих из первоматерии корпускул, из которых составлены все сложные тела и на которые они могут быть разложены. Корпускулы могут различаться формой, размером, массой. Корпускулы, из которых образованы тела, остаются неизменными при превращениях последних.

Главную задачу химии Бойль видел в изучении состава веществ и зависимости свойств вещества от его состава. При этом понятие состава Бойль считал возможным употреблять только тогда, когда из элементов, выделенных из данного сложного тела, можно обратно восстановить исходное тело то есть он фактически принимал синтез за критерий правильности анализа. Бойль в своих трудах не назвал ни одного элемента в новом понимании этого понятия; не указал он и число элементов, отмечая лишь, что: "не будет абсурдом, если предположить, что число это много больше трёх или четырёх". Таким образом, книга "Химик-скептик" представляет собой не ответ на насущные вопросы химической философии, но постановку новой цели химии.

Главное значение работы Бойля заключается в следующем: 1. Формулировка новой цели химии — изучения состава веществ и зависимости свойств вещества от его состава. Предложение программы поиска и изучения реальных химических элементов; 3. Введение в химию индуктивного метода; Представления Бойля об элементе как о практически неразложимом веществе быстро получили широкое признание среди естествоиспытателей.

Однако создание теоретических представлений о составе тел, способных заменить учение Аристотеля и ртутно-серную теорию, оказалось очень сложной задачей. В последней четверти 17 века появились эклектические воззрения, создатели которых пытались увязать алхимические традиции и новые представления о химических элементах. Большое влияние на современников оказали взгляды французского химика Николя Лемери, автора широко известного учебника "Курс химии". Учебник Лемери начинался с определения предмета химии: "Химия есть искусство, учащее, как разделять различные вещества, содержащиеся в смешанных телах.

Я понимаю под смешанными телами те, которые образуются в природе, а именно: минералы, растительные и животные тела". Далее Лемери перечислял "химические начала", т. После некоего "универсального духа" который сам автор признаёт "несколько метафизичным" , Лемери на основании анализа посредством огня выделял пять основных материальных начал веществ: спирт иначе "ртуть" , масло иначе "сера" , соль, вода "флегма" и земля. Первые три начала — активные, вода и земля — пассивные.

Лемери, однако, отмечал, что эти субстанции являются для нас "началами" лишь постольку, поскольку химики не смогли далее разложить эти тела; очевидно, эти "начала" могут быть в свою очередь разделены на более простые. Таким образом, то, что принимается в качестве начал, — это субстанции, полученные в результате разделения смешанных тел и отделённые лишь настолько, насколько позволяют это сделать средства, которыми располагают химики. На рубеже 17-18 веков научная химия находилась лишь в самом начале своего пути; важнейшими препятствиями, которые лишь предстояло преодолеть, являлись сильные ещё алхимические традиции ни Бойль, ни Лемери не отрицали принципиальную возможность трансмутации , ложные представления об обжиге металлов как о разложении и спекулятивный умозрительный характер атомизма. Философия 18 века - это философия ума, разума, научной мысли.

Человеческий разум пытается понять окружающий мир с помощью научных знаний, соображений, наблюдений и логических выводов в противовес средневековой схоластике и слепому следованию церковным догмам. Это отразилось и на химии. Стали появляться первые теории научной химии. Первая теория научной химии — теория флогистона — в значительной степени основывалась на традиционных представлениях о составе веществ и об элементах как носителях определённых свойств.

Тем не менее, именно она стала в 18 веке главным условием и основной движущей силой развития учения об элементах и способствовала полному освобождению химии от алхимии. Именно во время почти столетнего существования флогистонной теории завершилось начатое Бойлем превращение алхимии в химию. Флогистонная теория горения была создана для описания процессов обжига металлов, изучение которых являлось одной из важнейших задач химии конца 18 века. Металлургия в это время столкнулась с двумя проблемами, разрешение которых было невозможно без проведения серьёзных научных исследований — большие потери при выплавке металлов и топливный кризис, вызванный почти полным уничтожением лесов в Европе.

Основой для теории флогистона послужили традиционные представления о горении как о разложении тела. Феноменологическая картина обжига металлов была хорошо известна: металл превращается в окалину, масса которой больше массы исходного металла; кроме того, при горении имеет место выделение газообразных продуктов неизвестной природы. Целью химической теории стало рациональное объяснение этого феномена, которое можно было бы использовать для решения конкретных технических задач. Последнему условию не отвечали ни представления Аристотеля, ни алхимические взгляды на горение.

Бехер в книге "Подземная физика" изложил свои очень эклектичные взгляды на составные части тел. Таковыми, по его мнению, являются три вида земли: первая — плавкая и каменистая terra lapidea , вторая — жирная и горючая terra pinguis и третья — летучая terra fluida s. Горючесть тел, по мнению Бехера, обусловлена наличием в их составе второй, жирной, земли. Система Бехера очень похожа на алхимическое учение о трёх принципах, в котором горючесть обусловлена наличием серы; однако Бехер считает, что сера является сложным телом, образованным кислотой и terra pinguis.

По сути, теория Бехера представляла собой одну из первых попыток предложить нечто новое взамен алхимического учения о трёх принципах. Увеличение массы металла при обжиге Бехер традиционно объяснял присоединением "огненной материи". Эти взгляды Бехера послужили предпосылкой к созданию теории флогистона, предложенной Шталем в 1703 г. Тем не менее, сам Шталь всегда утверждал, что авторство теории принадлежит Бехеру.

Суть теории флогистона можно изложить в следующих основных положениях: 1. Горение представляет собой разложение тела с выделением флогистона, который необратимо рассеивается в воздухе. Вихреобразные движения флогистона, выделяющегося из горящего тела, и представляют собой видимый огонь. Извлекать флогистон из воздуха способны лишь растения.

Флогистон всегда находится в сочетании с другими веществами и не может быть выделен в чистом виде; наиболее богаты флогистоном вещества, сгорающие без остатка. Флогистон обладает отрицательной массой. Теория Шталя, подобно всем предшествующим, также исходила из представлений, будто свойства вещества определяются наличием в них особого носителя этих свойств. Положение флогистонной теории об отрицательной массе флогистона было призвано объяснить тот факт, что масса окалины или всех продуктов горения, включая газообразные больше массы обожжённого металла.

Флогистонная теория со временем была распространена на любые процессы горения. Тождество флогистона во всех горючих телах было обосновано Шталем экспериментально: уголь одинаково восстанавливает и серную кислоту в серу, и земли в металлы. Дыхание и ржавление железа, по мнению последователей Шталя, представляют собой тот же процесс разложения содержащих флогистон тел, но протекающий медленнее, чем горение. Теория флогистона позволила, в частности, дать приемлемое объяснение процессам выплавки металлов из руды, состоящее в следующем: руда, содержание флогистона в которой мало, нагревается с древесным углем, который очень богат флогистоном; флогистон при этом переходит из угля в руду, и образуются богатый флогистоном металл и бедная флогистоном зола.

Следует отметить, что в исторической литературе имеются серьёзные разногласия в оценке роли теории флогистона — от резко негативной до положительной. Однако нельзя не признать, что теория флогистона имела целый ряд несомненных достоинств: — она просто и адекватно описывает экспериментальные факты, касающиеся процессов горения; — теория внутренне непротиворечива, то есть ни одно из следствий не находится в противоречии с основными положениями; — теория флогистона целиком основана на экспериментальных фактах; — теория флогистона обладала предсказательной способностью. Флогистонная теория — первая истинно научная теория химии — послужила мощным стимулом для развития количественного анализа сложных тел, без которого было бы абсолютно невозможным экспериментальное подтверждение идей о химических элементах. Следует отметить, что положение об отрицательной массе флогистона фактически сделано на основании закона сохранения массы, который был открыт значительно позднее.

Это предположение само по себе способствовало дальнейшей активизации количественных исследований. Ещё одним результатом создания флогистонной теории явилось активное изучение химиками газов вообще и газообразных продуктов горения в частности. К середине 18 века одним из важнейших разделов химии стала пневматическая химия, основоположники которой Джозеф Блэк, Даниил Резерфорд, Генри Кавендиш, Джозеф Пристли и Карл Вильгельм Шееле явились создателями целой системы количественных методов в химии. Во второй половине 18 века теория флогистона завоевала среди химиков практически всеобщее признание.

На основе флогистонных представлений сформировалась номенклатура веществ; предпринимались попытки связать такие свойства вещества, как цвет, прозрачность, щёлочность и т. Французский химик Пьер Жозеф Макёр, автор весьма популярного учебника "Элементы химии" и "Химического словаря", писал в 1778 г. Отличаясь от систем, порождённых воображением без согласия с природой и разрушаемых опытом, теория Шталя — надёжнейший путеводитель в химических исследованиях. Многочисленные опыты… не только далеки от того, чтобы её опровергнуть, но, наоборот, становятся доказательствами в её пользу".

По иронии судьбы, учебник и словарь Макёра появились в то время, когда век флогистонной теории подошёл к концу. Нефлогистонные представления о горении и дыхании зародились даже несколько ранее флогистонной теории. Жан Рей, которому наука обязана постулатом "все тела тяжелы", ещё в 1630 г. В 1665 г.

Роберт Гук в работе "Микрография" также предположил наличие в воздухе особого вещества, подобного веществу, содержащемуся в связанном состоянии в селитре. Дальнейшее развитие эти взгляды получили в книге "О селитре и воздушном спирте селитры", которую написал в 1669 г.

Это очевидно, если посмотреть на атомные номера. Атомные номера возрастают на один при движении слева направо.

Поскольку элементы расположены по группам, некоторые ячейки таблицы остаются пустыми. Например, первая строка таблицы содержит водород, который имеет атомный номер 1, и гелий с атомным номером 2. Однако они расположены на противоположных краях, так как принадлежат к разным группам. Узнайте о группах, которые включают в себя элементы со схожими физическими и химическими свойствами.

Элементы каждой группы располагаются в соответствующей вертикальной колонке. Как правило, они обозначаются одним цветом, что помогает определить элементы со схожими физическими и химическими свойствами и предсказать их поведение. Все элементы той или иной группы имеют одинаковое число электронов на внешней оболочке. Водород можно отнести как к группе щелочных металлов, так и к группе галогенов.

В некоторых таблицах его указывают в обеих группах. В большинстве случаев группы пронумерованы от 1 до 18, и номера ставятся вверху или внизу таблицы. Номера могут быть указаны римскими например, IA или арабскими например,1A или 1 цифрами. При движении вдоль колонки сверху вниз говорят, что вы «просматриваете группу».

Узнайте, почему в таблице присутствуют пустые ячейки. Элементы упорядочены не только в соответствии с их атомным номером, но и по группам элементы одной группы обладают схожими физическими и химическими свойствами. Благодаря этому можно легче понять, как ведет себя тот или иной элемент. Однако с ростом атомного номера не всегда находятся элементы, которые попадают в соответствующую группу, поэтому в таблице встречаются пустые ячейки.

Например, первые 3 строки имеют пустые ячейки, поскольку переходные металлы встречаются лишь с атомного номера 21. Элементы с атомными номерами с 57 по 102 относятся к редкоземельным элементам, и обычно их выносят в отдельную подгруппу в нижнем правом углу таблицы. Каждая строка таблицы представляет собой период. Все элементы одного периода имеют одинаковое число атомных орбиталей, на которых расположены электроны в атомах.

Количество орбиталей соответствует номеру периода. Таблица содержит 7 строк, то есть 7 периодов. Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей. Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы.

При движении вдоль строки слева направо говорят, что вы «просматриваете период».

Периодический закон и периодическая система химических элементов Д. И. Менделеева

Закономерности изменения химических свойств элементов и их соединений по периодам и группам. Современная форма Периодической системы химических элементов (в 1989 году Международным союзом теоретической и прикладной химии рекомендована длинная форма таблицы) состоит из семи периодов (горизонтальных последовательностей элементов. Химический период является важной концепцией в химии, поскольку элементы в одном периоде обычно имеют схожие свойства, связанные с их электронной конфигурацией.

Похожие новости:

Оцените статью
Добавить комментарий