В случайном эксперименте симметричную монету бросают дважды В случайном эксперименте монету бросают 2 раза. Задачи на подбрасывание монет считаются довольно сложными. Ответы экспертов на вопрос №1217066 В случайном эксперименте симметричную монету бросают трижды. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет ровно два раза. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что при втором бросании выпала решка.
В случайном эксперименте симметричную монету...
В случайном эксперименте сим… - вопрос №1217066 - Математика | только, в соответствующей прогрессии, увеличивается количество вариантов. |
ЕГЭ. Теория вероятностей. Разбор задачи про монету, которую бросили дважды | Объясните пожалуйста: В случайном эксперименте симметричную монету бросают четырежды. |
В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел … | Поскольку монета симметричная, вероятность каждого исхода равна 1/2 (или 0,5). В нашем случае монету бросают 10 раз. |
Элементы комбинаторики. События и их вероятности. Примеры решения задач (Часть 2)
В случайном эксперименте симметричную монету бросают 4 раза. В случайном эксперименте симметричную монету бросают трижды. 20. В случайном эксперименте симметричную монету бросают дважды. В случайном эксперименте симметричную монету бросают один раз. Так как монету бросают дважды, существует четыре возможных исхода: орел-орел, решка-решка, орел-решка и решка-орел.
Другие вопросы:
- Лучший ответ:
- В случайном эксперименте симметричную монету бросают трижды
- Симметричную монету бросают 12 раз во сколько
- В случайном эксперименте симметричную монету бросают трижды
- Будущее для жизни уже сейчас
Номер 55 учебник по вероятности и статистике Высоцкий, Ященко 7-9 класс часть 2
Поэтому, фактически, мы считали не события, а места в самолёте. Пример 2 В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. Турист П. Ответ: 0,2 В этом примере, уже следует задуматься о том, что представляет собой элементарное событие.
Здесь это сформированный рейс вертолёта. Один человек может попасть только на один рейс, то есть только в одну группу из 6-ти человек, - события независимы. По условию задачи порядок рейсов случаен, то есть все рейсы для каждой группы равновозможны. Считаем рейсы. Пример 3 Из множества натуральных чисел от 10 до 19 наудачу выбирают одно число. Какова вероятность того, что оно делится на 3?
Решение Выпишем в ряд заданные числа и отметим те из них, которые делятся на 3. Ответ: 0,3 Замечание. Этот способ решения относится к простейшему случаю, когда отрезок ряда короткий, и его легко выписать явно. Что будет, если задачу изменить, например, так: Из множества натуральных чисел от 107 до 198 наудачу выбирают одно число. Тогда придётся вспомнить, что "на 3 делится каждое третье число в натуральном ряду" на 4 - каждое четвертое, на 5 каждое пятое... В каждой полной группе есть одно число, которое делится на 3.
В неполной группе, которую составляют два последних числа, 197 не делится 3, а 198 делится. Внимание: Для усиления обучающего эффекта ответы и решения загружаются отдельно для каждой задачи последовательным нажатием кнопок на желтом фоне. Когда задач много, кнопки могут появиться с задержкой. Если кнопок не видно совсем, проверьте, разрешен ли в вашем браузере JavaScript. Задача 1 В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике.
Решение Событие A - "выбор билета с вопросом по ботанике". Выбрать можно только один билет события попарно несовместимы , все билеты одинаковы события равновозможны и все билеты доступны школьнику полная группа. Значит событие "выбор билета" является элементарным. Ответ: 0,2 Замечание: В самом деле "бытовая" ситуация настолько знакома и проста, что интуитивно понятно, какие события являются элементарными, и какие благоприятствующими. Дальше я не буду подробно описывать эту часть решения, если в этом не будет необходимости. Задача 2.
В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам. Решение Способ I. Событие A - "выбор билета без вопроса по неравенствам". Способ II. Событие A - "выбор билета c вопросом по неравенствам".
Но вопрос этой задачи противоположен вопросу задачи 1, то есть нам нужна вероятность противоположного события В - "выбор билета без вопроса по неравенствам". Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.
В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых. Решение Событие A - "купленная сумка качественная". Ответ: 0,93 Замечание 1: Сравните эту и предыдущую задачи.
Как важно внимательно относиться к каждому слову в условии! Замечание 2: Правила округления мы повторяли при решении текстовых задач. Задача 9 Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России? Соревнования по бадминтону, обычно, проводятся с выбыванием, и только в первом туре участвуют все 26 бадминтонистов. Для этого используют различные методы перебора вариантов и вспомогательные рисунки, таблицы, графы "дерево возможностей". Облегчить ситуацию могут правила сложения и умножения вариантов, а также готовые рецепты комбинаторики: формулы для числа перестановок, сочетаний, размещений.
Правило умножения еще называют "И-правилом", а правило сложения "ИЛИ-правилом". Не забывайте проверить независимость способов для "И" и несовместимость не такими для "ИЛИ". Следующие задачи можно решать как перебором вариантов, так и с помощью формул комбинаторики. Я даю несколько способов решения для каждой задачи, потому что одним способом её можно решить быстро, а другим долго, и потому что кому-то понятнее один подход, а кому-то другой. Но это не значит, что обязательно нужно разбирать все способы. Лучше хорошо усвоить один любимый. Выбор за вами. Пример 4 В случайном эксперименте симметричную монету бросают пять раз.
Найдите вероятность того, что орел выпадет дважды. Эту задачу можно решить несколькими способами. Рассмотрим тот, который соответствунт заголовку раздела, а именно только применением формул комбинаторики. Решение В каждом из пяти бросаний монеты может реализоваться один из исходов - орёл или решка - для краткости "о" или "р". Таким образом, результатом серии испытаний будет группа из пяти букв, составленная из двух исходных, а значит с повторениями. Например, "оорор" означает, что два раза подряд выпал орел, затем решка, снова орёл и снова решка. Благоприятствующие исходы - орел выпадет ровно два раза - представляют собой пятибуквенные "слова", составленные из трёх букв "р" и двух "о", которые могут стоять на разных позициях, например, "opppo" или "poopp", то есть это перестановки с повторениями. В таких случаях Вы сможете выписать и рассмотреть исходы явным образом.
Задача 10 В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу. Благоприятствующее только ррр. Ответ: 0,125 Задача 11 В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно один раз. Ответ: 0,375 Задача 12 В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет хотя бы один раз. Благоприятствующие все, кроме ооо.
Способ III. Событие "орел выпадет хотя бы один раз" противоположно событию "орел не выпадет ни разу. Мы определили её в задаче 10.
Если мы хотим найти вероятность того, что орел не выпадет ни разу, то это означает, что должен выпасть только один исход из четырех решка-решка или решка-орел или орел-решка. Вероятность каждого из таких исходов равна 0. Так как существует три таких исхода, вероятность того, что орел не выпадет ни разу, равна 0.
Нас интересуют только те из них, в которых орел выпадает ровно 2 раза. Такая комбинация всего одна ОО. Найдите вероятность того, что орёл выпадет ровно один раз.
Нас интересуют только те из них, в которых орел выпал ровно 1 раз. Таких комбинаций всего две ОР и РО. Осталось лишь подсчитать вероятность выпадения этой комбинаций.
Номер 55 учебник по вероятности и статистике Высоцкий, Ященко 7-9 класс часть 2
Задача 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет ровно один раз. Решение: Ровно один раз орёл выпадает в исходах под номерами 2 и 3 см. Отношение числа благоприятных исходов 2 к общему числу всех равновозможных исходов 4 определяет вероятность интересующего нас события: Ответ: 0,5. Найдите вероятность того, что орёл выпадет хотя бы один раз. Событие «орёл выпадет хотя бы один раз» означает, что орёл появится либо один раз первым или вторым , либо оба раза, что возможно при реализации исходов 2,3,4. Благоприятных исходов, таким образом, три, при общем количестве возможных — четырёх. Вероятность, согласно классической формуле, равна Ответ: 0,75.
Найдите вероятность того, что орёл выпадет ровно два раза. Решение: Орёл выпадает оба раза — один исход при двух бросаниях математической монеты из четырёх возможных. Значит, вероятность равна. Ответ: 0,25. Найдите вероятность того, что во второй раз выпадет то же, что и в первый. Решение: Формулировка «во второй раз выпадет то же, что и в первый» означает, что могут выпасть подряд два орла, либо выпадают две решки подряд, что соответствует исходам 1 и 2 в таблице к задаче 1. При общем количестве их 4 равновозможных исходов вычисляем вероятность. Ответ: 0,5.
Найдите вероятность того, что случайно выбранное трёхзначное число делится на 25. Решение: Найдем количество трёхзначных чисел. Первое из них -100. Последнее -999. Определяем количество чисел, кратных 25. Первое из них — 100. Последнее — 975. Таких чисел По классической формуле вычисляем вероятность.
Ответ: 0,04.
Находим количество исходов, в которых не выпадет ни одной решки 3 орла. Вычитаем количество исходов с тремя орлами из общего количества исходов, чтобы найти количество благоприятных исходов исходы с хотя бы одной решкой. Делим количество благоприятных исходов на общее количество исходов, чтобы найти вероятность выпадения хотя бы одной решки. Получаем ответ в виде десятичной дроби или процента.
Сколько раз - зависит от того, сколько бросков совершить. Вероятность выпадения орла или решки вычисляется делением количества удовлетворяющих условию исходов на общее количество возможных исходов. Рассмотрим решение данной задачи на конкретных примерах. В случайном эксперименте симметричную монету бросают один раз Здесь всё просто. Выпадет либо орёл, либо решка. Задачи с более, чем одним броском, проще всего решать составлением таблицы возможных вариантов. Для простоты, обозначим орла цифрой "0", а решку цифрой "1".
Найдите вероятность того, что ему попадётся выученный билет. Правильный ответ: 0,5 2 На экзамене 48 билетов, Сергей не выучил 6 из них. Правильный ответ: 0,875 3 Коля выбирает трехзначное число. Найдите вероятность того, что оно делится на 5. Правильный ответ: 0,2 4 Коля выбирает трехзначное число. Найдите вероятность того, что оно делится на 51. Правильный ответ: 0,02 5 На тарелке лежат одинаковые на вид пирожки: 4 с мясом, 5 с рисом и 21 с повидлом. Андрей наугад берёт один пирожок. Найдите вероятность того, что пирожок окажется с повидлом. Правильный ответ: 0,7 6 На тарелке лежат одинаковые на вид пирожки: 7 с мясом, 8 с рисом и 25 с повидлом. Правильный ответ: 0,625 7 В фирме такси в данный момент свободно 20 машин: 3 чёрные, 3 жёлтые и 14 зелёных. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчику. Найдите вероятность того, что к нему приедет жёлтое такси. Правильный ответ: 0,15 8 В фирме такси в данный момент свободно 30 машин: 6 чёрных, 3 жёлтых и 21 зелёная. Правильный ответ: 0. Подарки распределяются случайным образом между 10 детьми, среди которых есть Андрюша. Найдите вероятность того, что Андрюше достанется пазл с машиной. Правильный ответ: 0,2 10 Родительский комитет закупил 25 пазлов для подарков детям в связи с окончанием учебного года, из них 18 с машинами и 7 с видами городов. Подарки распределяются случайным образом между 25 детьми, среди которых есть Володя. Найдите вероятность того, что Володе достанется пазл с машиной. Правильный ответ: 0,72 11 В лыжных гонках участвуют 7 спортсменов из России, 1 спортсмен из Норвегии и 2 спортсмена из Швеции. Порядок, в котором спортсмены стартуют, определяется жребием. Найдите вероятность того, что первым будет стартовать спортсмен из Швеции. Правильный ответ: 0,2 12 В лыжных гонках участвуют 13 спортсменов из России, 2 спортсмена из Норвегии и 5 спортсменов из Швеции. Найдите вероятность того, что первым будет стартовать спортсмен из Норвегии или Швеции. Правильный ответ: 0,35 13 У бабушки 20 чашек: 15 с красными цветами, остальные с синими. Бабушка наливает чай в случайно выбранную чашку. Найдите вероятность того, что это будет чашка с синими цветами.
Номер 55 учебник по вероятности и статистике Высоцкий, Ященко 7-9 класс часть 2
В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел … | Найди верный ответ на вопрос«7. В случайном эксперименте симметричную монету бросают дважды. |
В случайном эксперименте симметричную монету бросают трижды | Формулировка задачи: В случайном эксперименте симметричную монету бросают дважды. |
Задача 4. В случайном эксперименте симметричную монету бросают четырежды — Студопедия | "В случайном эксперименте симметричную монету бросают дважды (трижды, четырежды и т.д.). Требуется определить вероятность того, что одна из сторон выпадет определённое количество раз. |
Решение №1758 В случайном эксперименте симметричную монету бросают четырежды. | Новости. Будет ли как-то улучшаться система проверки и организации итоговых сочинений? |
В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел …
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу. В случайном эксперименте бросают три игральные кости. В случайном эксперименте симметричную монету бросают три раза Значит могут быть исходы ООО ООР ОРО РОО РРР РРО РОР ОРР Всего 8 исходов Решка выпадает 2 раза в 3 случаях Вероятность 3:8=0,375 По Вашей просьбе.
Задача №8603
20. В случайном эксперименте симметричную монету бросают дважды. Example В случайном эксперименте симметричную монету бросают пять раз. Найдите вероятность того, что орел выпадет ровно 2 раза. Всего может быть 8 случаев:орел и решка, орел и орел, решка и решка, решка и орел.(по два раза, тк 2 раза бросают.) из этих случаев орел не выпадает ни разу всего 2 раза. т.е. вероятность того, что орел не выпадет ни разу=2/8=1/4=0,25.
Остались вопросы?
Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых. При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел.
Итак, поехали! Метод перебора комбинаций Этот метод еще называется «решение напролом». Состоит из трех шагов: Выписываем все возможные комбинации орлов и решек. Число таких комбинаций — это n; Среди полученных комбинаций отмечаем те, которые требуются по условию задачи. К сожалению, этот способ работает лишь для малого количества бросков. Потому что с каждым новым броском число комбинаций удваивается.
Например, для 2 монет придется выписать всего 4 комбинации. Взгляните на примеры - и сами все поймете: Задача. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество. Итак, монету бросают два раза. Находим вероятность: Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу. Вроде, ничего не забыл.
Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек. Осталось найти вероятность: Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки? Лично я - не уверен. Поэтому давайте рассмотрим второй способ решения. Специальная формула вероятности Итак, в задачах с монетами есть собственная формула вероятности. Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните: Теорема. Пусть монету бросают n раз.
Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле: Где C n k - число сочетаний из n элементов по k , которое считается по формуле: Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи. Более того, не имеет значения, что именно считать: решки или орлы. Ответ получится один и тот же. На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться - и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше. Найдите вероятность того, что орел выпадет ровно три раза. Подставляем n и k в формулу: Задача. Монету бросают три раза.
Снова выписываем числа n и k. Осталось подставить числа n и k в формулу: Напомню, что 0! В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка. Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза тогда решек будет 1 , либо 4 тогда решек вообще не будет. Найдем вероятность каждого из этих событий. Пусть p 1 - вероятность того, что орел выпадет 3 раза. Имеем: Теперь найдем p 2 - вероятность того, что орел выпадет все 4 раза. Имеем: Чтобы получить ответ, осталось сложить вероятности p 1 и p 2.
Помните: складывать вероятности можно только для взаимоисключающих событий. Всего 4 варианта: о; о о; р р; р р; о.
Информационная поддержка Единого государственного экзамена. Учебно-тренировочные тесты к ЕГЭ 2011 по математике. Задачи на движение. Движение объектов навстречу друг к другу.
Бригада маляров красит забор длиной 240 метров. Задачи на работу. Прототип задания B12. Задачи на работу и производительность. Задачи на «концентрацию, смесей и сплавов». Общие подходы к решению задач.
Движение велосипедистов и автомобилистов. Движение лодки по течению и против течения. Сюжетные задачи. Укажите график функции, заданной формулой. Простейшие виды уравнений и неравенств. Анализ содержания заданий по математике ЕГЭ.
Геометрические фигуры и их свойства. Задания второй и третьей части форма В и С. Студенческая бригада. Значение выражения. Найдите значение выражения. Сколько корней имеет уравнение.
Структура работы по математике. Основные содержательные темы по математике. Советы психолога.
Задание 10 ОГЭ 2022 математика 9 класс ответы с решением
Теория вероятности монету бросают 4 раза. Вероятность про монету с решением. Симметричную монету подбросили 5 раз. В случайном эксперименте симметричную монету бросают. Монету бросают четыре раза. Симметричную монету бросают 5 раз. Монету подбрасывают 4 раза. Монету бросают до тех пор пока не выпадет Орел.
Монету подбрасывают 4 раза таблица. Задачи про монеты по теории вероятности. Задачи на вероятность с монеткой. Монету бросают 3 раза. Задачи на элементарные события. Игральный кубик бросают дважды сколько элементарных исходов. Кубик бросают дважды сколько исходов опыта.
Кубик бросают дважды. Игральный кубик бросают. Бросание монеты какова вероятность. Монету бросают 2 раза. Монету бросают 2 раза какова вероятность. Бросают 2 монеты какова вероятность. Монету бросают 4 раза Найдите.
Вероятность того что выпадет Ровно. Решение задач на вероятность с монетой. Задачи на бросание монеты теория вероятностей. Задачи на нахождение вероятности с монетами. В случайном ксперимене симмеринуую монеру. Монету бросают дважды. В случайном эксперименте симметричную монету бросают дважды.
В случайном эксперемнетк монетку. Симметричную монету бросают четырежды. Вероятность бросания монеты. В случайном эксперименте монету бросают четырежды. Монету бросают четыре раза Найдите вероятность. Монету бросают два раза. Монетку бросают три раза.
Монету подбрасывают 5 раз.
Решения вероятности с монеткой. Задачи на вероятность с монеткой. Теория вероятности с монетой. Задачи на вероятность с монетами. Симметричную монету бросают дважды. Монету бросают 5 раз найти вероятность того что герб выпадет. Монету бросают 5 раз.
Менее двух раз найти вероятность. Монету бросают 3 раза. Монету подбрасывают 5 раз какова вероятность что выпадет 2 орла. Задачи по теории вероятности презентация. Случайный эксперимент. Решение задач на вероятность с монеткой. Вероятность бросания монеты. Вероятность с монетами.
Монету бросают 2 раза какова вероятность. Монету четырежды в случайном эксперименте симметричную. В случайном эксперименте симметричную монету бросают. Симметричную монету бросают четырежды. Вероятность монетки. Симметричную монету бросают два раза. Вероятность монетки четыре раза. Вероятность, что Орел выпадет Ровно 5 раз.
Вероятность подбрасывания монетки. Бросают три монеты какова. Бросают две монеты. Вероятность выпадения герба при бросании монеты. Вероятность выпадения герба при двух бросаниях монеты. Монету подбрасывают три раза. Бросают три монеты найти что герб выпадет 2 раза. Монету бросают 4 раза Найдите вероятность того что Орел выпадет 2 раза.
Комбинаторика и теория вероятности задачи с решением. Монету бросают 2 раза. Монету бросают 2 раза Найдите вероятность того что Орел выпадет 1 раз. Задачи по теореме сложения умножения. Вероятность выпадения события. Задачи на вероятность бросание монеты. Формулы для решения теории вероятности. Задачи на вероятность формула.
Формула вероятности события. Формула нахождения вероятности. В случайном эксперемнетк монетку. Найти вероятность того что герб выпадет Ровно 2 раза. Монета бросается два раза.
Взгляните на примеры - и сами все поймете: Задача. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество.
Итак, монету бросают два раза. Находим вероятность: Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу. Вроде, ничего не забыл. Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек. Осталось найти вероятность: Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки?
Лично я - не уверен. Поэтому давайте рассмотрим второй способ решения. Специальная формула вероятности Итак, в задачах с монетами есть собственная формула вероятности. Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните: Теорема. Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле: Где C n k - число сочетаний из n элементов по k , которое считается по формуле: Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи.
Более того, не имеет значения, что именно считать: решки или орлы.
Так как монету бросают дважды, существует четыре возможных исхода: орел-орел, решка-решка, орел-решка и решка-орел. Если мы хотим найти вероятность того, что орел не выпадет ни разу, то это означает, что должен выпасть только один исход из четырех решка-решка или решка-орел или орел-решка. Вероятность каждого из таких исходов равна 0.
ЕГЭ профильный уровень. №4 Классическое определение вероятности. Задача 7
Симметричную монету бросают 12 раз во сколько | 26)В случайном эксперименте симметричную монету бросают трижды. |
Домен припаркован в Timeweb | Объясните пожалуйста: В случайном эксперименте симметричную монету бросают четырежды. |
Михаил Александров
- Теория вероятности в ЕГЭ по математике. Задача про монету.
- Задачи B6 с монетами
- Решение задачи с симметричной монетой
- Задачи с монетой по теории вероятностей на профильном ЕГЭ по математике
- Метод перебора комбинаций
Редактирование задачи
В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно один раз. Т. К нам не важен порядок выпадения стррон то у нас всего 5 вариантов(один из которых нам нужен) и зная что стороны симметричны у обоих сторон шанс выпадения одинаковый сл 1/5=20%. В случайном эксперименте бросают три игральные кости. Ответы экспертов на вопрос №1217066 В случайном эксперименте симметричную монету бросают трижды. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что решка не выпадет ни разу.