Новости реактор брест од 300

Энергоблок с реактором БРЕСТ-ОД-300 станет частью опытно-демонстрационного энергокомплекса (ОДЭК), который строится на площадке СХК в рамках стратегического.

Росатом изготовит уникальное оборудование для энергоблока с реактором БРЕСТ-ОД-300

Уникальный реактор БРЕСТ-300 начали строить в Томской области «быстрый» реактор на свинцовом теплоносителе мощностью 300 МВт.
Выдана лицензия на создание реактора БРЕСТ-ОД-300. Что это значит брест-од-300 новости сегодня.
Строительство реактора “БРЕСТ-ОД-300” вышло на “нулевую” отметку Опытно Демонстрационном Быстром Реакторе ЕСТественной безопасности" Нет, не так расшифровывается.
Росатом изготовит уникальное оборудование для энергоблока с реактором БРЕСТ-ОД-300 Опытно-демонстрационный энергоблок БРЕСТ-ОД-300 с множеством новаций (свинцовый теплоноситель, плотное нитридное уран-плутониевое топливо, пристанционная переработка ОЯТ) одно время плотно пиарился и в середине десятилетия был неким символом того, что у.
От БН до БРЕСТа: В Томской области начали монтаж ядерного реактора четвертого поколения Конструкторская концепция реакторной установки БРЕСТ-ОД-300 заключается в следующем.

Россия создала нейтронный «Прорыв»

На стройплощадке опытно-демонстрационного энергокомплекса в Северске начался монтаж реактора четвертого поколения БРЕСТ-ОД‑300. Опытно Демонстрационном Быстром Реакторе ЕСТественной безопасности" Нет, не так расшифровывается. Реактор 'БРЕСТ-ОД-300' (установка с пристанционным ядерным топливным циклом) строится на площадке Сибирского химического комбината (СХК) в Северске в рамках проекта Росатома 'Прорыв' по созданию новейшего топлива, на котором атомная энергетика будет работать. Для быстрого реактора БРЕСТ-ОД-300 в Росатоме было разработано инновационное смешанное плотное нитридное уран-плутониевое топливо (так называемое СНУП-топливо). реактора четвертого поколения БРЕСТ-ОД-300.

«Росатом» начал строить первый в мире атомный энергоблок с безотходным циклом

Российское предприятие поставило основные элементы градирни для «реактора будущего» БРЕСТ-ОД-300 Испытания перспективного смешанного нитридного уран-плутониевого топлива российского реактора на быстрых нейтронах со свинцовым теплоносителем (БРЕСТ-ОД-300).
Росатом начал строительство первого в мире реактора на быстрых нейтронах БРЕСТ-ОД-300 В шахту реактора строители погрузили первую часть корпуса реакторной установки БРЕСТ-ОД-300 – нижний ярус ограждающей конструкции.
Уникальный реактор обеспечит энергетическое будущее России Как и любой другой реактор, БРЕСТ-ОД-300 снабжен системой аварийного охлаждения реактора.
«Брест-300», это – «прорыв» к бюджетным ресурсам!». 2 апреля 2024 Новости Россети внедрят ИТ-разработку Росатома для импортозамещения операционных систем ПОДРОБНЕЕ.

В Северске начался монтаж реакторной установки IV поколения БРЕСТ-ОД-300

А уран-238 в цепной реакции не участвует — невозможны для него "один нейтрон выбил два нейтрона, два нейтрона выбили четыре", уран-238, грубо говоря, просто "съест" этот свободный нейтрон, на том все и закончится. Уран обогащенный и уран обедненный Из этих физических свойств изотопов урана-235 и урана-238 — сразу два следствия. Урановой руды атомной энергетике нужно не просто много, а очень много. Богатыми считаются руды, в которых содержится один процент природного урана — следовательно, из 100 тонн руды можно получить тонну урана, в котором необходимого энергетике урана-235 всего семь килограммов. На горно-обогатительных заводах в "хвосты" уходят 99 тонн пустой породы, а на предприятиях, где происходит обогащение урана по содержанию урана-235, "хвостами" станут 993 килограмма урана-238. Технологии обогащения урана по изотопу-235 совершенствовались с самого начала "атомной эры", но и сейчас, и даже в России, все 0,7 процента урана-235 извлечь из "балласта" в виде урана-238 не получается. В хвостах российских обогатительных заводов остается 0,1 процента урана-235, в хвостах европейских обогатительных заводов — до 0,3 процента.

Именно более развитые российские технологии — причина того, что европейские государства время от времени отправляют свои хвосты на переработку "Росатома": то, что для Европы не более чем неиспользуемый балласт, для заводов холдинга ТВЭЛ — вполне приличное, пригодное к обработке сырье. Но это, конечно, отдельная история, к ней можно вернуться в следующий раз, а пока второе следствие, тоже вполне очевидное: ядерное топливо для АЭС стоит достаточно дорого, а природного урана при таком способе его использования, как сейчас, надолго не хватит. Мало того — как известно, уран един, но он в двух лицах, поскольку его можно использовать в атомной энергетике, а можно и для создания атомного и ядерного оружия. Тот уран, который уходит на АЭС и в ядерные арсеналы, — обогащенный, а тот, что лежит на заводской площадке — обедненный, названия вполне логичные. По данным "Гринпис", в 1996 году запасы обедненного урана составляли в странах, где активнее всего шло обогащение: Франция — 190 тысяч тонн, Россия — 500 тысяч тонн, США — 740 тысяч тонн. Добытого в недрах планеты, очищенного от пустой породы, доставленного на предприятия по обогащению, неоднократно переработанного, заскладированного в таком виде, который обеспечивает оптимальный режим хранения.

Если найти, разработать, научиться применять технологию, которая позволяла бы использовать уран-238 для производства энергии — получится огромный запас, причем в очень хорошо подготовленном состоянии, все описанные этапы уже оплачены, в основном — в годы всеобщей ядерной гонки. Нейтроны быстрые и нейтроны тепловые, или "Открытый ядерный топливный цикл" Есть у урана-238 и у урана-235 еще одна характеристика, из-за которой нынешняя атомная энергетика на 99,5 процента состоит из так называемых тепловых реакторов. В атомной физике такие характеристики, как скорость движения ядерных частиц и их температура — тождественные понятия, то есть реакторы на быстрых нейтронах можно называть и реакторами на нейтронах горячих, но как-то такой вариант не прижился. И то же, но в другую сторону — тепловые реакторы мы имеем полное право называть медленными, но опять же — не прижилось. После того, как свободный нейтрон "разбивает" ядро атома урана, осколки разлетаются с разными скоростями, что совершенно неудивительно. Ради эксперимента швырните камень в стекло — осколки получатся разного размера, какие-то улетят далеко, какие-то лягут на землю рядышком.

Реакторы такого типа могут производить больше потенциального топлива, чем потребляют, а также дожигать то есть утилизировать с выработкой энергии высокоактивные трансурановые элементы. БРЕСТ-ОД-300 будет обеспечивать сам себя основным энергетическим компонентом — плутонием-239, воспроизводя его из изотопа урана-238.

Новый атомный "энергокомплекс будущего" строится там, где в конце 1950-х годов заработала первая отечественная промышленная атомная электростанция Сибирская АЭС — она начиналась с реактора ЭИ-2, сконструированного под руководством академика Николая Доллежаля. БРЕСТ — прототип реактора на быстрых нейтронах БР-1200 также со свинцовым теплоносителем, который, в свою очередь, станет основой коммерческого энергоблока большой электрической мощности порядка 1200 МВт. Четвертое поколение В нынешнем веке Россия первой построила и ввела в эксплуатацию атомные энергоблоки с реакторами так называемого поколения "три плюс", а сейчас речь идет об освоении технологий установок четвертого поколения. Но дело не только в цифровом обозначении — с четвертым поколением ядерных энерготехнологий термин "реактор" заменяется более корректным словом "система", что включает в себя как непосредственно сам реактор, так и переработку рециклирование его ядерного топлива. Согласно новым требованиям мирового атомного сообщества такие системы должны обладать более высокими эксплуатационными показателями, чем предыдущие поколения, в области обеспечения устойчивого развития, конкурентоспособности с другими видами генерации, безопасности и надежности, а также защиты от распространения, оправдывая использование в их отношении выражения "технологический прорыв". Сейчас развитие атомной энергетики в мире во многом еще сдерживается боязнью аварий, связанных с выбросами радиоактивных веществ.

А различные комплексы безопасности, которыми оснащены современные энергоблоки, значительно повышают стоимость АЭС. Российским специалистам удалось показать, что можно так спроектировать ядерные реакторы на быстрых нейтронах, что их безопасность будет основываться на законах природы, а не на создании дополнительных инженерных барьеров и увеличении персонала.

А к 2024 году предполагается начать сооружение модуля переработки облученного топлива», — сказал Евгений Олегович. В рамках мероприятия состоялась научная сессия, на которой с докладом «Двухкомпонентная атомная стратегия — платформа будущей ядерной энергетики» выступил В. ОДЭК призван впервые в мире осуществить устойчивую работу полного комплекса объектов реактора, производств по переработке ОЯТ и изготовлению свежего топлива , обеспечивающих замкнутый ядерный топливный цикл. Российская отраслевая стратегия предполагает создание двухкомпонентной атомной энергетики с реакторами на тепловых и быстрых нейтронах и замкнутым ядерным топливным циклом, что означает широкое внедрение технологий рециклинга ядерных материалов. Это позволит не только многократно расширить сырьевую базу атомной энергетики, но и решить вопросы накопления отработавшего топлива и ядерных отходов — повторно использовать продукты переработки ОЯТ вместо хранения, радикально снизить объемы образования и активность отходов. Примечательно, что фактическое начало работ по созданию инновационного реактора стартовало в 2021 году, который Указом Президента Российской Федерации объявлен Годом науки и технологий. Начало заливки первого бетона — значимый этап реализации проекта «Прорыв», результат многолетней напряженной работы всего коллектива института. Сегодня перед специалистами АО «НИКИЭТ» стоят масштабные и ответственные задачи — обеспечить изготовление оборудования в соответствии с разработанной документацией и успешно провести экспериментальные работы при вводе реакторной установки БРЕСТ-ОД-300 в эксплуатацию в установленные сроки и с надлежащим качеством.

Росатом начал строительство первого в мире реактора на быстрых нейтронах БРЕСТ-ОД-300

Добавить новость можно всем, без премодерации, только регистрация. 3D-модель реакторной установки БРЕСТ-ОД-300. БРЕСТ станет вторым реактором, где отрабатывается концепция замкнутого ядерного топливного цикла. В этом году начнётся монтаж корпуса и установка механизмов первого в мире энергетического реактор-размножителя бассейного типа 'Брест-ОД300' в г – Самые лучшие и интересные новости по теме: Росатом, аэс, бридер на развлекательном портале Старт строительству атомного энергоблока мощностью 300 МВт с инновационным реактором на быстрых нейтронах БРЕСТ-ОД-300 со свинцовым теплоносителем в торжественной обстановке, в присутствии первых лиц российского и зарубежного атомного сообщества, руководства. В шахту реактора строители погрузили первую часть корпуса реакторной установки БРЕСТ-ОД-300 – нижний ярус ограждающей конструкции. Росатом 17 января сообщил, что в рамках проекта «Прорыв» начал установку инновационного реактора БРЕСТ-ОД-300 на территории Опытно-демонстрационного энергетического комплекса, расположенного в Северске Томской области.

«Росатом» приступил к строительству первого в мире безопасного ядерного реактора

Естественный вопрос – почему БРЕСТ-ОД-300 относят к реакторам IV поколения? Первый в мире энергоблок нового поколения БРЕСТ-ОД-300 начали строить в Северске на площадке Сибирского химического комбината (СХК). 10 февраля 2021 года Ростехнадзор выдал лицензию АО «СХК» на сооружение реактора «БРЕСТ-ОД-300». Перед тем, как поместить металлические кольца в шахту реактора, строителям предстоит соорудить бетонный постамент для реактора БРЕСТ высотой в два метра. Специалисты Белоярской АЭС в Свердловской области, которые проводят испытания для реактора БРЕСТ-300 в Северске Томской области, протестировали более 20 вариантов конструкций для загрузки топлива.

Россия создала нейтронный «Прорыв»

Помимо энергоблока, ОДЭК будет включать объекты пристанционного ядерного топливного цикла - комплекс по производству смешанного уран-плутониевого нитридного топлива, а также модуль переработки облученного ядерного топлива. Его корпус - это не цельнометаллическая конструкция, как у ВВЭР, а металлобетонная конструкция, в которой предусмотрены металлические полости под размещение оборудования первого контура. Пространство между полостями при сооружении поэтапно заполняется бетонным наполнителем. Кроме того, корпус БРЕСТ - более крупногабаритный, доставить его можно только по частям, а финальная сборка возможна только в условиях строительной площадки ОДЭК», - прокомментировал главный конструктор реакторной установки БРЕСТ-ОД-300, генеральный конструктор проектного направления «Прорыв» Вадим Лемехов, чьи слова приводятся в сообщении. Хотя о перспективности этой технологии специалисты рассуждают давно а если быть совсем точным, то о сочетании урана и свинца говорили еще до появления собственно атомной энергетики , до ее практического применения доходило только в СССР, где были разработаны реакторы с теплоносителем свинец-висмут для подводных лодок. Это первая серьезная попытка пройти на один шаг дальше, чем сделали наши предшественники в XX веке.

В связи с этим в программе предусмотрена разработка проектов реакторов на быстрых нейтронах со свинцовым, натриевым и свинцово-висмутовым теплоносителем, что является одной из причин осуществления проекта БРЕСТ. Кроме него, в программе участвуют и другие инновационные проекты: серия реакторов с натриевым теплоносителем типа БН-800 и проект реакторов со свинцово-висмутовым теплоносителем СВБР. Орловым и Е. Под этим понятием подразумевается ядерная и радиационная безопасность за счёт последовательного отказа от любых технических решений, потенциально опасных проектными и запроектными авариями, и организации безопасности за счёт использования природных законов и свойств используемых материалов, что позволит достичь убедительно прогнозируемой безопасности. Другими словами, в проекте БРЕСТ предполагается, что сам реактор и его топливо будут настолько безопасными, что не потребуют большого количества громоздких технических средств, систем и автоматики для обеспечения безопасности, что повлечёт упрощение устройства и удешевление АЭС. Вышеуказанное понятие не является нововведением для ядерной энергетики и широко используется уже несколько десятилетий, имея в нормативной технической документации название «внутренняя самозащищённость». На свойстве внутренней самозащищённости в немалой степени основана безопасность практически всех современных реакторов, наиболее показательным его примером могут служить их отрицательные температурные, мощностные и другие эффекты реактивности — обратные нейтронно-физические связи реакторов, на которых основана устойчивость реакторов. Таким образом, концепцию «естественной безопасности» нужно рассматривать не в качестве оригинальной идеи, а в развитии устойчивого направления в конструировании ядерных реакторов, возможно качественного прорыва в этом направлении, по крайней мере, по утверждениям его создателей. Особенности конструкции[ ] Реактор является установкой бассейнового типа, то есть корпус реактора конструктивно исключается[источник не указан 3078 дней] — в шахту из теплоизоляционного бетона изнутри покрытого металлическим лайнером залит свинец теплоноситель , в который опущены активная зона, парогенератор, насосы и другие системы. Циркуляция свинца в контуре осуществляется за счёт создаваемой насосами разности его горячего и холодного уровней. К особенностям реактора следует также отнести конструкцию твэлов. Если традиционно выравнивание тепловыделения по радиусу реактора достигается за счёт изменения обогащения урана в твэлах, то в реакторе с полным воспроизводством плутония в активной зоне выгодно применять твэлы различного диаметра 9,1мм, 9,6 мм, 10,4мм. В качестве топлива используется мононитридная композиция уран-плутония и минорных актиноидов. Реактор способен за одну кампанию «сжигать» до 80 кг как «собственных» актиноидов, так и полученных из облучённого ядерного топлива других АЭС. Другой особенностью проекта является примыкание комплекса по переработке облучённого топлива непосредственно к реактору. Это даёт возможность передавать топливо на переработку, исключая дорогостоящую и небезопасную дальнюю его транспортировку.

БРЕСТ — прототип реактора на быстрых нейтронах БР-1200 также со свинцовым теплоносителем, который, в свою очередь, станет основой коммерческого энергоблока большой электрической мощности порядка 1200 МВт. Четвертое поколение В нынешнем веке Россия первой построила и ввела в эксплуатацию атомные энергоблоки с реакторами так называемого поколения "три плюс", а сейчас речь идет об освоении технологий установок четвертого поколения. Но дело не только в цифровом обозначении — с четвертым поколением ядерных энерготехнологий термин "реактор" заменяется более корректным словом "система", что включает в себя как непосредственно сам реактор, так и переработку рециклирование его ядерного топлива. Согласно новым требованиям мирового атомного сообщества такие системы должны обладать более высокими эксплуатационными показателями, чем предыдущие поколения, в области обеспечения устойчивого развития, конкурентоспособности с другими видами генерации, безопасности и надежности, а также защиты от распространения, оправдывая использование в их отношении выражения "технологический прорыв". Сейчас развитие атомной энергетики в мире во многом еще сдерживается боязнью аварий, связанных с выбросами радиоактивных веществ. А различные комплексы безопасности, которыми оснащены современные энергоблоки, значительно повышают стоимость АЭС. И противоречивые требования экономики и безопасности гармонично удовлетворить было бы невозможно, если бы не реакторы на быстрых нейтронах с их уникальными ядерно-физическими свойствами сейчас вся мировая атомная энергетика построена на реакторах на так называемых тепловых нейтронах, и только в России на Белоярской АЭС эксплуатируются два "быстрых" энергетических реактора. Российским специалистам удалось показать, что можно так спроектировать ядерные реакторы на быстрых нейтронах, что их безопасность будет основываться на законах природы, а не на создании дополнительных инженерных барьеров и увеличении персонала. Его конструкция исключает так называемый разгон на мгновенных нейтронах, ставший причиной аварии в Чернобыле.

Часть остаётся в отработавшем ядерном топливе и может быть выделена из него химически для использования в свежем ядерном топливе. При делении ядра урана-235 тепловым нейтроном образуется в среднем 2,45 нейтрона. Таким образом, в среднем 1,15 нейтрона тратится на одно деление, остальные 1,3 могут быть захвачены ураном-238 с образованием плутония-239. Но тепловые нейтроны также активно захватываются ядрами других элементов, присутствующих в активной зоне : осколками деления например, ксенон-135 , замедлителем, теплоносителем, стержнями управления и защиты, часть нейтронов просто утекает из активной зоны. Поэтому в реакторах с преимущественно тепловым спектром нейтронов коэффициент воспроизводства всегда меньше единицы 0,5-0,7. Тем не менее конвертация урана-238 вносит определённый вклад в общее энерговыделение реакторов с тепловым спектром нейтронов. Поэтому коэффициент воспроизводства может оказаться больше расхода первичного делящегося изотопа в идеале, КВ может достигать 1,5 — если никаких потерь нет вообще, а все нейтроны делят уран-235 или поглощаются ураном-238. На реально существующих реакторах КВ достигает 1,2. При очередной перезагрузке топлива извлечённый ОЯТ может содержать больше делящегося вещества, поддерживающего цепную реакцию, чем было загружено изначально. Его можно выделить химически и использовать для загрузки свежим топливом широко распространённых реакторов на тепловых нейтронах вместо дефицитного урана-235. Выгодной эта операция становится в связи с тем, что в природе встречается лишь один редкий изотоп, поддерживающий цепную реакцию — уран-235. Его природные запасы в пригодных для экономически эффективной добычи месторождениях невелики. Зато в природе многократно больше двух других изотопов тория-232 и урана-238 , которые цепную реакцию не поддерживают, но из которых облучением нейтронами можно получать другие изотопы уран-233 и плутоний-239 , уже поддерживающие цепную реакцию. Дополнительную выгоду приносит резкое уменьшение требований к хранению ядерных отходов, образующихся от отработанного ядерного топлива. Технические трудности и экономические затраты создания полномасштабной энергетики на быстрых нейтронах привели к отставанию их развития от реакторов с тепловым спектром нейтронов. Кроме того доступность урана-235 ещё не достигла критических для отрасли величин.

«Росатом» приступил к строительству первого в мире безопасного ядерного реактора

Его корпус — это не цельнометаллическая конструкция, как у ВВЭР, а металлобетонная конструкция, в которой предусмотрены металлические полости под размещение оборудования первого контура. Пространство между полостями при сооружении поэтапно заполняется бетонным наполнителем. Справка Согласно классификации, принятой МАГАТЭ, IV поколение ядерных реакторов предполагает применение различных технологий, которые объединены общим результатом — более высокой эффективностью использования топлива, увеличенной безопасностью, энергоэффективностью, сокращением отработавшего ядерного топлива и т. Проект «Прорыв», реализуемый Госкорпорацией «Росатом», нацелен на достижение нового качества ядерной энергетики, разработку, создание и промышленную реализацию замкнутого ядерного топливного цикла на базе реакторов на быстрых нейтронах, развивающих крупномасштабную ядерную энергетику. Преимущество реакторов на быстрых нейтронах — способность эффективно использовать для производства энергии вторичные продукты топливного цикла в частности, плутоний. При этом обладая высоким коэффициентом воспроизводства, быстрые реакторы могут производить больше потенциального топлива, чем потребляют, а также дожигать то есть утилизировать с выработкой энергии высокоактивные трансурановые элементы актиниды.

В проекте БРЕСТ его разработчиками планируется создание демонстрационного топливного цикла, который должен продемонстрировать работоспособность, выявить проблемы масштабирования и обосновать экономику замкнутого цикла ядерного топлива. В 2010 году правительство РФ утвердило федеральную целевую программу «Ядерные энерготехнологии нового поколения на период 2010—2015 гг. В связи с этим в программе предусмотрена разработка проектов реакторов на быстрых нейтронах со свинцовым, натриевым и свинцово-висмутовым теплоносителем, что является одной из причин осуществления проекта БРЕСТ. Кроме него, в программе участвуют и другие инновационные проекты: серия реакторов с натриевым теплоносителем типа БН-800 и проект реакторов со свинцово-висмутовым теплоносителем СВБР. Орловым и Е. Под этим понятием подразумевается ядерная и радиационная безопасность за счёт последовательного отказа от любых технических решений, потенциально опасных проектными и запроектными авариями, и организации безопасности за счёт использования природных законов и свойств используемых материалов, что позволит достичь убедительно прогнозируемой безопасности. Другими словами, в проекте БРЕСТ предполагается, что сам реактор и его топливо будут настолько безопасными, что не потребуют большого количества громоздких технических средств, систем и автоматики для обеспечения безопасности, что повлечёт упрощение устройства и удешевление АЭС. Вышеуказанное понятие не является нововведением для ядерной энергетики и широко используется уже несколько десятилетий, имея в нормативной технической документации название «внутренняя самозащищённость». На свойстве внутренней самозащищённости в немалой степени основана безопасность практически всех современных реакторов, наиболее показательным его примером могут служить их отрицательные температурные, мощностные и другие эффекты реактивности — обратные нейтронно-физические связи реакторов, на которых основана устойчивость реакторов.

Таким образом, концепцию «естественной безопасности» нужно рассматривать не в качестве оригинальной идеи, а в развитии устойчивого направления в конструировании ядерных реакторов, возможно качественного прорыва в этом направлении, по крайней мере, по утверждениям его создателей. Особенности конструкции[ ] Реактор является установкой бассейнового типа, то есть корпус реактора конструктивно исключается[источник не указан 3078 дней] — в шахту из теплоизоляционного бетона изнутри покрытого металлическим лайнером залит свинец теплоноситель , в который опущены активная зона, парогенератор, насосы и другие системы. Циркуляция свинца в контуре осуществляется за счёт создаваемой насосами разности его горячего и холодного уровней. К особенностям реактора следует также отнести конструкцию твэлов. Если традиционно выравнивание тепловыделения по радиусу реактора достигается за счёт изменения обогащения урана в твэлах, то в реакторе с полным воспроизводством плутония в активной зоне выгодно применять твэлы различного диаметра 9,1мм, 9,6 мм, 10,4мм. В качестве топлива используется мононитридная композиция уран-плутония и минорных актиноидов. Реактор способен за одну кампанию «сжигать» до 80 кг как «собственных» актиноидов, так и полученных из облучённого ядерного топлива других АЭС.

Интегральная конструкция и физика реакторной установки позволяют исключить аварии, требующие эвакуации населения.

Ранее, к 2023 году, планируют построить комплекс по выпуску топлива, а к 2024 году — модуль переработки облученного топлива. Такие аппараты ранее не строились, то есть это принципиально новые реакторы. Их сторонники делают упор на важные преимущества свинцовых реакторов с точки зрения безопасности и экономики, свои аргументы есть у скептиков», — говорит директор автономной некоммерческой организации для поддержки развития атомной науки, техники и образования «АтомИнфо-Центр» Александр Уваров. Эксперт отмечает, что разработчики концепции БРЕСТ предлагают новый тип топливного цикла — пристанционный, при котором переработка отработавшего ядерного топлива ОЯТ и фабрикация из него нового топлива осуществляются непосредственно на площадке АЭС.

Отец отечественной атомной энергетики академик Игорь Курчатов однажды сравнил ядерный реактор с кастрюлей с кипящей водой. Только вода в такой «кастрюле» нагревается не снаружи, а изнутри, с помощью ядерного топлива.

При этом, обладая высоким коэффициентом воспроизводства, «быстрые» реакторы могут производить больше потенциального топлива, чем потребляют, а также «дожигать» то есть утилизировать с выработкой энергии высокоактивные трансурановые элементы. В реакторах, подобных БРЕСТу, вместо воды используется жидкий металл, а данном случае — расплавленный свинец. Пространство между полостями при сооружении поэтапно заполняется бетонным наполнителем.

Похожие новости:

Оцените статью
Добавить комментарий