Новости из чего состоит водородная бомба

Водородные бомбы — наиболее разрушительный его вариант — имеют теоретически неограниченную мощность, и потому при их разработке между СССР и США развернулась гонка. Водородную бомбу можно собрать таким образом, что выгорание каждого из трёх компонентов — плутония, дейтрида лития и обеднённого урана — превысит 90%.

«Отец» водородной бомбы

Сама бомба окружена конструкцией, которая позволит сохранить массивный вклад рентгеновских лучей, возникающих при взрыве бомбы деления. Затем эти волны перенаправляются, чтобы сжать термоядерный материал, и тогда может начаться полный взрыв бомбы. Архитектурная бомба Теллера-Улама - это то же самое, что и бомба деления-синтеза-деления. Самого по себе этого недостаточно для начала термоядерного взрыва, но его можно использовать для ускорения реакции: несколько граммов дейтерия и трития в центре делящейся активной зоны произведут большой поток нейтронов, что значительно увеличит скорость горения материал делящийся. Полученные нейтроны имеют энергию 14,1 МэВ , что достаточно, чтобы вызвать деление U-238, что приведет к реакции деления-синтеза-деления. Другие реакции могут продолжаться только тогда, когда первичный ядерный взрыв создал необходимые условия температуры и сжатия. Для реакции деления требуется 550 нс, а для реакции синтеза - 50 нс. После воспламенения химического взрывчатого вещества срабатывает бомба деления. Взрыв вызывает появление рентгеновских лучей , которые отражаются от оболочки и ионизируют полистирол, переходящий в плазменное состояние. Рентгеновские лучи облучают буфер, сжимающий термоядерное топливо 6 LiD , и праймер из плутония, который под действием этого сжатия и нейтронов начинает трескаться.

Сжатый и доведенный до очень высоких температур дейтерид лития 6 LiD запускает реакцию синтеза. Обычно наблюдается такой тип реакции синтеза: Когда термоядерный материал плавится при температуре более ста миллионов градусов, он выделяет огромное количество энергии. При данной температуре количество реакций увеличивается как функция квадрата плотности: таким образом, более высокое сжатие в тысячу раз приводит к образованию в миллион раз большего количества реакций. Реакция синтеза производит большой поток нейтронов, который облучает буфер, и если он состоит из расщепляющихся материалов например, 238 U , произойдет реакция деления, вызывающая новое высвобождение энергии того же порядка, что и при синтезе. Последовательность взрыва водородной бомбы: A: Бомба до взрыва; верхняя стадия деления первичная , нижняя стадия плавления вторичная , все подвешены в пенополистироле. B: Взрывчатое вещество большой мощности детонирует в первичной обмотке, сжимая плутоний в сверхкритическом режиме и инициируя реакцию деления. C: грунтовка излучает рентгеновские лучи, которые отражаются внутри корпуса и облучают поверхность прокладки пенополистирол прозрачен для рентгеновских лучей и служит только опорой. D: Рентгеновские лучи испаряют поверхность подушки, сжимая вторичную обмотку, и плутоний начинает делиться. E: Сжатый и нагретый дейтерид лития 6 запускает реакцию синтеза, а поток нейтронов начинает деление буфера.

Первые вторичные заряды были построены вокруг стержневого сердечника из плутония, неофициально называемого "свечой", который вступал в реакцию ядерного деления, т. В настоящее время считается, что более эффективные системы сжатия устранили «свечу», позволяя дальнейшую миниатюризацию конструкции бомбы. Операция Плющ Так назвались испытания американского термоядерного оружия на Маршалловых островах в 1952 г. Она называлась Плющ Майк и была построена по типовой схеме Теллера-Улама. Ее вторичный термоядерный заряд был помещен в цилиндрический контейнер, представляющий собой термически изолированный сосуд Дьюара с термоядерным топливом в виде жидкого дейтерия, вдоль оси которого проходила «свеча» из 239-плутония. Дьюар, в свою очередь, был покрыт слоем 238-урана весом более 5 метрических тонн, который в процессе взрыва испарялся, обеспечивая симметричное сжатие термоядерного топлива. Контейнер с первичным и вторичным зарядами был помещен в стальной корпус 80 дюймов шириной и 244 дюйма длиной со стенками в 10-12 дюймов толщиной, что было крупнейшим примером кованого изделия до того времени. Внутренняя поверхность корпуса был выстлана листами свинца и полиэтилена для отражения излучения после взрыва первичного заряда и создания плазмы, разогревающей вторичный заряд. Все устройство весило 82 тонны. Вид устройства незадолго до взрыва показан на фото ниже.

Первое испытание термоядерной бомбы состоялось 31 октября 1952 г. Мощность взрыва составила 10,4 мегатонны. Аттол Эниветок, на котором он был произведен, был полностью разрушен. Момент взрыва показан на фото ниже. Из описания выше становится ясно, что американцами на Эниветоке была взорвана собственно не бомба, как вид готового к применению боеприпаса, а скорее лабораторное устройство, громоздкое и весьма несовершенное. Советские же ученые, несмотря на небольшую мощность всего 400 кг, испытали вполне законченный боеприпас с термоядерным топливом в виде твердого дейтерида лития, а не жидкого дейтерия, как у американцев. Кстати, следует отметить, что в составе дейтерида лития используется только изотоп 6Li это связано с особенностями прохождения термоядерных реакций , а в природе он находится в смеси с изотопом 7Li. Поэтому были построены специальные производства для разделения изотопов лития и отбора только 6Li. Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30.

Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн. Внешний вид бомбы показан на фото ниже. Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км.

Зельдовичем, но ни разу не слышал от него прямого подтверждения на сей счёт. Как, впрочем, и непосредственно от А. То, что мы сотворили тогда, по своей сути вошло во все последующие устройства. Тамма и Н. А между тем как раз в это время активизировалась деятельность основных исполнителей — теоретиков, математиков, физиков-экспериментаторов, конструкторов, инженеров. Вера в плодотворность идеи, в её универсальность была настолько велика, что тогда же было принято решение о создании нового научно-ядерного центра — на Урале. Переезды, затрагивающие судьбы людей, совсем не способствовали тому, чтобы сосредоточиться на доведении новой конструкции до испытания. По сути дела, над её созданием мы работали только в 1954 году и в начале 1955-го. А в ноябре 55-го было проведено испытание водородной бомбы нового образца — результат оказался ошеломляющим. Все прочие варианты были отставлены. Появились первые в стране лауреаты Ленинской премии во главе с И. Курчатовым, многим руководителям было присвоено звание Героя кому впервые, кому во второй и даже в третий раз , чинам поменьше раздали ордена разного достоинства. Но и мы были не такими, как во время Фукса и первой атомной бомбы, а значительно более понимающими, подготовленными к восприятию намёков и полунамёков. Меня не покидает ощущение, что в ту пору мы не были вполне самостоятельными. В статье Хирта и Мэтьюза многое сказано про американскую водородную бомбу. Особенно много — для тех, кто понимает, кто варился в этом котле. Подобной откровенности мы не допускали. А они решились. И стало ясно, что мы, в общем-то, их повторяли. Не так давно мне пришлось побывать в известном ядерном центре США Ливерморе. Там рассказали одну историю, которая горячо обсуждалась в Америке и почти не известна в России. Wheeler перевозил сверхсекретный документ, касающийся новейшего ядерного устройства. По неизвестным или случайным причинам документ исчез — он всего на несколько минут был оставлен без присмотра в туалете. Несмотря на предпринятые меры — остановлен поезд, осмотрены все пассажиры, обочины железнодорожного пути на всём протяжении, — документа не обнаружили. На мой прямой вопрос к учёным Ливермора, можно ли по тому документу получить информацию о технических деталях и устройстве в целом, я получил утвердительный ответ. Нам показывали фотографии каких-то документов, большинство из них были перекошены, видимо, фотографу было некогда установить свой микроаппарат. Среди фотографий был один подлинник, ужасно измятый. Нейтрон первоначально от деления урана с хорошим сечением взаимодействует с литием-6 , образующийся тритий тут же вступает в реакцию с дейтерием. Характерно, что если на входе имеется нейтрон произвольной энергии, то на выходе появляется высокоэнергетичный нейтрон, способный делить любой уран, включая уран-238. По совокупности причин в последовательности деление-синтез-деление возникает разветвлённая цепь, очень эффективная по темпу энерговыделения и технически привлекательная. Была построена целая индустрия изотопного разделения лития, которая предусматривала использование ртути. Помню время, когда в аптеках исчезли градусники. Гинзбург и была очень плодотворной. Рассуждения, приведшие к реальной конструкции, кратко сводятся к следующему. Вообразим себе полый цилиндр, внутри которого эквидистантно расположены шары, наполненные дейтерием. Реакция в первом шаре путём его сжатия инициируется слабомощным атомным взрывом. Выделившаяся термоядерная энергия первого шара транслируется на второй шар, от второго — на третий и т. Модная в своё время экологическая задача вскоре потеряла актуальность, а искусственная траншея от ядерного взрыва постепенно заплыла и заросла. Термоядерная детонация по внешнему признаку напоминает горение бикфордова шнура, но с другой скоростью и энергетикой. При её осуществлении происходит переход от конечной энергии инициирования к произвольно большой, если режим устойчив. Термоядерная детонация имеет особую привлекательность для мирной энергетики, если удастся провести её инициирование не от взрывных источников, а, например, от лазеров. Читайте также.

Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона. В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления. Схематически эта реакция показана на рисунке ниже. Много это или мало? Как известно, все познается в сравнении. Так вот, энергия в 1 МэВ примерно в 2,3 миллиона раз больше, чем выделяется при сгорании 1 кг нефти. А ведь речь идет только о двух атомах. Можете представить, как высоки были ставки во второй половине 40-х годов прошлого века, когда в США и СССР развернулись работы, результатом которых стала термоядерная бомба. Как все начиналось Еще летом 1942 г. В США сторонником этого подхода, и даже, можно сказать, его апологетом, был уже упомянутый выше Эдвард Теллер. Для Теллера его увлечение термоядерным синтезом в годы создания атомной бомбы сыграло скорее медвежью услугу. Будучи участником Манхэтенского проекта, он настойчивые призывал к перенаправлению средств на реализацию собственных идей, целью которых была водородная и термоядерная бомба, что не понравилось руководству и вызвало напряженность в отношениях. Поскольку в то время термоядерное направление исследований не было поддержано, то после создания атомной бомбы Теллер покинул проект и занялся преподавательской деятельностью, а также исследованиями элементарных частиц. Однако начавшаяся холодная война, а больше всего создание и успешное испытание советской атомной бомбы в 1949 г. Он возвращается в Лос-Аламосскую лабораторию, где создавалась атомная бомба, и совместно со Станиславом Уламом и Корнелиусом Эвереттом приступает к расчетам. Принцип термоядерной бомбы Для того чтобы началась реакция слияния ядер, нужно мгновенно нагреть заряд бомбы до температуры в 50 миллионов градусов. Схема термоядерной бомбы, предложенная Теллером, использует для этого взрыв небольшой атомной бомы, которая находится внутри корпуса водородной. Можно утверждать, что было три поколения в развитии ее проекта в 40-х годах прошлого века: вариант Теллера, известный как "классический супер"; более сложные, но и более реальные конструкции из нескольких концентрических сфер; окончательный вариант конструкции Теллера-Улама, которая является основой всех работающих поныне систем термоядерного оружия. Он, по-видимому, вполне самостоятельно и независимо от американцев чего нельзя сказать о советской атомной бомбе, созданной совместными усилиями ученых и разведчиков, работавших в США прошел все вышеперечисленные этапы проектирования. Первые два поколения обладали тем свойством, что они имели последовательность сцепленных "слоев", каждый из которых усиливал некоторый аспект предыдущего, и в некоторых случаях устанавливалась обратная связь. Там не было четкого разделения между первичной атомной бомбой и вторичной термоядерной. В отличие от этого, схема термоядерной бомбы разработки Теллера-Улама резко различает первичный взрыв, вторичный, и при необходимости, дополнительный. Устройство термоядерной бомбы по принципу Теллера-Улама Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба т. Андрей Сахаров в Советском Союзе, по-видимому, независимо придумал аналогичную концепцию, которую он назвал "третьей идеей". Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже.

Другие статьи в литературном дневнике:

  • Мощнейшее смертоносное оружие: как устроена водородная бомба и чем она отличается от атомной
  • Водородная против атомной. Что нужно знать о ядерном оружии | Futurist - будущее уже здесь
  • Угроза №1. История создания водородной бомбы в СССР
  • Самая мощная бомба в мире. Какая бомба сильнее: вакуумная или термоядерная?

Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы

Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. Изотопы водорода. Атом водорода — простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды H2O показали, что в ней в ничтожном количестве присутствует «тяжелая» вода, содержащая «тяжелый изотоп» водорода — дейтерий 2H. Ядро дейтерия состоит из протона и нейтрона — нейтральной частицы, по массе близкой к протону. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли , где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха.

Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов. Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы HB. Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4 ё 8 Мт в тротиловом эквиваленте. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ.

Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно «Счастливый дракон», а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу. Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом.

Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития. Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом. Вспышка взрыва бомбы АН602 сразу после отделения ударной волны. В это мгновение диаметр шара составлял около 5,5 км, а через несколько секунд он увеличился до 10 км. Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн - его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.

Среди переданных К. Фуксом материалов были новые теоретические сведения, относящиеся к сверхбомбе. Фукса в адрес И. Сталина, В. Молотова, Л. Политическое руководство страны отнеслось к ним с большим вниманием, и уже 23 апреля Л. Берия поручил Б. Курчатову и Ю. Заключение и предложения главных специалистов были готовы 5 мая 1948 года. Предложения Б. Ванникова, И. Курчатова и Ю. В постановлении, в частности, ставилась задача проверить возможность создания водородной бомбы, которой был присвоен индекс РДС-6. Берии материалы К. Фукса направляются в КБ-11 Ю. Харитону для использования в работе. Кроме Ю. В июне 1948 года приступила к работе специальная группа И. Тамма, в состав которой вошли С. Беленький и А. Вскоре к работе группы примкнули В. Гинзбург и Ю. Группа не имела доступа к разведданным. Участвуя в анализе расчетов группы Я. Зельдовича, А.

Впрочем, нашлись и оптимисты, заявившие о фальсификации испытаний: мол, и тень от чучхе не туда падает, и радиоактивных осадков что-то не видно. Но почему наличие у страны-агрессора водородной бомбы является столь значительным фактором для свободных стран, ведь даже ядерные боеголовки, которые у Северной Кореи имеются в достатке, еще никого так не пугали? Что это Водородная бомба, известная также как Hydrogen Bomb или HB — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Принцип действия HB основан на энергии, которая вырабатывается при термоядерном синтезе ядер водорода — точно такой же процесс происходит на Солнце. Чем водородная бомба отличается от атомной Термоядерный синтез — процесс, который происходит во время детонации водородной бомбы — самый мощный тип доступной человечеству энергии. В мирных целях его использовать мы еще не научились, зато приспособили к военным. Эта термоядерная реакция, подобная той, что можно наблюдать на звездах, высвобождает невероятный поток энергии.

Как действует водородная бомба и каковы последствия взрыва? Инфографика

Сырьем для получения урана-235 была урановая руда из конголезского рудника бельгийской компании. Количество руды, вывезенной перед затоплением рудника в США, было ограничено. Использовать технологию разделения разных изотопов урана на центрифуге не удалось. Для получения чистого урана-235, вступающего в реакцию расщепления, были использованы газовая диффузия, электромагнитное разделение, термодиффузия. К запланированному сроку лето 1945 г. Для подрывного устройства «Малыша» применили пушечную схему, при которой критическая масса заряда достигалась соединением двух блоков докритической массы при помощи порохового заряда. В срабатывании пушечной схемы конструкторы не сомневались, поэтому испытания единственной бомбы не проводились. Подобных трудностей не было при производстве плутония-239. Его получали из урана-238, которого было накоплено достаточно. Плутониевые заряды были изготовлены для двух бомб, названных «Штучка» и «Толстяк».

Но пушечная схема для плутониевых зарядов была непригодна. Конструкторам пришлось использовать имплозивную схему подрыва, при которой десятки взрывных линз сжимали фрагменты оружейного плутония до критической массы. Первые испытания, практическое применение ядерного оружия Первое испытание безоболочечной бомбы «Штучка» 16 июля 1945 г. Наземный взрыв устройства показал мощность, равную подрыву 21 тысячи тонн тротиловой взрывчатки. Для испытательного подрыва была выбрана безжизненная, ненаселенная пустыня Нью-Мексико. Кроме человеческих жертв, несколько ученых опасались возникновения бесконтрольной реакции выгорания кислорода в атмосфере Земли. Взрыв «Штучки» в проекте «Тринити» Температура на месте взрыва расплавила кварцевые породы в зеленую стекловидную массу, получившую название «тринитит». Ободренное успехом, правительство США отдало приказ подготовить ядерные боеприпасы к сбросу на Японию. Урановый и плутониевый заряды «одели» в оболочки авиабомб.

При этом «Толстяк», из-за имплозивной конструкции подрыва, по размеру и весу был значительно больше «Малыша». Макеты «Толстяка» и «Малыша» в современном музее ядерного оружия Бомбы были оборудованы барометрическими и часовыми взрывателями, обеспечивающими воздушный подрыв заряда на высоте 500-700 метров. На обслуживании ядерного проекта работал отдельный авиационный полк под номером 509 с 1944 г. Именно командир этого полка Пол Тиббетс выполнил приказ военного министра завизированный президентом Трумэном о бомбардировке Японии. Экипаж «Энолы Гей». Полковник Пол Тиббетс в центре с трубкой в зубах Ночью 6 августа с американской авиабазы на Марианских островах вылетела группа самолетов в составе основного бомбардировщика B-29 номер 44-86292, название «Энола Гей» , трех разведчиков, двух самолетов аэрофотосъемки, запасного бомбардировщика. Через 6 часов полета, пролетев около 2500 миль, группа достигла берегов Южной Японии. Высланные вперед разведчики сообщили об отсутствии облачности над Хиросимой, основной целью полета. В 8 утра «Энола Гей», пилотируемая П.

Тиббетсом, сбросила урановую бомбу над центром Хиросимы. В момент бомбардировки в Хиросиме жило до 250 тысяч человек, базировались крупные военные склады, штаб фельдмаршала С. Хаты, командующего обороной Южной Японии. В результате взрыва мощность оценивается 10—17 килотоннами от светового излучения, взрывной волны, огненного смерча погибло до 140 тысяч японцев, город выгорел в диаметре 2 километров. Документальный снимок разрушений в Хиросиме Не менее ужасающим был взрыв плутониевого заряда над Нагасаки. Облачность не дала экипажу точно прицелиться, бомба была сброшена над холмами и промзоной. Поэтому, несмотря на большую мощность 21 килотонна , плутониевый заряд убил «всего» 74 тысячи японцев. Впоследствии в Японии от радиационного заражения умерло не менее 450 тысяч человек. Атомные бомбардировки не принесли немедленной капитуляции Японии, но подтолкнули СССР к объявлению войны и началу Маньчжурской операции.

Только после потери Квантунской армии разбита за 10 дней , полного освобождения Маньчжурии и севера Кореи от японских войск император согласился на капитуляцию подписана 2 сентября 1945 г. Но на некоторое время агрессивные военные круги США почувствовали себя монополистом, который может диктовать условия всему миру. Американские штабисты даже разработали планы «упреждающей войны» против СССР. Военные действия по плану «Троян» должны были начаться в 1950 г. Позже план скорректировали на 1957 год, для включения в него стран НАТО. Агрессивные планы остановили только первые испытания советского ядерного оружия. Советская ядерная программа До 1941 года советские ученые занимались теорией строения атомного ядра, цепной реакции, радиохимическими исследованиями без выхода на тему ядерного оружия.

Параллельно появились и первые бомбардировщики, способные переносить это оружие. В США такое развитие событий вызвало неслыханную тревогу. Уже 31 января 1950 года Трумэн выступил перед американским народом. Президент сообщил нации, что будет продолжена «работа над всеми видами атомного оружия, включая так называемую водородную или сверхбомбу». Испытаний водородной бомбы пришлось ждать еще два года — до 1 ноября 1952-го. Взорванное в тот день термоядерное оружие было по-настоящему монструозным. Оно весило 60 тонн и по размерам превосходило трехэтажный дом. Мощность этой чудовищной разработки, названной «Айви Майк», впечатляла не меньше: она в 450 раз превышала возможности «Толстяка», который в 1945 году стер с лица земли Нагасаки. Советские ученые работали над собственной водородной бомбой параллельно с американцами Уже 8 августа 1953 года глава Совета министров СССР Георгий Маленков во всеуслышание объявил о том, что эти труды увенчались успехом. На Западе заявление произвело фурор, хотя и было встречено сомнениями. The New York Times даже вышла с заголовком «Маленков говорит правду? Утвердительный ответ был дан всего через четыре дня: 12 августа 1953 года на Семипалатинском полигоне испытали водородную бомбу РДС-6с. Жуткое оружие потом назовут «слойкой Сахарова» — ее конструкция предполагала чередование легких и тяжелых реактивных веществ. Взрыв прогремел в 07:30 утра. Спустя несколько секунд в небо поднялся гриб высотой 12 километров, а пыль разлетелась на десятки километров. Близлежащий железнодорожный мост со стотонными пролетами был отброшен на 200 метров. В радиусе четырех километров были полностью разрушены все кирпичные здания. Жар от вспышки ощущался на расстоянии 25 километров. Земля содрогнулась под нами, а в лицо ударил тугой, крепкий, как удар хлыста, звук раскатистого взрыва. От толчка ударной волны трудно было устоять на ногах Владимир Комельковучастник атомного проекта «Слойка Сахарова» была значительно слабее американского образца. Ее заряд составлял всего 400 килотонн — против 10 мегатонн «Айви Майка». Но РДС-6с была куда компактнее и легко помещалась в отсеке бомбардировщика Ту-16. Да, взрыв действительно получился куда сильнее взрыва атомной бомбы. Впечатление от него, по-видимому, превзошло какой-то психологический барьер. Следы первого взрыва атомной бомбы не внушали такого содрогающего ужаса, хотя и они были несравненно страшнее всего виденного еще недавно на прошедшей войне», — писал сотрудник Радиевого института АН СССР Николай Власов. Гарантированное уничтожение Но по-настоящему ход гонки вооружений изменила даже не водородная бомба РДС-6с, а первая межконтинентальная баллистическая ракета Р-7. Она появилась в 1957 году и была способна достичь другого конца Земли. Перехватить ее на тот момент не могла ни одна система защиты в мире Эта же ракета чуть позже станет отправной точкой для освоения Советским Союзом космоса. Именно на ее основе создали семейство ракет-носителей, которое позволило СССР сначала отправить на орбиту искусственный спутник Земли, а затем осуществить и первый полет человека к звездам. К концу 1950-х арсеналы ядерного оружия обеих сверхдержав уже были достаточными для того, чтобы погубить все живое на планете. Причем и у СССР, и у США были проекты, которые позволяли нанести ответный удар даже в том случае, если бы их центры принятия решений были поражены. Обе страны получили гарантии взаимного уничтожения. Эта концепция предполагала, что если одна страна начнет агрессию против другой, то неминуемо будут уничтожены оба участника конфликта. Угроза апокалипсиса, в свою очередь, станет такой явной, что в реальности никто на этот опасный шаг не решится. Такой порядок вещей, впрочем, все же не стал залогом стабильности. Терпение Политбюро лопнуло после того, как под турецким Измиром были размещены ракеты средней дальности PGM-19 «Юпитер», которые могли долететь до европейской части СССР за считаные минуты. Генштаб разработал операцию «Анадырь». На Кубу отправили 44 тысячи военнослужащих, 40 ядерных баллистических ракет Р-12 и Р-14, 80 крылатых ракет в ядерном снаряжении, 3 дивизиона тактических ядерных ракетных комплексов «Луна», а также бомбардировщики Ил-28, оснащенные атомными бомбами. Разумеется, этот шаг привел к созданию нового очага напряженности. Военные стали уговаривать президента Кеннеди вторгнуться на Кубу. Фидель Кастро тем временем убеждал Хрущева нанести по Америке превентивный ядерный удар. Эти события вошли в историю под названием «Карибский кризис». Планета никогда еще не была так близка к апокалипсису. И в Москве, и в Вашингтоне хватало ястребов, которые призывали первыми открыть атомный ящик Пандоры, не дожидаясь, когда это сделает противник. Ситуацию решил поздний ночной звонок, во время которого два вождя обсудили происходящее напрямую. И дали заднюю. Америка, в свою очередь, согласилась вывезти ракеты «Юпитер» из Турции. Может быть, и так. Но это могло быть похоже на детскую сказку, когда два козла встретились на перекладине перед пропастью. Они проявили козлиную мудрость, и оба упали в пропасть. Вот в чем дело», — заявил вскоре после этого события Никита Хрущев. Карибский кризис стал переломным моментом холодной войны. Именно он спровоцировал появление в США мощного антивоенного движения, которое стало еще активнее во время Вьетнамской войны. Осторожную политику избрали и в СССР.

Бомбу сняли, провели повторно проверки всех ее приборов, агрегатов и узлов. В кругу ученых ядерщиков ее назвали «настоящая водородная». Результаты испытаний Мощность термоядерного взрыва с использованием 3-х разных методик была оценена в 1,7 Мегатонн в 4,5 раза более РДС-6С при тех же массогабаритных характеристиках ; - вся боевая техника, выставленная на опытном поле полигона, была разрушена, самолеты отброшены на 200-500 м, средние и тяжелые танки были отброшены и опрокинуты вверх гусеницами; - боевая фортификация ДОТы, ДЗОТы, укрепленные деревом траншеи обрушились и сгорели ; - промышленные и жилые дома были разрушены полностью, стальной железнодорожный мост был отброшен на 200 м и исковеркан. Пострадал и тоннель метро. Случились также и непредвиденные разрушения: - на Семипалатинском мясокомбинате втором по масштабам продукции после Микояновского в Москве , расположенного в 270 км от точки взрыва, вылетели все стекла, а его недельная продукция пошла в утиль; - по узкому сектору ударная волна достаточной силы достигла Павлодара, удаленного примерно на 400 км от эпицентра взрыва, создав там панику; - основная площадка «М» Семипалатинского полигона жилой городок, ныне город Курчатов , расположенная в 70 км от эпицентра, подверглась нескольким ударным волнам, сбивавшим с ног людей, что было зафиксировано в научно-историческом фильме. Стало очевидным, что дальнейшие испытания ядерных зарядов мегатонного класса на Семипалатинском полигоне неприемлемы, поэтому с 1956 г. Итоги Разработка первого двухступенчатого термоядерного заряда на принципе радиационной имплозии стало ключевым этапом развития ядерной оружейной программы СССР. За творческий и научный вклад в эту разработку ряд специалистов КБ-11 были удостоены звания Героя Социалистического Труда в том числе, третьей Звездой Героя были награждены академики И. Курчатов, Ю. Харитон, К. Щелкин, Я. Зельдович, вторую Звезду Героя получил академик А. Курчатову, Ю. Харитону, А. Сахарову, Я. Труд многих разработчиков заряда был отмечен орденами и медалями. Нескольких наград удостоились и работники Минобороны и других гражданских министерств, связанных с разработкой РДС-37. Остальные члены экипажа получили ордена, повышения в звании и солидные денежные премии. Испытания РДС-37 открыли огромные возможности в конструировании термоядерных зарядов в широком диапазоне энерговыделения при оптимальных массогабаритных характеристиках. На базе заряда РДС-37 был разработан и успешно испытан 6 октября 1957 г. Идеологами проекта и разработчиками физической схемы заряда были молодые физики-теоретики Ю. Бабаев и Ю. За счет внедрения новых физических идей, обеспечивающих совершенствование схемы РДС-37, в новом заряде удалось существенно уменьшить габариты термоядерного узла. Заряд «49» разрабатывался в меньшей весовой категории. Но за счет кардинального улучшения физической схемы термоядерного узла удельное объемное энерговыделение было увеличено в 2,4 раза. Физическая схема заряда оказалась столь удачной, что после модернизации конструкции он был запущен в серийное производство. Новаторские идеи, воплощенные в заряде «49», многократно использовались в дальнейшем. Таким образом, успешные испытания термоядерного заряда РДС-37 заложили основу разработки термоядерных зарядов неограниченной мощности на долгие годы совершенствования ядерно-оружейного комплекса нашего Отечества.

За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире - на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Во многом именно это заявление советского лидера заставило мир осознать угрозу дальнейшей эскалации гонки ядерных вооружений : уже 5 августа 1963 г. История создания Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества - но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны что в 450 раз больше мощности бомбы, сброшенной на Нагасаки , а в 1953 году в СССР было испытано устройство мощностью 400 килотонн. Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива - дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба.

Термоядерное оружие: Как устроена водородная бомба

Нейтроны бомбардируют вкладыш из дейтерида лития — соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Деление, синтез, деление супербомба. На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах.

Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных «осколка». В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности. Последствия взрыва.

Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий — это ударная волна огромной интенсивности.

США Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом была предложена Энрико Ферми его коллеге Эдварду Теллеру еще в 1941 году , в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой.

Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь. Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма излучение, порожденные первичным взрывом могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию обжатие и инициировать термоядерную реакцию.

Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма. Две сверхдержавы несколько лет спорили о том, кто станет первым обладателем нового вида разрушительного оружия. В Москве хотели достичь ядерного паритета с Вашингтоном и вкладывали в гонку вооружений огромные средства. Впрочем, работы по созданию водородной бомбы начались не благодаря щедрому финансированию, а из-за донесений законспирированной агентуры в Америке. В 1945 года в Кремле узнали о том, что в США идет подготовка к созданию нового оружия.

Это была сверхбомба, проект которой получил название Super. Он передал Советскому Союзу конкретные сведения, которые касались секретных американских разработок сверхбомбы. К 1950 году проект Super был выброшен в корзину, так как западным ученым стало ясно, что такая схема нового оружия не может быть реализована. Руководителем этой программы был Эдвард Теллер. В 1946 году Клаус Фукс и Джон развили идеи проекта Super и запатентовали собственную систему.

Принципиально новым в ней был принцип радиоактивной имплозии. В СССР эту схему начали рассматривать несколько позже - в 1948 году. В целом можно сказать, что на стартовом этапе полностью базировался на американских информации, полученной разведкой. Но, продолжая исследования уже на основе этих материалов, советские ученые заметно опередили своих западных коллег, то позволило СССР получить сначала первую, а потом и самую мощную термоядерную бомбу. В этом документе рассматривалась возможность использования бомбы с дейтерием.

Данное выступление стало началом советской ядерной программы. В 1946 году теоретические исследования тали проводиться в Институте химической физики. Первые результаты этой работы были обсуждены на одном из заседаний Научно-технического совета в Первом главном управлении. Еще через два года Лаврентий Берия поручил Курчатову и Харитону проанализировать материалы о системе фон Неймана, которые были доставлены в Советский Союз благодаря законспирированной агентуре на западе. Данные из этих документов дали дополнительный импульс исследованиям, благодаря которым родился проект РДС-6.

Подрыв произошел на атолле Энивотек, в Тихом океане. Устройство не могло использоваться в качестве оружия, так как производился с помощью дейтерия. Кроме того, оно отличалось огромным весом и габаритами. Такой снаряд просто нельзя было сбросить с самолета. Испытание первой водородной бомбы было проведено советскими учеными.

После того как в США узнали об успешном использовании РДС-6с, стало ясно что необходимо как можно быстрее сократить отставание от русских в гонке вооружений. Американское испытание прошло 1 марта 1954 года. В качестве полигона был выбран атолл Бикини на Маршалловых островах. Тихоокеанские архипелаги выбирались не случайно. Здесь почти не было населения а те немногие люди, которые жили на близлежащих островах, были выселена накануне эксперимента.

Самый разрушительный взрыв водородной бомбы американцев стал известен как «Кастл Браво». Мощность заряда оказалась в 2,5 раза выше предполагаемой. Взрыв привел к радиационному заражению значительной площади множества островов и Тихого океана , что привело к скандалу и пересмотру ядерной программы. План был написан выдающимся физиком Андреем Сахаровым. Согласно этому решению, группа ученых под руководством Игоря Тамма отправилась в закрытый Арзамас-16.

Специально для этого грандиозного проекта был подготовлен Семипалатинский полигон. Перед тем как началось испытание водородной бомбы, там были установлены многочисленные измерительные, киносъемочные и регистрирующие приборы. Кроме того, по поручению ученых там появились почти две тысячи индикаторов. Область, которую затронуло испытание водородной бомбы, включала в себя 190 сооружений. Семипалатинский эксперимент был уникальным не только из-за нового вида оружия.

Использовались уникальные заборники, предназначенные для химических и радиоактивных проб. Их могла открыть только мощная ударная волна. Регистрирующие и киносъемочные приборы были установлены в специально подготовленных укрепленных сооружениях на поверхности и в подземных бункерах. Он получил название Alarm Clock. Первоначально проект этого устройства был предложен как альтернатива Super.

В апреле 1947 года в лаборатории в Лос-Аламосе началась целая серия экспериментов, предназначенная для исследования природы термоядерных принципов. От Alarm Clock ученые ожидали наибольшего энерговыделения. Осенью Теллер решил использовать в качестве горючего для устройства дейтерид лития. Исследователи еще не использовали это вещество, но ожидали, что оно позволит повысить эффективность Интересно, что Теллер уже тогда отмечал в своих служебных записках зависимость ядерной программы от дальнейшего развития компьютеров. Эта техника была необходима ученым для более точных и сложных расчетов.

Alarm Clock и РДС-6с имели много общего, но многим и отличались. Американский вариант не был столь практичным как советский из-за своей величины. Большие размеры он унаследовал от проекта Super. В конце концов, американцам пришлось отказаться от этой разработки. Последние исследования прошли в 1954 году, после чего стало ясно, что проект нерентабелен.

Взрыв первой термоядерной бомбы Первое в человеческой истории испытание водородной бомбы произошло 12 августа 1953 года. Утром на горизонте появилась ярчайшая вспышка, которая слепила даже через защитные очки. Взрыв РДС-6с оказался в 20 раз мощнее атомной бомбы. Эксперимент был признан удачным. Ученые смогли достичь важного технологического прорыва.

Впервые в качестве горючего был использован гидрид лития. В радиусе 4 километров от эпицентра взрыва волной уничтожило все постройки. Это разрушительное оружие было не только самым мощным. Важным достоинством бомбы являлась ее компактность. Снаряд помещался в бомбардировщик Ту-16.

Успех позволил советским ученым опередить американцев. В США в это время было термоядерное устройство, размером с дом. Оно было нетранспортабельным. Главным аргументом американцев был тот факт, что термоядерная бомба должна быть изготовлена по схеме Теллера-Улама. В ее основе лежал принцип радиационной имплозии.

Этот проект будет реализован в СССР через два года, в 1955-м. Водородная бомба была его детищем - именно он предложил революционные те технические решения , которые позволили успешно завершить испытания на Семипалатинском полигоне. В 1953 испытание водородной бомбы показало, что советская наука может преодолеть то, что еще совсем недавно казалось выдумкой и фантастикой. Поэтому сразу после успешного взрыва РДС-6с началась разработка еще более мощных снарядов. На этот раз она была двухступенчатой и соответствовала схеме Теллера-Улама.

Бомбу РДС-37 собирались сбросить с самолета. Однако, когда он поднялся в воздух, стало ясно что испытания придется проводить при нештатной ситуации. Вопреки прогнозам синоптиков, заметно испортилась погода, из-за чего полигон накрыла плотная облачность. Впервые специалисты оказались вынуждены сажать самолет с термоядерной бомбой на борту.

Чтобы атомные ядра сливались друг с другом, их надо нагреть до миллионов градусов.

Схему устройства, которое позволило бы это проделать, американцы запатентовали в 1946 году проект неофициально назывался Super , но вспомнили о ней только спустя три года, когда в СССР успешно испытали ядерную бомбу. О том, какие секреты хранит в себе это опаснейшее ядерное оружие, смотрите в сегодняшнем видео на канале NewSoldat. Также смотрите другие видео на нашем канале: 14 самых крупных ядерных взрывов.

Если оболочка контейнера изготовлена из изотопов урана поток нейтронов вызовет цепную реакцию его деления, тем самым увеличив мощность взрыва. Последствия применения водородной бомбы Прямые — они зависят от непосредственного воздействия основных поражающих факторов термоядерного взрыва: Многочисленные пожары на обширные местности, вызванные одним из поражающих факторов термоядерного взрыва — световым излучением. Оно представляет собой поток лучистой энергии, состоящий из ультрафиолетового, видимого, а также инфракрасного излучения. Площадь и сила пожаров тем выше, чем мощнее термоядерный взрыв и ближе к земле его эпицентр. Значительное количество пострадавших с термическими ожогами разной степени тяжести — от сравнительно лёгких ожогов 1 и 2 степени, до тяжелейших ожогов 4 степени гибель подкожно-жировой клетчатки, обугливание мышц и костей.

К отдельной категории можно отнести ожоги сетчатки глаза, приводящие временной или постоянной потере зрения. Причины — световое излучение взрыва и пожары на местности. Разрушение зданий и сооружений включая подземные , вызванные ударной волной термоядерного взрыва. Большое количество пострадавших с травмами различного характера и степени тяжести переломы костей, множественные порезы, контузии и разрывы внутренних органов , полученными, как от непосредственного воздействия ударной волны, так и от вторичных факторов удары обломков зданий, битого стекла, металлической арматуры и т. Наличие пострадавших, которые подверглись воздействию проникающей радиации гамма-излучения и потока нейтронов. Люди, оказавшиеся на расстоянии 2-3 км от эпицентра взрыва, вне защитных сооружений, мгновенно получат значительные дозы облучения во многих случаях смертельные. Радиоактивное заражение местности продуктами деления ядерного заряда, элементами ядерного заряда не вступившими в реакцию и радиоактивными изотопами, образовавшимися в различных материалах и окружающем или выброшенном грунте в результате воздействия нейтронного излучения наведенная радиация. Выход из строя большинства электронных приборов и значительной части электрических приборов вследствие воздействия электромагнитного импульса, возникающего при взрыве.

Водородная и атомная бомбы: сравнительные характеристики

Наличие пострадавших, которые подверглись воздействию проникающей радиации гамма-излучения и потока нейтронов. Люди, оказавшиеся на расстоянии 2-3 км от эпицентра взрыва, вне защитных сооружений, мгновенно получат значительные дозы облучения во многих случаях смертельные. Радиоактивное заражение местности продуктами деления ядерного заряда, элементами ядерного заряда не вступившими в реакцию и радиоактивными изотопами, образовавшимися в различных материалах и окружающем или выброшенном грунте в результате воздействия нейтронного излучения наведенная радиация. Выход из строя большинства электронных приборов и значительной части электрических приборов вследствие воздействия электромагнитного импульса, возникающего при взрыве. Косвенные — они зависят от мощности взорвавшейся бомбы и высоты её подрыва: Практически полный выход из строя систем центрального водоснабжения, что приведет значительным людским потерям из-за невозможности вести борьбу с пожарами, а также употребления воды заражённой радионуклидами и не прошедшей необходимой дезинфекции от возбудителей различных болезней.

Потеря большей части продовольственного запаса под завалами, вследствие радиоактивного заражения, из-за нарушений правил хранения и воздействия факторов окружающей среды. Полный выход из строя почти всей сложной электроники без возможности восстановления и большей части электроприборов за исключением наиболее простых бытового назначения под воздействием электромагнитного импульса. Как следствие — невозможность вести эффективные спасательные работы, а также сколь-нибудь значимую хозяйственную деятельность. Итоги применения водородной бомбы, рекомендации для тех, кто выжил Итоги применения: Невозможность использования большей части зданий и сооружений вследствие их сильного или полного разрушения.

Невозможность восстановления большей части поврежденных зданий ввиду разрушения всех коммуникаций, отсутствия необходимого количества работоспособной тяжёлой техники, строительных материалов. Невозможность и нецелесообразность доставки необходимого количества продуктов питания, воды, медикаментов, а также прочего обеспечения в зону поражения. Наличие остаточного радиоактивного заражения, не позволяющего долговременное проживание в зоне поражения в течение нескольких месяцев или лет после взрыва. Рекомендации тем, кто выжил: Выждать в каком-либо изолированном защищенном месте убежище, подвал, погреб не менее двух суток лучше больше после взрыва водородной бомбы, ожидая спада наружного радиационного фона.

Главным камнем преткновения в советско-американских отношениях стал ядерный арсенал США. По сути, уже в этот момент набирала обороты гонка вооружений. Сегодня о нём всё чаще говорят на международной арене «Дитя не плачет — мать не разумеет» СССР отставал от Запада в сфере создания ядерного оружия. Несмотря на то что исследования в области физики ядра успешно развивались в нашей стране в 1930-е годы, они были прерваны войной. Осознав из донесений разведки всю опасность отставания в этой области, осенью 1942 года руководство СССР приняло решение о возобновлении работ по урану. Научным руководителем советского атомного проекта стал 40-летний физик Игорь Курчатов, в команду которого вошли Юлий Харитон, Исаак Кикоин, Яков Зельдович и ряд других ученых. Но в условиях жесточайшей войны достаточное финансирование проекта было невозможным. И именно американцы продемонстрировали всю его разрушительную силу летом 1945-го: 6 августа на Хиросиму сбросили бомбу под кодовым названием «Малыш», а 9 августа на Нагасаки — «Толстяк». Правда, американские газеты пестрели яркими заголовками, в которых акцент делался на мощности оружия.

Некоторые издания обвиняли руководство Японии в том, что оно вынудило США пойти на такие меры. Иосиф Сталин собрал совещание, на котором поручил ускорить работы по созданию советской атомной бомбы. Куратором от правительства стал Лаврентий Берия. Просите всё что угодно! Отказа не будет. Только дайте бомбу», — сказал Сталин.

Водородная бомба — это термоядерный боеприпас комбинированного действия, использующий оба указанных принципа ядерных реакций. Мощность взрыва ядерного оружия измеряется в тысячах или миллионах тонн тротилового эквивалента килотоннах или мегатоннах. Принцип действия термоядерного оружия Разрушительная сила термоядерного оружия основана на применении энергии, возникающей в процессе синтеза лёгких ядер гелия из изотопов водорода — дейтерия и трития.

Запустить процесс термоядерного синтеза только с использованием данных веществ современные достижения научно-технического прогресса не позволяют. Поэтому в качестве первой ступени водородной бомбы используется обычная ядерная бомба, а в качестве компонентов или материала ряда последующих ступеней используются изотопы урана. Конструкция простейшей водородной бомбы: Триггер — маломощный инициирующий ядерный заряд несколько килотонн тротила. Контейнер, содержащий термоядерное топливо с полым запальным стержнем из урана или плутония. Материал оболочки контейнера — свинец или уран 238. Пластиковый наполнитель, которым заливают триггер и контейнер. Корпус бомбы, выполненный из стальных или алюминиевых сплавов. В него помещают наполнитель с основными элементами бомбы. При взрыве инициирующего ядерного заряда возникает поток рентгеновского излучения, приводящий к мгновенному испарению оборочки контейнера с термоядерным топливом.

При её испарении происходит мощное обжатие находящегося внутри термоядерного топлива и запального стержня.

Американское испытание прошло 1 марта 1954 года. В качестве полигона был выбран атолл Бикини на Маршалловых островах. Тихоокеанские архипелаги выбирались не случайно. Здесь почти не было населения а те немногие люди, которые жили на близлежащих островах, были выселена накануне эксперимента.

Самый разрушительный взрыв водородной бомбы американцев стал известен как «Кастл Браво». Мощность заряда оказалась в 2,5 раза выше предполагаемой. Взрыв привел к радиационному заражению значительной площади множества островов и Тихого океана , что привело к скандалу и пересмотру ядерной программы. План был написан выдающимся физиком Андреем Сахаровым. Согласно этому решению, группа ученых под руководством Игоря Тамма отправилась в закрытый Арзамас-16.

Специально для этого грандиозного проекта был подготовлен Семипалатинский полигон. Перед тем как началось испытание водородной бомбы, там были установлены многочисленные измерительные, киносъемочные и регистрирующие приборы. Кроме того, по поручению ученых там появились почти две тысячи индикаторов. Область, которую затронуло испытание водородной бомбы, включала в себя 190 сооружений. Семипалатинский эксперимент был уникальным не только из-за нового вида оружия.

Использовались уникальные заборники, предназначенные для химических и радиоактивных проб. Их могла открыть только мощная ударная волна. Регистрирующие и киносъемочные приборы были установлены в специально подготовленных укрепленных сооружениях на поверхности и в подземных бункерах. Он получил название Alarm Clock. Первоначально проект этого устройства был предложен как альтернатива Super.

В апреле 1947 года в лаборатории в Лос-Аламосе началась целая серия экспериментов, предназначенная для исследования природы термоядерных принципов. От Alarm Clock ученые ожидали наибольшего энерговыделения. Осенью Теллер решил использовать в качестве горючего для устройства дейтерид лития. Исследователи еще не использовали это вещество, но ожидали, что оно позволит повысить эффективность Интересно, что Теллер уже тогда отмечал в своих служебных записках зависимость ядерной программы от дальнейшего развития компьютеров. Эта техника была необходима ученым для более точных и сложных расчетов.

Alarm Clock и РДС-6с имели много общего, но многим и отличались. Американский вариант не был столь практичным как советский из-за своей величины. Большие размеры он унаследовал от проекта Super. В конце концов, американцам пришлось отказаться от этой разработки. Последние исследования прошли в 1954 году, после чего стало ясно, что проект нерентабелен.

Взрыв первой термоядерной бомбы Первое в человеческой истории испытание водородной бомбы произошло 12 августа 1953 года. Утром на горизонте появилась ярчайшая вспышка, которая слепила даже через защитные очки. Взрыв РДС-6с оказался в 20 раз мощнее атомной бомбы. Эксперимент был признан удачным. Ученые смогли достичь важного технологического прорыва.

Впервые в качестве горючего был использован гидрид лития. В радиусе 4 километров от эпицентра взрыва волной уничтожило все постройки. Это разрушительное оружие было не только самым мощным. Важным достоинством бомбы являлась ее компактность. Снаряд помещался в бомбардировщик Ту-16.

Успех позволил советским ученым опередить американцев. В США в это время было термоядерное устройство, размером с дом. Оно было нетранспортабельным. Главным аргументом американцев был тот факт, что термоядерная бомба должна быть изготовлена по схеме Теллера-Улама. В ее основе лежал принцип радиационной имплозии.

Этот проект будет реализован в СССР через два года, в 1955-м. Водородная бомба была его детищем - именно он предложил революционные те технические решения , которые позволили успешно завершить испытания на Семипалатинском полигоне. В 1953 испытание водородной бомбы показало, что советская наука может преодолеть то, что еще совсем недавно казалось выдумкой и фантастикой. Поэтому сразу после успешного взрыва РДС-6с началась разработка еще более мощных снарядов. На этот раз она была двухступенчатой и соответствовала схеме Теллера-Улама.

Бомбу РДС-37 собирались сбросить с самолета. Однако, когда он поднялся в воздух, стало ясно что испытания придется проводить при нештатной ситуации. Вопреки прогнозам синоптиков, заметно испортилась погода, из-за чего полигон накрыла плотная облачность. Впервые специалисты оказались вынуждены сажать самолет с термоядерной бомбой на борту. Некоторое время на Центральном командном пункте шла дискуссия о том, что делать дальше.

Рассматривалось предложение сбросить бомбу в горах неподалеку, однако этот вариант был отклонен, как слишком рискованный. Меж тем самолет продолжал кружить рядом с полигоном, вырабатывая горючее. Решающее слово получили Зельдович и Сахаров. Водородная бомба, взорвавшаяся не на полигоне, привела бы к катастрофе. Ученые понимали всю степень риска и собственной ответственности, и все-таки дали письменное подтверждение того, что посадка самолета будет безопасной.

Наконец, командир экипажа Ту-16 Федор Головашко получил команду приземляться. Посадка была очень плавной. Летчики проявили все свои умения и не запаниковали в критической ситуации. Маневр был идеальным. В Центральном командном пункте облегченно выдохнули.

Создатель водородной бомбы Сахаров и его команда перенесли испытания. Вторая попытка была намечена на 22 ноября. В этот день все прошло без внештатных ситуаций. Бомбу сбросили с высоты в 12 километров. Пока снаряд падал, самолет успел удалиться на безопасное расстояние от эпицентра взрыва.

Через несколько минут ядерный гриб достиг высоты 14 километров, а его диаметр - 30 километров. Взрыв не обошелся без трагических происшествий. От ударной волны на расстоянии в 200 километров выбивало стекла, из-за чего пострадало несколько человек. Также погибла девочка, жившая в соседнем ауле, на которую обвалился потолок. Еще одной жертвой стал солдат, находившийся в специальном выжидательном районе.

Солдата засыпало в землянке, и он умер от удушья до того, как товарищи смогли вытащить его. Разработка «Царь-бомбы» В 1954 году лучшие физики-ядерщики страны под руководством начали разработку мощнейшей в истории человечества термоядерной бомбы. Благодаря своей мощности и размеру бомба стала известна как «Царь-бомба». Участники проекта позже вспоминали, что эта фраза появилась после знаменитого высказывания Хрущева о «Кузькиной матери» в ООН. Официально же проект назывался АН602.

За семь лет разработок бомба пережила несколько реинкарнаций. Сначала ученые планировали использовать компоненты из урана и реакцию Джекилла-Хайда, однако позже от этой идеи пришлось отказаться из-за опасности радиоактивного загрязнения. Испытание на Новой Земле На некоторое время проект «Царь-бомба» был заморожен, так как Хрущев собирался в США, а в холодной войне наступила короткая пауза. В 1961 году конфликт между странами разгорелся вновь и в Москве снова вспомнили о термоядерном оружии. Самолет добирался до цели два часа.

Очередная советская водородная бомба была сброшена на высоте в 10,5 тысяч метров над ядерным полигоном «Сухой Нос». Снаряд взорвался еще в воздухе.

Как один солдат водородную бомбу изобрел

Водородные бомбы типа РДС-6с и РДС-37 были включены в состав вооружения стратегических бомбардировщиков — тяжелых Ту-95а, М-4 и средних Ту-16а, причем РДС-37 заложили в основу следующих термоядерных боеприпасов. Момент взрыва водородной бомбы в акватории Тихого океана. РИА Новости. Водородная бомба, известная также как Hydrogen Bomb или HB — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. это все те же РДС-6с. Водородные бомбы — наиболее разрушительный его вариант — имеют теоретически неограниченную мощность, и потому при их разработке между СССР и США развернулась гонка.

«Настоящая водородная» (к 55-летию испытаний термоядерного заряда РДС-37)

Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом. В конструкции термоядерной бомбы советские физики применили бомбардировку оболочки из урана-238 быстрыми нейтронами. Момент взрыва водородной бомбы в акватории Тихого океана. РИА Новости. Водородная бомба. Ещё сильнее разрушительную силу современных ядерных боеприпасов можно повысить капсулой с термоядерным горючим. Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса. Водородная бомба – это термоядерный боеприпас комбинированного действия, использующий оба указанных принципа ядерных реакций.

Ядерный клуб

  • Как работает водородная бомба » Вестник К
  • Что такое реакция слияния ядер?
  • Ядерная бомба: год создания в СССР и США, первое испытание, самая мощная
  • Что произойдет после взрыва ядерной бомбы? - Hi-Tech

Состоялось испытание первой Советской водородной бомбы

Работать над созданием водородной бомбы начали сразу после войны в конце 1945 года. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Водородная бомба мощностью 100 мегатонн превосходит в 10 тысяч раз мощность бомбы, сброшенной на Хиросиму. Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер.

Похожие новости:

Оцените статью
Добавить комментарий