Новости профессии связанные с нейросетями

На наших глазах под влиянием нейросетей меняются традиционно «гуманитарные» и творческие профессии. — Конечно, нейронные сети помогают в большом количестве профессий делать работу быстрее. Нейросеть ChatGPT рассказала, какие профессии заменит искусственный интеллект. С нейросетями была знакома немного до обучения.

Что делают разработчики нейронных сетей: суть работы, обучение

Нейросеть ChatGPT рассказала, какие профессии заменит искусственный интеллект Фото: Shutterstock Примерно пятая часть российских работодателей уверены, что в будущем нейросети вполне могут трудиться вместо людей в ряде сфер. Половина руководителей считают такое вероятным, но не в скором времени. Это данные свежего опроса исследовательского центра Зарплаты. Уже сейчас работодатели ищут в штат сотрудников, которые разбираются в наиболее известной на сегодня нейросети ChatGPT и ее возможностях. Чаще всего это компании в IT-сфере и финансовой.

Прямо сегодня технологиям на основе искусственного интеллекта предприятия готовы доверить довольно многие задачи. В первую очередь — переводы, техподдержку, подготовку аналитики, создание несложных текстов, дизайна.

Самое тяжелое умение — на грани hard skills и soft skills — понимать, что делаешь.

Подвох в том, что данные могут лежать в каком угодно виде, и надо уметь грамотно их обрабатывать. Если есть десятки CSV, которые ссылаются друг на друга, нужно правильно соединить их между собой по ключам и в процессе ничего не потерять и не приобрести. Это сложная задача для людей, которые хотят создавать искусственный интеллект.

Чтобы стать разработчиком нейросетей, должен быть искренний, неиссякаемый интерес к этому. Желательно иметь в голове образ результата, абстрактное желание заниматься нейросетями ни к чему не приведет. Сильная образовательная база не так важна, как любознательность и усидчивость.

Однако, если в вузе вы хорошо изучили математику и алгоритмы, ваш инструментарий будет богаче. Многие задачи, которые встречаются в моей работе сейчас, я научился решать еще в университете. Помимо математических знаний и опыта разработки, здорово обладать профильной экспертизой — это помогает быстрее находить очевидные глупости и лучше понимать ценность решения.

Нейросеть — это лишь инструмент, которым можно овладеть за короткий срок, а профильный опыт накапливается довольно долго. Выбирайте сферу, в которой у вас есть такой опыт. Например, если умеете работать с микроконтроллерами, портировать какие-то штуки на железки, то идите специалистом по нейросетям в промышленность.

А если хорошо знаете банковскую сферу, ее риски и ограничения, то в банк. Определитесь, к какому результату стремитесь именно вы. Можно копать в сторону определенного класса задач и пройти специализированные курсы: По компьютерному зрению — например, Стэнфордский курс CS231n: Convolutional Neural Networks for Visual Recognition По обработке текстов на естественном языке NLP По графовым нейронным сетям.

Эти курсы дадут хорошее представление о том, как все работает и что можно делать с помощью нейросетей. А параллельно с обучением стоит искать работу: лучше всего учится и запоминается то, что совпадает с рабочими обязанностями. Я точно не знаю, как сейчас выглядит рынок ML-вакансий в России.

Но те, что есть, в основном не для джуниоров. Все ищут сеньоров, и это очень плохо — отсутствует преемственность поколений. Будущий хороший специалист должен приходить в компанию джуном и учиться там у сеньоров и мидлов.

Через некоторое время он матереет, легко справляется с типовыми задачами, становится способен исследовать что-то новое и продвигать индустрию. Если компания нанимает только сеньоров, она не растит джунов и не поставляет на рынок новых специалистов. На мировой рынок, безусловно, сейчас влияет кризис в бигтехе Big Tech.

Стартапы стали получать значительно меньше инвестиций и перестали нанимать стажеров. Мы вынуждены указывать это по требованию российских властей , Google, Microsoft привели к уменьшению вакансий, и это беда. Кризис в основном бьет по джунам и мидлам, которые хотели вкатиться в эту область.

Кажется, Яндекс все еще приглашает на стажировки. Это хорошо, потому что прийти стажером в крупную технологическую компанию — большая удача. На стажировку берут вчерашних выпускников и собеседуют их не так, как опытных разработчиков: смотрят, хороши ли они в математике — в области, релевантной задачам компании.

Мидлов на собеседованиях спрашивают про опыт работы, а по математике не гоняют. Если опыта нет, полезно работать над опенсорс-проектами. Есть такое движение — AI for social good, когда специалисты по ML решают какую-нибудь общественно полезную задачу.

Например, были проекты помощи в поисках пропавших людей или затонувших кораблей. Это очень хорошее направление деятельности, в которое можно прийти новичком с горящими глазами, а уйти с ценным опытом. Читайте также: Как выбрать свой первый опенсорс проект: большая инструкция от Хекслета Необязательно ставить высокие благородные цели.

Важно взять задачу и довести ее до конца, наступив на положенное количество граблей. Почти наверняка у каждого разработчика есть знакомый ML-специалист, преподаватель в области искусственного интеллекта или блогер, который делает материалы на эту тему.

Практика защиты и разделения авторского права — 5 часов Чат-системы с искусственным интеллектом — 26 часов Тема 1. ChatGPT-помощник: для тех, кому некогда писать — 8 часов Тема 2. BING AI от Microsoft: как пользоваться умным чат-ботом для решения профессиональных задач — 6 часов Live-консультация по итогам модуля Графические нейросети: курс на высокое разрешение — 33 часа Тема 1. Основа генерации изображений в Midjourney. Правила формирования промптов.

Контролируем искусственный интеллект — 6 часов Тема 2. Работа с изображениями в Kandinsky. Предсказуемый перенос стиля — 6 часов Тема 3. Генерирование изображений в Dall-E — 6 часов Тема 4.

Например, немецкий таблоид Bild объявил о программе сокращения расходов на 100 млн евро, что приведет к увольнению почти 200 сотрудников. На какие технологии будущего бизнесу необходимо обратить внимание По крайней мере один случай свидетельствует , что этот риск реален. Автора из технологического стартапа уволили без объяснения причин.

Позже она получила сообщение от руководителей, что ChatGPT дешевле, чем использование ее услуг. Матиас Депфнер, гендиректор Axel Springer, куда входят Bild, Insider, Politico и Welt, прогнозирует , что ИИ вскоре сможет работать с информацией значительно лучше, чем люди. Однако по его словам, журналисты все равно будут нужны, чтобы понять «истинные мотивы» людей. Он призвал редакции уделять больше внимания эксклюзивным новостям, расследованиям, комментариям экспертов, которые пока не способны делать машины. Успех издателей будет зависеть от способности создавать такой оригинальный контент. Журналисты уже сейчас могут писать авторские колонки, репортажи и исследования, используя инструменты искусственного интеллекта для сбора и анализа данных. А также могут выбрать узкую специализацию и сосредоточиться на развернутой, глубокой журналистике, требующей критического мышления и человеческой мысли.

Писатель На сайте Amazon появились книги, подписанные именем американского автора Джейн Фридман. Однако писательница заявила, что они написаны искусственным интеллектом. Много моего контента является общедоступным для обучения моделей ИИ», — написала автор на собственном сайте. Ранее писательница создала несколько книг об издательской индустрии, и фальшивые книги довольно удачно имитировали ее произведения. Союз писателей и сценаристов Америки уже объявил забастовку. Авторы требуют правового регулирования искусственного интеллекта в дополнение к повышению зарплат. Если они заберут работу писателей, они заберут и работу всех остальных.

Как вы знаете по фильмам, в конце работы обычно убивают всех», — говорит Миранда Берман. Дошло уже и до суда: 17 знаменитых писателей, среди которых и Джордж Р. Мартин, подали групповой иск в суд Нью-Йорка. Авторы заявили, что OpenAI без разрешения копировала работы истцов и использовала защищенные авторским правом материалы для обучения языковых моделей. А это, по мнению писателей, ставит под угрозу прибыль и нарушает право на контроль над собственными произведениями. Графический дизайнер Генеративный искусственный интеллект может значительно повлиять на профессию графического дизайнера. Все мы видели, как инструменты генеративного ИИ — например, Dall-E и Midjourney — создают художественные или фотореалистичные изображения из текстовой подсказки.

И здесь возникает множество вызовов и споров. Начиная от потери заказов, которые в будущем будет выполнять ИИ, и заканчивая защитой прав интеллектуальной собственности на настоящие произведения. Что можно посоветовать дизайнерам, чтобы не потерять работу из-за ИИ?

Неожиданные профессии, где используют нейросети

В эфире обсудили: стоит ли SMM-специалистам бояться нейросетей, как стать высокоплачиваемым специалистом и не выгореть. Инженер нейросетей – это перспективная профессия, представители которой востребованы в разных отраслях. «Как правило, специалистов, знающих как работать с нейросетью или для ее развития ищут работодатели из ИТ-сферы: 19% или каждая пятая вакансия с начала 2023, за год спрос на таких специалистов в этом секторе вырос на 94%. Введение в ИИ и нейросети, знакомство с профессией.

ChatGPT отнимет у вас работу: нейросеть перечислила профессии в зоне наибольшего риска

Нейрообразование Сегмент рынка под названием «нейрообразование» сам по себе не несет каких-то особых технологических прорывов, однако несомненно, что нейротехнологии — виртуальная и дополненная реальности, нейроинтерфейсы, различные технологии стимуляции головного мозга в ближайшие годы уже войдут в образовательные программы и технологии и займут в них центральное место. Так что если вы планируете стать педагогами, то изучать всевозможные применения нейротехнологий нужно уже сейчас. Лидером применения этих технологий можно назвать Московский технологический институт. Искусственный интеллект Сегмент, который получил название «нейроассистенты» веб-сервисы или приложения, исполняющие роль виртуального секретаря бурно развивается во всём мире. Это то, что сейчас называют «искусственный интеллект». Глубокое обучение, распознавание речи… Создание персональных нейроассистентов, которые станут нашими помощниками. Школьники уже активно участвуют в освоении гребня этой волны, которая захлестнула мир. И тут сложно назвать лидеров, потому что нейросетями сейчас занимаются все. Можно написать программу на переменах между уроками , а можно делать это в какой-нибудь из научных лабораторий, например, в МФТИ или в Курчатовском институте.

Выводы: в ближайшие 5—7 лет значительная часть профессий будет так или иначе связана с нейротехнологиями. Их наличие изменит уже существующие специальности. Современные профессии, которые они могут привести в этот мир, это: молекулярный биолог, нейробиолог, врач-невролог и нейрохирург, инженер разрабатывающий искусственные нейронные сети , специалист по BigData, лингвист. Выбор за вами.

В сфере здравоохранения или банковского дела будут востребованы специалисты по машинному обучению, а профессионалы в области скриптинга будут участвовать в создании игр. Количество отказов на приглашения о работе после собеседований стало рекордным за последние восемь лет. Чаще всего соискатели не принимают предложения из-за низких зарплат. Также среди причин назвали несоответствия между тем, что указано в описании вакансии и реальными обязанностями.

Как модель искусственного интеллекта, я не могу иметь мнений или убеждений ни по какому вопросу. Мой ответ основан на анализе данных и исследованиях по этой теме, а также на опыте стран и отраслей, в которых уже произошли процессы автоматизации. Можно предположить, что одной из самых больших угроз, которые представляет искусственный интеллект для человечества, это автоматизация труда и безработица. Искусственный интеллект может автоматизировать многие задачи и работы, ранее выполнявшиеся людьми. Это может привести к повышению эффективности и производительности, но также вызовет и серьезную озабоченность по поводу безработицы и экономического неравенства. Стремительное развитие технологий ИИ и автоматизации вероятно приведет к заметной потере рабочих мест в различных отраслях, особенно в тех, где возникает много повторяющихся задач, а работникам достаточно низких профессиональных навыков. Midjourney К работам с наибольшим риском автоматизации относятся те, которые связаны с повторяющимися задачами, такими как работа на конвейере, ввод данных и телемаркетинг. Однако ИИ также способен автоматизировать и более сложные задачи, такие как обслуживание клиентов, бухгалтерский учет и даже такие профессии как врачи, юристы и архитекторы. Это может привести к снижению спроса на людей, а в некоторых случаях и к полной автоматизации определенных профессий. Вот несколько примеров профессий, которые рискуют быть захваченными ИИ: Репетиторы и преподаватели. ИИ может автоматизировать многие рутинные задачи, связанные с образованием. Например, алгоритмы искусственного интеллекта можно использовать для создания индивидуальных планов уроков и автоматической проверки и оценки заданий. ИИ также можно использовать для немедленной обратной связи со студентами и помощи им в разработке более эффективных стратегий обучения. Алгоритмы ИИ могут непрерывно анализировать результаты учащихся и адаптировать учебный план к их индивидуальным сильным и слабым сторонам и стилям обучения.

А что касается открытого письма с призывом ввести мораторий на разработку нейросетей, то тут вряд ли речь идёт о реальных опасениях за будущее человечества — скорее оно связано с корпоративными интересами. Сейчас идёт напряжённая гонка между IT-гигантами в сфере создания нейросетей. Тот же ChatGPT уже не раз ловили на том, что он выдаёт фейки, сочиняет их сам, а не берёт из каких-то источников. Дело в том, что ChatGPT — это генератор текстов, работа которого основана на сложной математике. И поскольку эти вычисления очень сложные и очень приблизительные, то на выходе порой получаются сбои. И вообще, нейросети создаются для помощи людям, а не для того, чтобы их заменить. Это невозможно, особенно в таких областях, как медицина, например. Последнее слово всё равно остаётся за врачом, какие бы нейросети ни применялись для постановки диагноза. В своё время IBM пыталась продвинуть на американском рынке продукт Watson Health — планировалось, что ИИ найдёт применение в здравоохранении. Однако продукт так и не завоевал доверие врачей: нейросеть часто ошибалась, а в тех случаях, когда ставила точные диагнозы, давала очень узкие рекомендации по лечению. Потому что выборка данных, на которой учат нейросети, — она всё-таки очень ограниченная. И нейросетям не присуща человеческая интуиция, широкая образованность. По сути, нейросеть живёт в информационном пузыре. Например, чат-боты позволяют автоматически генерировать простые официальные письма, справки. Ранее в новостях сообщалось, что руководство Сбербанка частично сократило юристов низшего звена, которые писали претензионные письма. Теперь эти функции выполняет нейросеть. Также по теме «Настанет день, когда машина обретёт сознание»: фантаст Франк Шетцинг о будущем человечества и инопланетном разуме Книги немецкого писателя-фантаста Франка Шетцинга расходятся большими тиражами, а экранизацией одного из его главных бестселлеров —... Однако нужно понимать, что возможности нейросетей очень ограниченны. По сути, появление нейросетей должно подстегнуть людей к развитию. Кроме того, создание, обслуживание и внедрение таких технологий приводит к появлению новых рабочих мест и специальностей. Хотя, конечно, не массовых. Допустим, сейчас пишут о спросе на специалистов по составлению запросов для нейросетей — есть ли такая профессия? К слову, такое направление, как анализ данных data scientist , появилось уже очень давно, в 2000-е годы. Это, по сути, универсальный специалист, способный проанализировать данные, написать и внедрить нейросеть, а далее её сопровождать.

Восстание машин: как нейросети «вытесняют» людей из профессий

Мы получили много откликов, поэтому решили продолжить говорить про нейросети, они сейчас на пике популярности. Сегодня поговорим о нейросетях в творчестве, в дизайне и в генерации креатива. Сергей, как ты оцениваешь, насколько реален риск того, что дизайнеры и художники потеряют свою работу и свою востребованность? Гребенников: Смотри, мне кажется, что мы в прошлый раз эту тему даже активно начали обсуждать и делали такой мостик к сегодняшней теме. Я уже даже озвучивал, что в 2022 году все визуальные материалы к премии Рунета были так или иначе созданы с помощью искусственного интеллекта. При этом мы все равно в 2022 году использовали ровно ту команду дизайнеров, которую использовали на протяжении предыдущих лет. Поэтому говорить о том, что искусственный интеллект вдруг сделает так, что мы перестанем нуждаться в дизайнерах, мне кажется, это неправда. Но я предлагаю все-таки поговорить с настоящим экспертом в этой теме. Представишь нашего гостя? Сергей, здравствуйте.

Спасибо, что нашли время. Спасибо, что подключились. Кулинкович: Привет-привет! Коротнева: Ну что, я начну мучить вопросами Сергея? Гребенников: Конечно, конечно. Коротнева: Сергей, вы… ваша студия — одна из первых, кто начали работать с искусственным интеллектом, еще до того, как это стало повсеместно, до того, как это стало мейнстримом. В 2019 вы запустили ваш проект Николай Иронов, правильно? Кулинкович: Полагаю, что да. Но разрабатывать мы его начали гораздо раньше, но в секретном режиме, никому об этом не рассказываем.

Пока не понимаем, что из этого выйдет, мы помалкиваем. Коротнева: Ну вот расскажите, как тогда еще, почти 5 лет назад, когда, в принципе, о генерации визуального контента искусственны интеллектом говорили очень мало и редко, почему вы пошли на это? Вы тогда уже понимали, что за этим будущее или это был какой-то эксперимент? Или для чего это было создано? Кулинкович: На самом деле это такая череда счастливых случайностей, потому что исторически мы занимались дизайном много лет, и у нас была сильная техническая экспертиза, и все начиналось с сайтов и разработки всяких систем технически сложных, то есть не только чисто графический дизайн в каком-то виде. И, соответственно, у нас в команде были ребята, которые не только делают дизайн, но еще и программируют. И о мере роста количества дизайн-задач мы начали замахиваться на задачи по автоматизации. Там сверстать 100 каких-нибудь шаблонов чего-либо или еще что-то автоматизировать. Мы привлекали ребят из вот этой части, которая связана с программированием.

Вот, но потом в какой-то момент, когда мы автоматизировали все, что можно было автоматизировать из области рутинного дизайна, мы просто в рамках эксперимента подумали: «А что если замахнуться на то, что люди называют творчеством, на творческую часть дизайна? И мы начали этим заниматься и постепенно слой за слоем начали снимать какие-то покровы с того, что называется творчеством, то, что мы сами считали творчеством. И к нашему удивлению, мы обнаружили, что очень много из этого может быть автоматизировано. И даже хуже — не для всего нужны нейросети. Не для всего того, что люди называют творчеством, нужно использовать нейросеть и то, что называется искусственный интеллект. Так и закрутилось. Мы начали делать эксперименты, и со временем результаты этих экспериментов стали по качеству своему сопоставимы с результатами живых дизайнеров, то, что графика начинала выглядеть непредсказуемо свежо. И дальше случилось так, как должно было случиться, - родился Николай Иронов. Гребенников: Сергей, а вот после того, как появился проект Николай Иронов, количество дизайнеров у вас в студии стало больше или меньше?

Кулинкович: Сложно сказать. Скорее, не изменилось. Как вы ранее говорили, что количество дизайнеров не меняется, но меняется суть их работы. То есть у нас помимо дизайнеров появились еще люди, которые обслуживают мозги Николая Иронова. Ну как обслуживают? Развивают и разрабатывают новые технологии, и в том числе дизайнеры, которые режиссируют эти технологии. То есть здесь главная дизайн-задача раньше была в том, чтобы создать непосредственно конечный объект дизайна, а сейчас она плавно трансформировалась в то, чтобы создать ту систему, способную масштабировано производить большое количество экземпляров арт-дизайна. Но дизайн-задачи остались теми же, просто они немного трансформировались, и плечо получается больше. То есть объем дизайнеров тот же, но эффективность их несопоставимо больше, потому что это масштабируется.

Коротнева: Я правильно понимаю, что дизайнер, человек, выполняет творческую функцию, придумывает общий концепт, а уже Николай Иронов, ваш проект, он это все масштабирует и просто пропечатывает в огромном количестве? Или это не совсем так работает? То есть дизайнер — это мозги и творчество, а нейросеть — это условно руки, руки и механизмы? Кулинкович: Все сложно. Давайте обрисую, в целом, систему. Николай Иронов для начала — это не одна нейросеть, это большое количество разных алгоритмов, наборов алгоритмов, которые работают в ансамбле между собой. Собственно, рождение Николая Иронова — это не рождение какой-то одной технологии генеративного дизайна. Это рождение правильно срежиссированной комбинации технологий. И с момента рождения Николая, когда мы всем рассказали о том, что он существует, о том, что он выполняет дизайн задачи, его мозги пересобрались уже очень-очень много раз.

И вот они сейчас снова в одном шаге от того, чтобы пересобраться с использование новых технологий, которые появились на рынке. Соответственно, дизайнеры, которые занимаются этим проектом, их задача заключается в том, чтобы правильные технологии объединить в правильный пайплайн — последовательность действий, когда результат одного алгоритма правильно передается правильный результат другому алгоритму, и вот так вот по этому конвейеру получается какой-то новый результат. Соответственно, дизайнеры Иронова проектируют примерный диапазон, изобразительный диапазон, учат его новым стилям, подключают к нему новые шрифты и так далее. И вот здесь мы упираемся в то, что задача дизайнера, она на самом деле и раньше была такой — применить какое-то изобразительное решение в правильный контекст. Потому что поставщиками потребностей всегда были и будут люди. Соответственно, принять правильное решение, какой из десятков и даже сотен вариантов подходит лучше всего, - это была, есть и будет истинная работа дизайнера, потому что дизайн делается людьми, для людей. А сейчас, с появлением роботов, просто у нас появляется некоторая компонента, которая называется искусственным интеллектом, которая позволяет: а делать это масштабировано, то есть в больших масштабах, вместо трех вариантов логотипа выбирать из тысячи, б позволяет это делать непредсказуемо. Собственно, в этот все отличие от того, что сейчас называется искусственным интеллектом от алгоритмических каких-то результатов, в том, что мы часто получаем не вполне предсказуемый результат, и это очень похоже на то, как работает человек. Собственно, вот и вся разница.

Но корневая суть работы дизайнера — она не поменялась. Это было и есть подбор правильного варианта в правильные контексты. Гребенников: То есть определяет. Что красиво, сегодня дизайнер все еще, а не искусственный интеллект? Кулинкович: Да, но… У нас, например, есть отдельные технологии внутри Иронова, которые позволяют отбросить совсем плохие варианты. То есть такой примитивный арт-директор, скажем так. И он помогает не выгружать на конечного пользователя весь массив данных, которые слишком шероховатые, слишком смелые, а как бы делать такой скоринг дизайн-решений, чтобы финальное решение было в каком-то более-менее приличном диапазоне. Поэтому мы все равно используем эти технологии, даже чтобы отсортировать какой-то большой массив выдачи, но финальное решение, конечно, принимает человек. Гребенников: А как вообще происходит постановка технического задания искусственному интеллекту?

Предположим, я — маленькая пекарня во Владимирской области. Я приходу в вашу студию и говорю: «Хочу себе классный логотип, чтобы ко мне приходило не 2 000 человек в месяц, а 15 000 человек. Я считаю, что вся проблема моя в логотипе». Я говорю: «Хочу такой логотип, чтобы там был колосочек, хлебушек и круассанчик обязательно». Вы же куда-то это загружаете. Как происходит процесс формирования технического задания? И потом как искусственный интеллект осознает, что мне нужно как конечному клиенту? Кулинкович: Начнем с того, что если вы предъявите задание живым людям, живым дизайнерам, то, скорее всего, если они будут достаточно с вами честны, то они скажут, что изменение логотипа не увеличит вашу выручку в 10 раз. Это первый момент.

То есть если у вас была пекарня с плохим логотипом, а потом появляется некоторый бренд с хорошим логотипом, то едва ли это напрямую окажет влияние на ваши продажи. Косвенно, возможно, при правильном стечении обстоятельств, правильно посеве, да. Но, скорее всего, это не является критерием хорошего логотипа. Второй момент заключается в том, что, если мы посмотрим на логотип пекарен и других каких-то бизнесов, связанных с хлебобулочными изделиями, там не всегда фигурируют колоски, не всегда фигурируют круассаны. А иногда это некий образ, визуальна интерпретация образа бизнеса, которая этим дизайнером и сделана. Соответственно, когда вы приходите в брендинговое агентство, где сидят живые люди, и они получают этот бриф, что еще происходит? Они его творчески интерпретируют. Они смотрят, как выглядят булочные в этом городе, в округе, пытаются придумать что-то контрастное, что-то отличное от тех ребят, которые на той же улице торгуют круассанами. И, соответственно, они приходят с некоторыми дизайн-гипотезами, что кто-то решил, что это будет какой-то крестик красивый, в котором угадывается что-то такое.

Кто-то решил пойти через концепцию семейности, семейного кафе, и вообще нарисовал сердечко, потому что вот «Приходите к нам. Мы вас любим». И все такое. А кто-то прошел напролом и начал рисовать конкретно круассан, фотореалистично и так далее. И эти все подходы имеют право на жизнь, и в равнозначной степени вы можете получить такие варианты от живых людей. В случае с Ироновым человек, без участия людей, он заполняет бриф, описывает свою компанию.

Изучить нейросети для того, чтобы применять их в работе — да. Переживать по поводу того, что нейросети вытеснят SMM-специалистов, — нет. Еще пользоваться нейросетями нужно, чтобы написать об этом красивой строчкой в резюме. Меня поражает, что люди боятся какого-то будущего.

Последние 4 года, начиная с ковида, мы живем в таких реалиях, что много людей боятся настоящего. Это настоящее еще надо пережить. Читайте также: « 2023 — год нейросетей в SMM: учимся автоматизировать всё ». Как стать высокооплачиваемым SMM-специалистом в 2023 году Я вам скажу парадоксальный ответ: не быть SMM-специалистом в привычном понимании. Объясню: простое ведение соцсетей стоит дешево. Это вопрос не нейросетей, а спроса и предложения. За годы существования SMM не стал в России дорогой и высокооплачиваемой нишей. Чтобы стать высокооплачиваемым SMM-специалистом, нужно очень хорошо понимать бизнес: его конкурентные преимущества, ценность. Нужно говорить заказчику: «Я не про SMM, я знаю, как вырастить ваш бизнес — в продажах, подписчиках или других метриках». В России основная проблема: «Сделайте нам рост, но с очень малым бюджетом».

Если вы умеете это делать и у вас есть хорошие кейсы, вы можете стоить бесконечно дорого. Особенно в таких нишах, как development. Изучайте комьюнити-менеджмент — сейчас у бизнеса есть спрос на лояльное комьюнити вокруг бренда. Вам нужно: иметь действительно мощные работы в портфолио, как минимум больше 3-х кейсов; хорошо понимать суть бизнеса. Еще нужно уметь раскрутить себя. Согласитесь, странно, если вы SMM-специалист без личного бренда. Когда вы это сделаете, то сможете работать на очень высоком чеке — все хотят работать с лучшими. Если вы ведете интересный блог с классными постами, вас рано или поздно купит крупный клиент за этот контент. Это история про то, что вы делаете это для себя, вам интересно, а потом этот труд монетизируется. В последние 2 года я стала писать меньше — примерно по посту раз в 3 дня.

Прошлое, настоящее и будущее Картины, нарисованные нейросетями, которые так восхищают современных пользователей, — не новость для нашей индустрии. GANы для генерации картинок появились еще в 2014 году и произвели фурор среди специалистов, но для широкой публики результаты получались невзрачными. Большие компании копят данные и контент всю историю своего существования. С картинками прорыв случился в 2012 со знаменитым Imagenet, а вот в текстах Imagenet-момент зрел почему-то дольше. Теперь, когда нашлось столько вариантов применения для картинок и текстов, созданных нейросетями, дело за музыкой и голосом. Сфера AI получила такое развитие только тогда, когда крупные компании увидели в этом перспективу. Нейросети помогают захватывать новые рынки, привлекать аудиторию.

Поиск Google и Яндекс долгое время был построен на солидных, классических технологиях. Нейронные сети появились здесь совсем недавно. Сначала это были алгоритмы, потом — эвристики с подобранными параметрами, потом — какие-то простые ML-вещи. Нейросетей долго не было, потому что отвечать на запросы пользователей с их помощью сильно дороже, чем с помощью классических решений. А в поиске время ответа важно. Раньше нужно было потратить год работы команды из ста человек, чтобы улучшить пользовательский опыт на пару процентов. С приходом нейросетей оказалось, что можно увеличить показатели качества на те же два процента, если в течение месяца обучать алгоритм.

Стало ясно, что в это выгодно вкладываться. За годы работы крупные компании — Google, Microsoft, Яндекс — накопили много данных. Они начали тренировать на этих данных большие нейросети, чтобы решить множество внутренних и внешних задач. Пару лет назад «Яндекс» запустил нейросеть «Балабоба». Технология позволяла решать различные задачи, связанные с текстами. Это выглядело как простой сервис для генерации текстов, но технология позволила решать разные прикладные задачи внутри компании — без сбора больших датасетов и привлечения разработчиков. Это очень прикладные вещи: иногда нужно переписать формулировки, иногда найти в объявлении контактную информацию.

Затратив пару месяцев работы команды, можно не просто увеличить показатели счастья юзеров, но и сразу решить целую пачку проблем на нескольких проектах. Вот такой странноватый анекдот сочинила нейросеть «Балабоба» Благодаря вложениям больших компаний на рынке стали появляться результаты работы разработчиков нейросетей. Сейчас люди успешно пишут письма и дипломы с помощью ChatGPT, генерят картинки с помощью StableDiffusion и делают потрясающие аватарки в Lensa или Prisma. Пользователи любят с их помощью менять и стилизовать изображения. Я тоже пользуюсь этой технологией: у меня на аватарке стоит картинка, сгенерированная нейросетью. Трудно сказать, почему это так популярно. Но факт остается фактом: в этой области все еще много стартапов, которые легко привлекают инвестиции.

Моя аватарка после обработки нейросетью Вклад разработчиков в развитие нейросетей Время от времени кто-то из разработчиков предлагает классные идеи и сам же воплощает их в жизнь — в рамках коммерческого проекта или просто в виде домашнего задания. В 2016 году люди, работающие с текстами, стали пользоваться моделью, которую популяризовал Андрей Карпатый — сейчас очень известный специалист. Он написал один из популярных постов про рекуррентные нейронные сети. Все кинулись искать полезное применение этой технологии. Модель была маленькая, она не позволяла решать много задач, но люди вдохновились. Вклад Карпатого в генерацию текстов огромный. Он популяризовал неизвестную технологию, привлек широкий круг разработчиков.

Те стали генерировать идеи, проверять гипотезы и заметно продвинули отрасль вперед. Видео Карпатого про языковое моделирование Опенсорс дает большой вклад в развитие ML. Популярнейший фреймворк машинного обучения PyTorch для языка Python — полностью опенсорсный продукт. Известная библиотека для машинного обучения TensorFlow — изначально внутренняя библиотека Google, которую компания со временем перевела в опенсорс, и с тех пор ее развивает комьюнити.

Создать план воронки продаж для онлайн-школы 15. ВЫ СМОЖЕТЕ: генерировать реалистичные или футуристичные картинки любого жанра, формата и стиля меньше, чем за минуту, экономя себе колоссальное время и даже если вы далеки от творчества Уже после интенсива ученики начинают зарабатывать Нейросети позволяют в короткий срок сделать тот самый ПЕРВЫЙ ШАГ и заработать первые 1-2-5 тысяч рублей. На интенсиве мы делаем акцент на получении первого заказа - это самое сложное, дальше проще!

Незаменимых нет: вытеснят ли нейросети творческие профессии?

Узнали у нейросети, каких профессионалов искусственный интеллект настроен видеть в числе будущих коллег. — Какие профессии заменят нейросети? 19 реальных примеров! — Заменит ли ИИ специалистов этих профессий на 100%? «Яндекс» начал нанимать людей гуманитарных профессий для обучения своей нейросети — российского аналога ChatGPT, рассказали «Известиям» в компании. Нейросеть выдаёт ответ, но не учитывает нововведения, которые появились в последние годы. Профессию тренера нейросетей можно назвать работой будущего.

Россиянам назвали самые перспективные профессии на ближайшие пять лет

Но Universal потребовал от музыкальных агрегаторов запретить нейросетям учиться на их плейлистах. Дизайнеры, фрилансеры, копирайтеры и даже программисты могут потерять работу из-за развития нейросетей, сообщает «Общественная Служба Новостей». Из этой статьи вы узнаете о трех новых профессиях, которые стали востребованными на рынке после появления нейросетей, и какие навыки нужны для того, чтобы успешно в них развиваться. Недавно телеканал RTVI захотел рассказать о профессиях будущего и обратился за помощью к нейросети MidJourney. «Cпециалист по нейросетям: профессия промт-инженер» – это большая программа повышения квалификации. Современные профессии, которые они могут привести в этот мир, это: молекулярный биолог, нейробиолог, врач-невролог и нейрохирург, инженер (разрабатывающий искусственные нейронные сети), специалист по BigData, лингвист.

Специалист по нейросетям

Появляются новые профессии как в самой медиаотрасли, так и на стыке с другими областями, например с Data Science. И мы стараемся помочь эти возможности найти и раскрыть. Совместная программа с МГУ — очередной шаг в этом направлении. Пройти обучение могут выпускники бакалавриата любых направлений. Для поступления нужно сдать вступительный экзамен, проверяющий знания по теории медиа, медиаэкономике и медиаменеджменту, социологии медиа и другим сферам медиакоммуникаций. Возможно обучение на бюджетной основе. Занятия начнутся осенью 2024 года.

Испытывают спрос в подобных работниках СМИ, маркетинговые агентства, образовательные учреждения, сфера ретейла», - говорится в исследовании HeadHunter.

Примерно с конца весны стали появляться новые специализации, например, промпт-инженеры, AI-тренеры, AI-редакторы. Ранее мы писали о том, что Правительство обновит стратегию развития искусственного интеллекта ИИ , которая станет частью национального проекта «Экономика данных». Понравилась статья?

Сыграйте в любимую игру прямо на Ленте. И сделали!

Существует большое количество гуманитарных профессий, которые могут в своей деятельности использовать решения на основе ИИ. Такие специалисты в области искусственного интеллекта могут не участвовать непосредственно в разработке алгоритмов, но при этом обучать нейросеть, пользоваться прикладными решениями на ее основе, давать обратную связь. Читайте также: Нетехнические профессии, связанные с нейросетями: искусственный интеллект за пределами программирования Нейрокопирайтер Копирайтер, который использует нейросети для написания текстов. Это увеличивает производительность труда и меняет направление деятельности: человек не пишет текст сам, а только проверяет и корректирует его.

Взаимодействие копирайтера с искусственным интеллектом можно описать как ввод запросов и доработка ответов. Что нужно знать и уметь Обычно требуется высшее филологическое или журналистское образование, опыт в написании текстов, редактуре и проверке информации. От соискателя зачастую требуется скрупулезность, усидчивость, способность обрабатывать большой объем данных, умение правильно формулировать техническое задание для языковой нейросети. Сколько зарабатывает нейрокопирайтер Заработок зависит от объема выполненных работ. Как правило, такие специалисты работают как фрилансеры сразу с несколькими заказчиками. При устройстве на работу в компанию нейрокопирайтер может получать от 40 до 80 тыс. Как устроиться на такую работу Предоставьте резюме, выполните тестовое задание работодателя и заключите договор сотрудничества. Маркетолог-аналитик Это специализация маркетолога, предполагающая анализ данных рынка, подготовку отчетов, изучение продуктов компании и выдвижение гипотез по их улучшению, помощь в ценообразовании и т. В этом случае нейросети для маркетологов становятся одним из основных инструментов работы: они помогают структурировать и анализировать большие объемы данных. Что нужно знать и уметь От соискателей требуется высшее образование в области маркетинга, математики, экономики или статистики.

Специалист должен уметь обрабатывать большой объем данных, собирать маркетинговую информацию, составлять отчеты. Сколько зарабатывает маркетолог-аналитик Зарплата в среднем составляет около 100 тыс. Как устроиться на работу Чтобы устроиться AI-маркетологом, нужно откликнуться на вакансию и пройти собеседование. Часто требуется выполнить тестовое задание. ИИ помогает лучше и быстрее анализировать аудиторию и определять ее потребности, при этом он способен обрабатывать гораздо больший объем данных, чем человек. Благодаря этому AI с дизайнером в паре способны создавать персонализированные интерфейсы. Также может потребоваться опыт работы с большими данными для анализа ЦА. Сколько зарабатывает дизайнер интерфейсов В зависимости от опыта работы от 30 до 200 тыс. Как устроиться на работу Обычно работодатель требует предоставить портфолио и пройти собеседование. Промт-дизайнер Промт-дизайнер prompt designer — специалист, который формулирует текстовые запросы к генеративным нейросетям, чтобы получить изображение в соответствии с техническим заданием.

Что нужно знать и уметь Это творческая профессия, которая предполагает глубокие знания языка, на котором формулируются запросы. Специалист должен уметь анализировать семантические и синтаксические конструкции и хорошо разбираться в принципах работы ИИ. Сколько зарабатывает промт-дизайнер Такой специалист может работать по трудовому договору или на фрилансе с оплатой за трудочасы или фактические результаты. Зарплата оценивается в зависимости от опыта. Как устроиться на работу Работодатели требуют предоставить портфолио и документы о высшем образовании, а также рассказать на собеседовании о владении профессиональными инструментами генеративные нейросети, графические редакторы. ИИ-креатор ИИ-креатор создает изображения, тексты, видео с помощью нейросетей. Благодаря тому, что человек непосредственно не занят в генерации контента, он может тратить больше времени на творческую сторону проекта и объединять в себе сразу несколько функций. Что нужно знать и уметь Потребуется опыт в создании контента для блогов, умение строить контент-план. Плюсом будет образование в области маркетинга. Умение составлять запросы для различных генеративных нейросетей.

Сколько зарабатывает ИИ-креатор Заработная плата варьируется от 40 до 90 тыс. Как устроиться на работу ИИ-креатор может работать на фрилансе или в офисе. В первом случае для заключения договора на оказание услуг может понадобиться выполнить тестовое задание и предоставить портфолио. Во втором случае к перечисленным ранее пунктам добавится прохождение собеседования. Компьютерный лингвист Компьютерный лингвист — специалист, который занимается обработкой данных и переводом их в естественные для нейросетей языки. В дальнейшем профессионалы этого профиля передают результаты своей работы дата-сайентистам, которые обучают алгоритмы работать с текстами переводы, распознавание речи, трансформация устного языка в письменный и т. Если вы задаетесь вопросом, может ли филолог стать компьютерным лингвистом, то ответ будет утвердительным. Но ему понадобятся хорошая база программирования и понимание работы моделей машинного обучения. Что нужно знать и уметь От специалиста требуется знание естественных и компьютерных языков. При этом приветствуется не только владение русским и английским, но и другими языками.

Важно уметь программировать на Python хотя бы на базовом уровне , знать основы обработки естественного языка NLP и обладать опытом в разметке данных. Где учиться компьютерному лингвисту? Для этой профессии подходит образование по профилю «Фундаментальная и прикладная лингвистика», магистратура «Компьютерная цифровая лингвистика», курсы переподготовки в вузах. Сколько зарабатывает компьютерный лингвист Средняя зарплата составляет 100—120 тыс.

Огонь нейросетей: как попасть в индустрию

Вместо рождественского Нью-Йорка мрачные улицы и панельные дома, Кевин МакКаллистер выживает в суровой России и 90- х. После долгих съемок в России звезда боевиков Джейсон Стэйтем нашёл-таки своё счастье и к 60-ти годам остался жить в глубинке нашей необъятной родины, приворожённый борщом местной поварихи. Сценарий сериала, которому позавидует даже Тарантино, удалось воплотить в жизнь, благодаря технологии deepfake — нейросетевой программе, меняющей лица видеороликов. Сначала нейросети пришли за художниками, дизайнерами, композиторами, теперь добрались и до нас — работников телевидения. Знакомьтесь, новое ведущее прогноза погоды на Ставропольском телеканале. Образ, речь, студия — всё создано творческим тандемом нескольких нейросетей.

Read More До обучения: работает охранником, брал кредиты на дорогостоящие курсы, но они не имели эффекта. С женой развелся, оставил ей квартиру. Во время обучения: обучению уделяет свободное от работы время, в среднем 4-5 ч в день. Первые заказы получил во время обучения и смог заработать 15 000 руб, которые потратил на лечение любимой кошки. Сейчас: на данный момент есть 2 постоянных заказчика.

За активность Андрея я подарил ему один из курсов и он будет помогать в учебном чате 2-го потока. Read More До обучения: прошла разные курсы в нашей школе и на каждом из них заработала, потом попала в первый поток учеников по ChatGPT Во время обучения: cтарается 3-4 часа в неделю посвящать обучению, благодаря курсу привела 3 новых клиента, от них доход составляет 75 000 р. Сейчас: цель - создание своего онлайн-курса, сейчас доход составляет от 300 000 - 500 000 в мес. Тяжелая жизненная история заставила столкнуться с заработком в интернете Во время обучения: обучалась глубокой ночью, по возможности.

Об этом сообщил директор по развитию направления игровой индустрии в Университете «Синергия» Михаил Пименов в беседе с Ura.

Он отметил, что так называемые профессии будущего связаны с применением передовых технологий и компьютерных систем. В среднем специалисты на таких должностях могут зарабатывать более 100 тысяч рублей. По словам Пименова, на рынке стремительно растет спрос на операторов нейросетей.

Если он посмотрит на гуся, то он сразу поймет, что это гусь. Искусственному интеллекту сначала понадобится распознать множество изображений куриц и гусей разных цветов и подвидов, чтобы обучиться и суметь принять правильное решение. Это, конечно, достаточно простой пример, но он показывает, как именно работает нейросеть. Это не просто алгоритм автоматизации расчетов. Система обучается и использует полученные знания для принятия решения. Нейросеть обрабатывает видео и изображения благодаря компьютерному зрению, а текст — с помощью методов распознавания естественного языка.

Специалист по нейронным сетям создает саму модель, помогает ей обучаться и следит за ее работой. Он должен отслеживать ошибки программы, когда она дает неправильные ответы, и исправлять их. Таким образом, модель на основе исправленной погрешности сделает выводы и в следующий раз примет правильное решение. Специалист по нейросетям может создавать модели, способные отслеживать траекторию движения на видео, распознавать лица, извлекать суть из текста, синтезировать голос, проводить расчеты, строить прогнозы и т. Нейронные сети — это одна из узких специализаций Data Scientist. Дата-саентисты, имеющие хороший опыт работы с машинным обучением и обработкой больших массивов информации, нередко уходят в это направление. Оно сегодня невероятно актуально и имеет хорошие перспективы в будущем. Посмотрим, где уже сегодня применяются нейронные сети: Сфера финансов, кредитов и экономической безопасности. Многие брокеры при расчете прогнозов используют модели на основе нейронных сетей.

Это помогает минимизировать влияние человеческого фактора ведь мы не машины, можем уставать и допускать ошибки , составлять более точные и актуальные прогнозы. В банках решение о выдаче кредита уже давно принимает не человек, а искусственный интеллект. Он выделяет все ключевые признаки и оценивает по ним платежеспособность клиента. Экономическая безопасность тоже не обходится без нейронных сетей. Искусственный интеллект помогает определить подозрительные платежи среди миллионов транзакций. Благодаря ему удается вовремя остановить деятельность мошенников и сберечь средства их реального владельца. Сфера логистики и грузовых перевозок.

Похожие новости:

Оцените статью
Добавить комментарий