Смелая гипотеза оказалась пророческой, в начале 80-х были найдены первые рибозимы — биокатализаторы на основе РНК. Одной из главных теорий является гипотеза "РНК-мира", согласно которой первые формы жизни возникли благодаря РНК-репликазе, способной копировать себя и другие молекулы РНК.
ELife: ученые обнаружили спонтанное возникновение самовоспроизводящихся молекул
В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК. Из-за этого появлялось множество копий разрушенного полимера. Ученые сравнили такое явление с регенерацией червей, которых разрезают на сегменты. Ранее ученые выяснили, что социальный статус влияет на активность генов и передается от матери к детям.
Остаётся только удивляться, сколь красивы и элегантны решения Природы! Рисунок 1. Работа рибопереключателей. А — Рибопереключатели на транскриптах генов metE, metH и metK. Голубым обозначены шпилечные структуры, образуемые в результате вырезания шести или более уридиновых нуклеотидов. Видно, что у metE имеется два акцепторных и два шпилечных участка.
В — Путь биосинтеза S-аденозилметионина. На первом этапе гомоцистеин преобразуется в амикислоту метионин. Это превращение может быть катализировано одним из двух ферментов: metE или metH. На втором этапе фермент metK превращает метионин в S-аденозилметионин. Между тем, РНК-переключатели способны связывать значительное число белковых кофакторов, таких как флавинмононуклеотид, тиаминпирофосфат, тетрагидрофолат, S-аденозилметионин, аденозилкобаламин [8]. Изначально считалось, что РНК-переключатели способны лишь подавлять экспрессию генов [8] , но позже были получены данные, свидетельствующие о том, что некоторые переключатели, напротив, ее усиливают.
Сами по себе РНК-переключатели представляют весьма интересное явление, так как они демонстрируют возможность регуляции работы генов без прямого участия белков — иными словами, демонстрирует самодостаточность и универсальность РНК. Судя по всему, РНК-переключатели являются очень древним механизмом: так, они обнаружены во всех доменах живой природы: у бактерий, архей и эукариот [8]. Похоже, что, по меньшей мере, некоторые из современных кофакторов белков были прямиком заимствованы из мира РНК. Можно нарисовать примерно такую картину: рибозимы изначально использовали многие из современных кофаторов для своих целей, однако с появлением более эффективных белковых ферментов эти кофакторы были заимствованы последними. Рисунок 2. Вторичная структура РНК-переключателя гена metE.
Выделены акцепторы — сайты связывания с молекулами SAM и AdoCbl, а также шпилечные терминирующие структуры. Геномные тэги и тРНК Рисунок 3. Вторичная структура тРНК. На рисунке отчётливо видна характерная для тРНК вторичная структура в виде «клеверного листа». В нижней части молекулы находится антикодоновая петля, ответственная за комплементарное связывание с кодоном мРНК. Согласно гипотезе геномного тэга, верхняя и нижняя половины тРНК эволюционировали по отдельности, причём верхняя половина древнее нижней.
Всем хорошо известна важная роль тРНК в биосинтезе белка. Однако у тРНК и подобных ей молекул есть другая, менее известная, но не менее важная функция: в различных репликативных процессах они исполняют роль праймеров и шаблонов. Это могут быть процессы репликации одноцепочечной вирусной РНК, репликация митохондриальной ДНК у грибов, репликации теломер [10]. Обратимся к вирусной РНК. Тэг играет роль шаблона при инициации репликации вирусной РНК. Более того, эти участки бывают настолько похожи на «настоящие» тРНК [10] , что могут быть аминоацилированы то есть к ним может быть присоединена аминокислота при помощи фермента аминоацил-тРНК-синтетазы.
Тем самым видно, что тРНК современных организмов способны также служить и праймерами. Возможно ли, что тРНК сегодняшних организмов произошли от древних геномных тэгов? Алан Вейнер и Нэнси Мэйцелс [10] отвечают на этот вопрос утвердительно. Согласно их теории, верхняя и нижняя половинки тРНК эволюционировали по-отдельности, причём верхняя часть тРНК появилась раньше нижней и является потомком геномных тэгов [10]. Происхождение рибосом При построении гипотезы мира РНК много внимания уделяется и происхождению рибосом, потому что их образование фактически можно приравнять к переходу от РНК-катализа к белковому процессу. Как известно, рибосома состоит из двух субъединиц: малой и большой.
Ключевую роль в синтезе белковой цепи играет большая субъединица рибосомы, в то время как маленькая считывает мРНК. Модель происхождения одной из молекул большой субъединицы была предложена канадскими биохимиками Константином Боковым и Сергеем Штейнбергом [11]. Они сосредоточили внимание на 23s-рРНК состоящей из шести доменов, I—VI , так как именно в этой молекуле находится функциональный центр, ответственный за реакцию транспептидации присоединение новой аминокислоты к растущей полипептидной цепи. Данная молекула содержит около трёх тысяч нуклеотидов и способна образовывать сложные трёхмерные структуры. Важную роль в поддержании трёхмерной структуры молекулы играют так называемые А-минорные связи [11]. Они представляют собой связи между «стопками» нуклеотидов как правило, аденозинов [11] с участками, образующими двойные спирали.
Фото Археологическая группа из University of Colorado Boulder обнаружила верхнюю часть огромной статуи фа... Да, в самое ближайшее время - 44.
Копирование других молекул РНК Прежде всего, рибонуклеиновая кислота РНК - это биологическая молекула, молекулярная структура которой очень похожа на структуру дезоксирибонуклеиновой кислоты ДНК.
Она состоит из одной спиральной цепи, по структуре схожей с одной из двух цепей, составляющих ДНК. По словам авторов исследования, этот прорыв, опубликованный в журнале PNAS 4 марта 2024 года, является выдающимся. Однако стоит отметить, что молекула не является самовоспроизводящейся, как настоящая. Поэтому ее нельзя считать живой.
Навигация по записям
- Гипотеза РНК-мира для ЕГЭ по биологии - YouTube
- Ученые обнаружили новые доказательства теории РНК-мира
- Ученые описали, как появилась РНК
- гипотеза "Мир-РНК"
Ученые обнаружили новые доказательства теории РНК-мира
Главная/Биология/Моделирование происхождения жизни: Новые доказательства существования "мира РНК". Понятно, что существенный аргумент гипотезы РНК-мира состоит в том, что эта гипотеза создает "простой" переходный мостик между абиогенной органикой и клетками. Гипотеза РНК-мира заключается в том, что первые репликаторы на Земле представляли собой РНК-молекулы, которые могли инициировать собственное воспроизведение без помощи белковых ферментов. Открытия, показывающие способность молекул РНК самовоспроизводиться, а также выполнять ферментативные функции, привели к возникновению гипотезы мира РНК. Последние новости дня на этот час. Открытия, показывающие способность молекул РНК самовоспроизводиться, а также выполнять ферментативные функции, привели к возникновению гипотезы мира РНК. Последние новости дня на этот час.
Ученые нашли новые доказательства РНК-мира
Но каталитическая активность у минирибозимов значительно ниже, чем у их более длинных «собратьев». Из этого следует, что короткие рибозимы могли быть эволюционными предшественниками длинных. Рибозимные репликазы Для того, чтобы в мире РНК полирибонуклеотиды могли размножаться, должны были существовать рибозимные аналоги белковых полимераз. В современных живых организмах рибозимы с таким видом активности не обнаружены, однако подобные молекулы были созданы искусственно. Молекулярные биологи из Великобритании обратили внимание на ранее известный рибозим R18, обладающий полимеразной активностью [6]. Он и стал объектом эксперимента: путём искусственной эволюции и разумного планирования из исходного рибозима были получены четыре новые молекулы с улучшенными каталитическими свойствами [7]. Дело в том, что исходный рибозим R18 обозначен на картинке буквой А был способен реплицировать лишь фрагменты РНК длиной до 20 нуклеотидов. Также им могла быть реплицирована далеко не каждая последовательность РНК, а лишь узкий круг определённых матриц [7]. Учёные пошли двумя путями: в одной серии экспериментов они пытались увеличить число оснований РНК, реплицируемых рибозимом. В результате были получены четыре новых рибозима с улучшенными свойствами.
Один из них — рибозим С19, который учёные смогли усовершенствовать далее. Так был получен ещё более эффективный рибозим tC19 на рисунке под буквой С. В другой серии экспериментов учёные смогли получить рибозим, чья полимеразная активность не так сильно зависела от нуклеотидной последовательности РНК-матриц [7]. В результате, полезные свойства рибозимов tC19 и Z удалось объединить в одном, названном tC19Z. Данный рибозим способен копировать как довольно широкий круг матриц, так и достаточно длинные последовательности [7]. Интроны, способные вырезаться самостоятельно, были обнаружены в тирозиновой тРНК таких сложных организмов, как человек и цветковое двудольное растение Arabidopsis thaliana. Эти 12-ти и 20-ти нуклеотидные участки в клетке вырезаются путём сплайсинга с участием белков, однако этот интрон показал способность вырезать самого себя и без участия ферментов. РНК-переключатели Ограниченная каталитическая способность рибозимов часто становится ещё одним хлипким краеугольным камнем теории мира РНК. Критики теории считают, что тот минимум химических реакций, который необходим для осуществления метаболизма в мире РНК, не может быть обеспечен одними лишь рибозимами.
Подавляющее большинство РНК-катализаторов катализируют лишь разрыв и создание фософодиэфирных связей между нуклеотидами. Кажется, что молекулы РНК со своими четырьмя весьма схожими мономерами безнадёжно проигрывают в химическом разнообразии белкам, которые имеют в своём составе 20 аминокислот, весьма различных по свойствам. Однако не стоит забывать, что многие белковые ферменты для выполнения активной работы должны присоединить лиганды — кофакторы , — без которых ферментативная активность попросту исчезает. И здесь стоит вспомнить об РНК-перключателях или рибопереключателях англ. Что же это такое? Как известно, информация об аминокислотной последовательности белка передаётся в рибосому через мРНК. В данном случае, помимо самого гена, транскрибируется участок впереди него, на котором и расположен рибоперключатель [8]. РНК-переключатель представляет собой участок мРНК, способный связывать молекулу строго определённого вещества. После связывания переключатель меняет свою пространственную конфигурацию, что делает невозможной дальнейшую транскрипцию [8].
Важно понимать принцип работы РНК-переключателей, поэтому скажем пару слов об их устройстве. Состоит он из двух частей: из аптамера и «экспрессионной платформы». Аптамер, по сути, является рецептором, который с очень высокой селективностью связывается с определённой молекулой. Эффекторной молекулой для аптамера является молекула, производимая белком, ген которого и регулируется переключателем. Однако существуют и РНК-переключатели, действующие по более сложному механизму. Например, рибопереключатель, контролирующий транскрипцию гена metE бактерии Bacillus clausii, является двойным, то есть имеет два рецепторных участка, связывающих две разных молекулы [9]. Разберём данный механизм подробнее. Ген metE кодирует фермент, превращающий гомоцистеин в аминокислоту метионин. Затем метионин используется уже другим ферментом для синтеза S-аденозилметионина или проще — SAM.
Помимо гена metE, существует и другой ген — metН. Белок гена metН катализирует ту же реакцию, но с большей эффективностью, чем metE. Однако metН для своей работы требует кофермент — метилкобаламин или MeCbl , синтезируемый из аденозилкобаламина или AdoCbl. То есть, для выключения metE достаточно связывания с рецепторами рибопереключателя либо одной из эффекторных молекул, либо сразу обеих. Сам механизм прерывания трансляции основан на образовании шпильки путём удаления шести нуклеотидов из рибопереключателя рис.
В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК. Из-за этого появлялось множество копий разрушенного полимера. Ученые сравнили такое явление с регенерацией червей, которых разрезают на сегменты. Ранее ученые выяснили, что социальный статус влияет на активность генов и передается от матери к детям.
Она отталкивается от того, что один из главных признаков жизни — это передача наследственной информации с учётом изменений, которые в ней произошли. Нуклеиновые кислоты вполне подходят на роль «первопредков»: они информацию хранят, они могут её копировать, и в той информации, которая в них хранится, возможны изменения — мутации, которые могут быть полезными, нейтральными или вредными. Однако, если говорить о ДНК, то ей для копирования всё-таки нужна помощью белков. А вот РНК сама способна быть ферментом, сама может осуществлять определённые химические реакции, и, как показали эксперименты, молекулы РНК вполне способны наращивать рибонуклеотидную цепь, то есть РНК может синтезировать РНК. Структура рибосомной субчастицы эукариот; разными цветами обозначены молекулы РНК и белков. Возможно, предками таких сложных молекулярных машин были маленькие комплексы небольших древних РНК и пептидов. Последние исследования говорят нам о том, что они вполне могли появиться из неорганического сырья либо же их могли принести на Землю метеориты. Но одними нуклеиновыми кислотами дело ведь не ограничилось. Потом появились белки, на которых сейчас держится почти вся клеточная биохимия. Те же белки сейчас занимаются копированием нуклеиновых кислот и синтезом других белков. Есть гипотезы, по которым белки могли возникнуть сами по себе , причём без каких-то экстремальных условий.
Репликация происходила за счет циклического изменения температуры, что поддерживало процесс размножения, как в циклах день-ночь. Исследователи также отметили, что неорганические поверхности, вроде камней, могли способствовать этому процессу, что открывает новые горизонты в понимании начал биологической эволюции на Земле.
Учеными из США найдены новые доказательства РНК-мира
Гипотеза мира РНК ставит РНК в центр внимания при зарождении жизни. В ходе исследование специалисты усомнились в достоверности гипотезы РНК-мира, предполагающей то, что первыми способными к размножению структурами были РНК-молекулы. Одной из главных теорий является гипотеза "РНК-мира", согласно которой первые формы жизни возникли благодаря РНК-репликазе, способной копировать себя и другие молекулы РНК. (Различные аспекты гипотезы мира РНК и подтверждающие ее данные основательно рассмотрены в одноименной книге, вышедшей в 2010 г. в 4-м издании: Atkins et al., 2010.). Другой гипотезой абиогенного синтеза РНК, призванной решить проблему низкой оценочной вероятности синтеза РНК, является гипотеза мира полиароматических углеводородов. Идея мира РНК была впервые высказана Карлом Вёзе в 1968 году, позже развита Лесли Орджелом и окончательно сформулирована Уолтером Гильбертом в 1986 году.
Гипотеза РНК-мира для ЕГЭ по биологии
Фактически, исследователи смогли сформировать эти химеры в лабораторных условиях и показать, что они обладают потенциалом для репликации РНК и ДНК, и, таким образом, образованные РНК и ДНК способны воспроизводить химеры. Такое поведение может привести к кросс-каталитической амплификации РНК и ДНК - ключевому шагу к эволюции сложных организмов. Новый проект экспериментально поддерживает идею о том, что жизнь могла возникнуть из гораздо более сложной системы, где «чистой» РНК и ДНК еще не существовало. Как говорит Кришнамурти: «Ничего страшного, не иметь чистой химии».
Мы никогда не узнаем точно, как образовалась ранняя жизнь, но эксперименты, по крайней мере, показывают химические реакции, которые могли бы в конечном итоге привести к чистым последовательностям РНК и ДНК, которые поддерживают жизнь сегодня.
Результаты новых исследований говорят о том, что подобные каталитические процессы могли иметь место в условиях бескислородной атмосферы пребиотической Земли. Уильямс также предполагает, что после появления процесса фотосинтеза и увеличения концентрации кислорода железо II окислилось до железа III , став более опасным для РНК, и постепенно было замещено магнием для всех процессов, протекающих с участием РНК. Источники: [1] Nat.
Между тем, РНК-переключатели способны связывать значительное число белковых кофакторов, таких как флавинмононуклеотид, тиаминпирофосфат, тетрагидрофолат, S-аденозилметионин, аденозилкобаламин [8]. Изначально считалось, что РНК-переключатели способны лишь подавлять экспрессию генов [8] , но позже были получены данные, свидетельствующие о том, что некоторые переключатели, напротив, ее усиливают. Сами по себе РНК-переключатели представляют весьма интересное явление, так как они демонстрируют возможность регуляции работы генов без прямого участия белков — иными словами, демонстрирует самодостаточность и универсальность РНК.
Судя по всему, РНК-переключатели являются очень древним механизмом: так, они обнаружены во всех доменах живой природы: у бактерий, архей и эукариот [8]. Похоже, что, по меньшей мере, некоторые из современных кофакторов белков были прямиком заимствованы из мира РНК. Можно нарисовать примерно такую картину: рибозимы изначально использовали многие из современных кофаторов для своих целей, однако с появлением более эффективных белковых ферментов эти кофакторы были заимствованы последними. Рисунок 2. Вторичная структура РНК-переключателя гена metE. Выделены акцепторы — сайты связывания с молекулами SAM и AdoCbl, а также шпилечные терминирующие структуры. Геномные тэги и тРНК Рисунок 3. Вторичная структура тРНК.
На рисунке отчётливо видна характерная для тРНК вторичная структура в виде «клеверного листа». В нижней части молекулы находится антикодоновая петля, ответственная за комплементарное связывание с кодоном мРНК. Согласно гипотезе геномного тэга, верхняя и нижняя половины тРНК эволюционировали по отдельности, причём верхняя половина древнее нижней. Всем хорошо известна важная роль тРНК в биосинтезе белка. Однако у тРНК и подобных ей молекул есть другая, менее известная, но не менее важная функция: в различных репликативных процессах они исполняют роль праймеров и шаблонов. Это могут быть процессы репликации одноцепочечной вирусной РНК, репликация митохондриальной ДНК у грибов, репликации теломер [10]. Обратимся к вирусной РНК. Тэг играет роль шаблона при инициации репликации вирусной РНК.
Более того, эти участки бывают настолько похожи на «настоящие» тРНК [10] , что могут быть аминоацилированы то есть к ним может быть присоединена аминокислота при помощи фермента аминоацил-тРНК-синтетазы. Тем самым видно, что тРНК современных организмов способны также служить и праймерами. Возможно ли, что тРНК сегодняшних организмов произошли от древних геномных тэгов? Алан Вейнер и Нэнси Мэйцелс [10] отвечают на этот вопрос утвердительно. Согласно их теории, верхняя и нижняя половинки тРНК эволюционировали по-отдельности, причём верхняя часть тРНК появилась раньше нижней и является потомком геномных тэгов [10]. Происхождение рибосом При построении гипотезы мира РНК много внимания уделяется и происхождению рибосом, потому что их образование фактически можно приравнять к переходу от РНК-катализа к белковому процессу. Как известно, рибосома состоит из двух субъединиц: малой и большой. Ключевую роль в синтезе белковой цепи играет большая субъединица рибосомы, в то время как маленькая считывает мРНК.
Модель происхождения одной из молекул большой субъединицы была предложена канадскими биохимиками Константином Боковым и Сергеем Штейнбергом [11]. Они сосредоточили внимание на 23s-рРНК состоящей из шести доменов, I—VI , так как именно в этой молекуле находится функциональный центр, ответственный за реакцию транспептидации присоединение новой аминокислоты к растущей полипептидной цепи. Данная молекула содержит около трёх тысяч нуклеотидов и способна образовывать сложные трёхмерные структуры. Важную роль в поддержании трёхмерной структуры молекулы играют так называемые А-минорные связи [11]. Они представляют собой связи между «стопками» нуклеотидов как правило, аденозинов [11] с участками, образующими двойные спирали. Связи формируются между спиралями и стопками, расположенными в разных областях молекулы. Соответственно, в молекуле должна присутствовать некая более простая структура, с которой и началась её эволюция. Особое внимание исследователей привлёк домен V [11].
Интересным в нём было то, что он содержит большое количество двойных спиралей при фактически полном отсутствии аденозиновых стопок. Вот что пишут по этому поводу авторы исследования: «Чтобы объяснить аномалию, имеющую место в домене V, мы предположили, что это отражает порядок, в котором различные части присоединялись к 23s-рРНК по мере её эволюции. В А-минорных мотивах конформационная стабильность аденозиновых стопок зависит от присутствия двойных спиралей, в то время как двойные спирали способны сохранять стабильную структуру сами по себе» [11]. Из этого следует, что домен V является наиболее древней частью молекулы: его спиральные участки, что придают стабильность всей молекуле, должны были появиться раньше других частей, содержащих аденозиновые стопки. Более того, именно в пятом домене находится функциональный центр, ответственный за формирование пептидной связи в процессе биосинтеза белка. Выходит, что пятый домен является и функциональным центром молекулы, и её структурным остовом. Это говорит о том, что эволюция 23s-рРНК началась именно с него.
Кроме того, процесс репликации сложен в реализации. Если скопированная РНК будет слишком точно соответствовать источнику, вариации, необходимые для эволюции согласно Чарльзу Дарвину, будут невозможны.
Слишком несовершенная копия приведет к потере генетической информации и, следовательно, к генетической нестабильности. РНК-молот может делать "молекулярные разрезы", другими словами, изменять клетки, разрывая их химические связи. Таким образом, исследователи смогли обеспечить определенную точность в процессе репликации и достаточную стабильность последовательных копий.
Ученые обнаружили новые доказательства гипотезы РНК-мира
рибозимов - в 1982-1983. Сторонники гипотезы РНК-мира считают, что на начальном этапе зарождения жизни на нашей планете возникли автономные РНК-системы, которые катализировали «метаболические» реакции (например, синтеза новых рибонуклеотидов) и самовоспроизводились. Строение РНК Типы РНК Гипотеза РНК мира. Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили об обнаружении новых доказательств гипотезы РНК-мира. Согласно этой гипотезе, первые репликаторы на Земле были представлены РНК-молекулами, способными к самовоспроизведению без участия белковых ферментов. Ученые из Института биологических исследований Солка провели исследования, подтверждающие гипотезу о мире РНК.
Гипотеза РНК-мира для ЕГЭ по биологии
Концепция РНК-мира, разработанная в России, получила новые подтверждения. Понятно, что существенный аргумент гипотезы РНК-мира состоит в том, что эта гипотеза создает "простой" переходный мостик между абиогенной органикой и клетками. Согласно этой гипотезе, первые репликаторы на Земле были представлены РНК-молекулами, способными к самовоспроизведению без участия белковых ферментов. Гипотеза не объясняла, как РНК начали соединяться с белками. Новости по тэгу. Открытия, показывающие способность молекул РНК самовоспроизводиться, а также выполнять ферментативные функции, привели к возникновению гипотезы мира РНК. Концепцию мира РНК впервые сформулировал в 1962 году Александр Рич (Alexander Rich), термин ввел в 1986 году Уолтер Гилберт (Walter Gilbert).
Американские ученые выявили новое объяснение возникновения жизни на Земле
В данном случае, помимо самого гена, транскрибируется участок впереди него, на котором и расположен рибоперключатель [8]. РНК-переключатель представляет собой участок мРНК, способный связывать молекулу строго определённого вещества. После связывания переключатель меняет свою пространственную конфигурацию, что делает невозможной дальнейшую транскрипцию [8]. Важно понимать принцип работы РНК-переключателей, поэтому скажем пару слов об их устройстве. Состоит он из двух частей: из аптамера и «экспрессионной платформы». Аптамер, по сути, является рецептором, который с очень высокой селективностью связывается с определённой молекулой. Эффекторной молекулой для аптамера является молекула, производимая белком, ген которого и регулируется переключателем. Однако существуют и РНК-переключатели, действующие по более сложному механизму. Например, рибопереключатель, контролирующий транскрипцию гена metE бактерии Bacillus clausii, является двойным, то есть имеет два рецепторных участка, связывающих две разных молекулы [9].
Разберём данный механизм подробнее. Ген metE кодирует фермент, превращающий гомоцистеин в аминокислоту метионин. Затем метионин используется уже другим ферментом для синтеза S-аденозилметионина или проще — SAM. Помимо гена metE, существует и другой ген — metН. Белок гена metН катализирует ту же реакцию, но с большей эффективностью, чем metE. Однако metН для своей работы требует кофермент — метилкобаламин или MeCbl , синтезируемый из аденозилкобаламина или AdoCbl. То есть, для выключения metE достаточно связывания с рецепторами рибопереключателя либо одной из эффекторных молекул, либо сразу обеих. Сам механизм прерывания трансляции основан на образовании шпильки путём удаления шести нуклеотидов из рибопереключателя рис.
Логику действий такого элемента NOR можно описать так: «Я подавляю транскрипцию, если в среде присутствует либо вещество А, либо вещество В, либо оба вещества сразу». Остаётся только удивляться, сколь красивы и элегантны решения Природы! Рисунок 1. Работа рибопереключателей. А — Рибопереключатели на транскриптах генов metE, metH и metK. Голубым обозначены шпилечные структуры, образуемые в результате вырезания шести или более уридиновых нуклеотидов. Видно, что у metE имеется два акцепторных и два шпилечных участка. В — Путь биосинтеза S-аденозилметионина.
На первом этапе гомоцистеин преобразуется в амикислоту метионин. Это превращение может быть катализировано одним из двух ферментов: metE или metH. На втором этапе фермент metK превращает метионин в S-аденозилметионин. Между тем, РНК-переключатели способны связывать значительное число белковых кофакторов, таких как флавинмононуклеотид, тиаминпирофосфат, тетрагидрофолат, S-аденозилметионин, аденозилкобаламин [8]. Изначально считалось, что РНК-переключатели способны лишь подавлять экспрессию генов [8] , но позже были получены данные, свидетельствующие о том, что некоторые переключатели, напротив, ее усиливают. Сами по себе РНК-переключатели представляют весьма интересное явление, так как они демонстрируют возможность регуляции работы генов без прямого участия белков — иными словами, демонстрирует самодостаточность и универсальность РНК. Судя по всему, РНК-переключатели являются очень древним механизмом: так, они обнаружены во всех доменах живой природы: у бактерий, архей и эукариот [8]. Похоже, что, по меньшей мере, некоторые из современных кофакторов белков были прямиком заимствованы из мира РНК.
Можно нарисовать примерно такую картину: рибозимы изначально использовали многие из современных кофаторов для своих целей, однако с появлением более эффективных белковых ферментов эти кофакторы были заимствованы последними. Рисунок 2. Вторичная структура РНК-переключателя гена metE. Выделены акцепторы — сайты связывания с молекулами SAM и AdoCbl, а также шпилечные терминирующие структуры. Геномные тэги и тРНК Рисунок 3. Вторичная структура тРНК. На рисунке отчётливо видна характерная для тРНК вторичная структура в виде «клеверного листа». В нижней части молекулы находится антикодоновая петля, ответственная за комплементарное связывание с кодоном мРНК.
Согласно гипотезе геномного тэга, верхняя и нижняя половины тРНК эволюционировали по отдельности, причём верхняя половина древнее нижней.
Все рассмотренные аргументы подчёркивают важную, если не исключительную, роль РНК в происхождении жизни на земле. Исследования продолжаются.
Современная жизнь - это РНК, передавшая часть свих генетических функций рождённому ею же полимеру - ДНК и синтезирующая белки для всеобъемлющего эффективного функционирования содержащих её компонентов - клеток и многоклеточных организмов [27-29]. Необычные древние особенности РНК нашли в последнее время эффективные практические приложения. Так как практически каждая наноколония происходит из одной матричной молекулы, с помощью наноколоний можно обнаружить и идентифировать одиночные молекулы ДНК и РНК, в том числе - с диагностическими целями.
В настоящее время наноколонии применяются в нашей стране и за рубежом для различных научных и прикладных задач. Важнейшим направлением исследований является разработка ранней диагностики онколологических заболеваний. В России от разных видов рака умирает около 300 000 человек в год, что представляет большую демографическую, экономическую социальную проблему.
Лечение осложняется тем, что у большинства больных болезнь диагностируется уже на поздних стадиях. С развитием экономики проблема может только усугубляться, так как частота онкологических заболеваний растёт по мере ухудшения экологической обстановки и увеличения продолжительности жизни населения. Эффективность лечения рака зависит от своевременности диагностики.
Однако до сих пор проблема ранней диагностики рака не решена. Наноколонии РНК позволяют создать технологию молекулярной диагностики рака на стадии, когда его ещё невозможно обнаружить существующими методами. Диагностировать болезнь предполагается путём обнаружения в клинических образцах например, в крови, в моче или в мокроте молекул определённых индикаторных "маркёрных" РНК, которые присутствуют во всех раковых клетках независимо от вида рака.
Примером такого универсального маркёра является мРНК белковой субъединицы теломеразы - фермента, отвечающего за синтез концевых участков хромосом теломер. Эта мРНК присутствует и в нормальных стволовых клетках, которые, подобно раковым клеткам, способны к неограниченному делению. Однако, в отличие от раковых клеток, стволовые клетки находятся в своих нишах и не распространяются по организму.
Поэтому присутствие теломеразной мРНК там, где стволовых клеток быть не должно например, в плазме или в клетках крови , может служить указанием на наличие злокачественного процесса. Существуют также РНК, которые могут служить групповыми маркёрами всех видов рака кишечника, или всех видов рака молочной железы, или всех видов рака печени. Попытки использовать РНК-маркёры для молекулярной диагностики рака были и раньше, но из-за ограниченной чувствительности и недостаточной специфичности стандартной ПЦР полимеразной цепной реакции они закончились неудачей.
Следует отметить исключительно высокий потенциал наноколоний для диагностики любых заболеваний, для которых существуют РНК- или ДНК-маркёры, в т. Например, молекула белка в том числе белка-маркёра рака может быть обнаружена путём размножения суррогатной ДНК-мишени, образованной лигированием фрагментов ДНК, способных одновременно связываться с данной молекулой белка посредством специфических лигандов например, антител. Подобным же образом с помощью наноколоний можно обнаружить одиночные молекулы любого вещества например, наркотика или допинга , достаточно сложные для формирования на своей поверхности, по крайней мере, двух участков специфического связывания лигандов [16].
В помощь антибиотикам Важнейшей проблемой современности является быстрая эволюция бактерий в направлении приобретения устойчивости к антибиотикам, приводящая к возрождению многих заболеваний человека. Профессор Йельского университета США Сидни Альтман, продолжая исследования в области каталитической способности РНК, стал разрабатывать способы борьбы с инфекционными заболеваниями антибактериальная и антималярийная терапия , используя каталитические способности конкретного РНК-фермента - рибонуклеазы Р. Конечная цель - создать препарат, который мог бы быть альтернативой в случае устойчивости инфекции к антибиотикам.
На конкретных объектах исследований разрабатываются фундаментальные основы подходов, которые могли бы быть общими для лечения многих инфекционных заболеваний. В перспективе синтезировать определённые соединения, которые могут быть легко модифицированы для борьбы, как с бактериями, так и с малярией. Это направление исследований представляет перспективную альтернативу применению в медицине антибиотиков, возможности которых стремительно тают.
Сидни Альтман разрабатывает это важнейшее направление, в частности, совместно с Институтом химической биологии и фундаментальной медицины СО РАН г. Новосибирск [6]. Как зарождались знания, составляющие основу практического применения теорий и методов молекулярной биологии РНК Лауреат Нобелевской премии за открытие рибозимных свойств РНК Сидни Альтман Олтмен, 1939 г.
Заняться молекулярной биологией начинающему учёному Альтману посоветовал русский физик Георгий Гамов. Он понял, что структуры белков, состоящих из 20 основных природных аминокислот - должна быть зашифрована в последовательности из четырёх возможных нуклеотидов, входящих в состав молекулы ДНК. Исходя из простых арифметических соображений, Гамов показал, что при сочетании 4-ёх нуклеотидов тройками получается 64 различные комбинации, чего вполне достаточно для записи наследственной информации.
Таким образом, он был первым, кто предложил кодирование аминокислотных остатков триплетами нуклеотидов [17]. Практически генетический код позволил расшифровать метод бесклеточной системы синтеза белка in vitro. Первые результаты в этом направлении были получены в 1961 году, когда М.
Ниренберг и Х. Матеи синтезировали упрощённую форму мРНК, состоящую из одинаковых нуклеотидов и обнаружили, что в её присутствии происходит образование длинной цепи белковоподобной молекулы, состоящей из аминокислот одного-единственного вида. Искусственная мРНК представляла собой полинуклеотид поли-У, в котором все нуклеотиды содержали только одно основание - урацил.
Когда поли-У добавляли к экстракту из клеток бактерии E. Так было обнаружено, что кодон УУУ соответствует фенилаланину. Этот первый успех указал путь, следуя которому в скором времени удалось установить кодоны и для ряда других аминокислот; требовалось только перепробовать различные формы синтетических мРНК.
Тогда возник вопрос, каким образом некоторые синтетические мРНК, например поли-У, которые, конечно, не содержат таких кодонов, ухитряются как-то заставлять рибосомы синтезировать полипептиды? Вероятно, это происходит по ошибке - из-за того, что рибосомы ведут себя «не по инструкции». Следовательно - ирония судьбы!
Каковы же те обстоятельства, которые приводят к тому, что эти системы совершают «нужные» ошибки? Один из факторов был вскоре найден. Им оказалась высокая концентрация магния в бесклеточных системах.
Каким образом магний инициирует синтез? На этот вопрос нет однозначного ответа [25]. О различии молекулярных механизмов формирования морозоутойчивости озимой мягкой пшеницы и озимого ячменя Итак, концентрация магния.
Установлено, чем больше содержится магния в рРНК, тем активнее синтезируют белок полифенилаланин рибосомы зародышей пшеницы в бесклеточной системе синтеза белка in vitro на искусственной матрице поли-У [42]. Вполне возможно, что концентрация катионов магния в клетке определяет интенсивность синтеза «ошибочных» полипептидов, предположительно расширяющих адаптационные свойства организмов [19, 20, 21, 25]. Вероятно, этим можно объяснить факт сортоспецифического усиления in vitro трансляционной активности полисом из проростков пшеницы и ячменя под влиянием закаливающей температуры [16, 25], тогда как в этих условиях длина поли-А-хвоста мРНК энхансера трансляции у пшеницы увеличивалась, а у ячменя сокращалась [2, 16].
Но ячмень содержит гораздо больше катионов магния по сравнению с пшеницей [12], что, возможно, и определяло увеличение трансляционной активности рибосом ячменя. Следовательно, увеличение трансляционной активности полирибосом может происходить как за счёт увеличения длины поли-А-хвоста мРНК как энхансера трансляции пшеница , так и за счёт увеличения содержания катионов магния в рРНК ячмень. Можно полагать, что озимый ячмень формирует морозоустойчивость на основе более древнего молекулярного механизма - адаптационного усиление трансляционной активности за счет вариации в содержании магния в рРНК [11, 13, 22].
Но озимая мягкая пшеница реагирует на закаливающие температуры сортоспецифическим усилением полиаденилирования мРНК [2, 16, 23]. Этот молекулярный механизм, вероятно, более поздний и является более прогрессивным по сравнению с вариациями содержания магния в рРНК. Отсюда, возможно, и более высокая морозоустойчивость озимой мягкой пшеницы по сравнению с озимым ячменём.
Таким образом, есть основания полагать, что повышение морозостойкости сорта озимой мягкой пшеницы сопровождается стабилизацией мРНК и дестабилизацией рРНК. Предполагается, что стабилизация рРНК определяется укреплением молекулы за счёт катионов магния, в тоже время весьма вероятно, что катионы магния стимулируют укорочение терминальной поли-А-последовательности, определяющей стабильность и трансляционную активность мРНК, через усиление прочности определённых структур мРНК, определяющих скорость её деаденилирования. Эта принципиально важная гипотеза требует детальной экспериментальной проверки.
Об особенностях молекулярной биологии озимой мягкой пшеницы сорта Безостая 1 «Генотип должен превалировать над средой». Вавилов Одним из часто встречающихся, довольно досадным моментом при работе с РНК является их деградация в процессе хранения или манипулирования, даже в случае хорошо очищенных препаратов. Обычно это связывают с наличием РНКаз, занесенных с посудой и реактивами или попавших в препараты РНК в процессе выделения.
Ученые из Брукхейвенской национальной лаборатории раскрывают новые доказательства гипотезы РНК-мира, согласно которой первые репликаторы на Земле были РНК-молекулами Источник фото: Фото редакции Опубликованная в журнале eLife статья описывает открытия, позволяющие понять, как могли возникнуть структуры способные к самовоспроизведению без участия белковых ферментов. Исследования показали, что рибозимы способны к самостоятельному образованию, при этом для их функционирования требуется лишь несколько консервативных оснований. Ученые разработали модели, имитирующие возможные пути эволюции предшественников РНК, лишенных каталитической активности.
Об этом ТАСС сообщил директор по комплексной безопасности группы компаний… Устроивших массовую драку в Туапсе граждан Узбекистана выдворят из России Пятнадцать граждан Республики Узбекистан, устроивших в среду массовую драку в Туапсе, будут оштрафованы и выдворены из России, сообщили в прокуратуре Краснодарского края. Кадры массовой драки появились в сети ещё в… МИД Польши: Дуда не уполномочен обсуждать размещение ядерного оружия Президент Польши Анджей Дуда не уполномочен обсуждать возможность размещения ядерного оружия в стране. Хотя некоторым удается ограничиться незначительным увеличением, для большинства это становится серьезной проблемой.
Семь научных теорий о происхождении жизни. И пять ненаучных версий
Они предложили гипотезу "мира РНК", которая предполагает, что возникновение жизни на Земле произошло путем усложнения РНК-молекул и их преобразования в молекулы ДНК и белки. рибозимов - в 1982-1983. Новости о недвижимости, экономики и финансах в России.