Ответы экспертов на вопрос №1217066 В случайном эксперименте симметричную монету бросают трижды.
В случайном эксперименте симметричную монету...
В случайном эксперименте симметричную монету бросают дважды 1200 в случайном эксперименте симметричную монету. Задачи на подбрасывание монет считаются довольно сложными. Найдите вероятность того, что орел выпадет ровно 3 раза. 8. Определите вероятность того, что при бросании кубика выпало число очков, не большее 3. 9. Определите вероятность того, что при бросании кубика выпало число очков, не меньшее 1. 26)В случайном эксперименте симметричную монету бросают трижды.
Значение не введено
Вероятность выпадения орла 1 раз мы уже находили в пункте в и она равна 0. Вероятность выпадения орла 3 раза мы уже находили в пункте а и она равна 0. Таким образом, вероятность того, что орел выпадет нечетное число раз при пятикратном бросании монеты, равна 0. Будущее для жизни уже сейчас Мгновенная помощь Из любой точки мира на любом языке Поможет стать лучше Решит любую задачу, ответит на вопрос Используй как тебе удобно В твоем телефоне, ноутбуке, планшете Делай больше за тоже время AI Znanya сделает твою учебу и работу более результативней AI Znanya.
Прототип задания B12. Задачи на работу и производительность. Задачи на «концентрацию, смесей и сплавов». Общие подходы к решению задач. Движение велосипедистов и автомобилистов. Движение лодки по течению и против течения. Сюжетные задачи. Укажите график функции, заданной формулой. Простейшие виды уравнений и неравенств. Анализ содержания заданий по математике ЕГЭ. Геометрические фигуры и их свойства. Задания второй и третьей части форма В и С. Студенческая бригада. Значение выражения. Найдите значение выражения. Сколько корней имеет уравнение. Структура работы по математике. Основные содержательные темы по математике. Советы психолога. Типовые экзаменационные варианты. ЕГЭ-2012 математика. Полезные приемы. Бланки ответов. Оценка работ ЕГЭ по математике. Рекомендации по заучиванию материала. Изменения в ЕГЭ по математике 2012. Структура варианта КИМ. Типовые тестовые задания. Подготовка к ЕГЭ по математике. Содержание задания. Проверяемые требования. Реальные числовые данные. Лимонная кислота. Спасательная шлюпка. Задания для самостоятельного решения. Лимонная кислота продается в пакетиках. Памятка ученику. Наибольшее число.
Найдите вероятность того, что оба раза выпало число, меньшее 4. Так как игральную кость игральный кубик бросают дважды, то будем рассуждать следующим образом: если на первом кубике выпало одно очко, то на втором может выпасть 1, 2, 3, 4, 5, 6. Получаем пары 1;1 , 1;2 , 1;3 , 1;4 , 1;5 , 1;6 и так с каждой гранью. Все случаи представим в виде таблицы из 6-ти строк и 6-ти столбцов: 1; 1.
В случае если ответы на похожие вопросы не раскрывают в полном объеме необходимую информацию, то воспользуйтесь кнопкой в верхней части сайта и сформулируйте свой вопрос иначе. Также на этой странице вы сможете ознакомиться с вариантами ответов пользователей. Последние ответы Полинка1455 28 апр. Zajcikvb 28 апр. Mario58 28 апр. LokKomer 28 апр.
Симметричную монету бросают 12 раз во сколько
Элементы комбинаторики. События и их вероятности. Примеры решения задач (Часть 2) | Найди верный ответ на вопрос«7. В случайном эксперименте симметричную монету бросают дважды. |
Монету бросают 4 раза сколько элементарных событий | В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что орёл выпадет ровно два раза. |
Метод перебора комбинаций
- Найдите вероятность того, что орёл выпадет ровно один раз
- ЕГЭ по математике: решение задания на вероятность
- Значение не введено
- Задача 4. В случайном эксперименте симметричную монету бросают четырежды
ЕГЭ. Теория вероятностей. Разбор задачи про монету, которую бросили дважды
Редактирование задачи | Задание. В случайном эксперименте симметричную монету бросают дважды. |
Бросили пять монет | В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет ровно два раза. |
Задачи B6 с монетами | Найди верный ответ на вопрос«7. В случайном эксперименте симметричную монету бросают дважды. |
ЕГЭ профильный уровень. №4 Классическое определение вероятности. Задача 7 — | В случайном эксперименте симметричную монету бросают пять раз. |
Задача №8603
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз. Решение: Для того чтобы найти вероятность указанного события, необходимо рассмотреть все возможные исходы эксперимента, а затем из них выбрать благоприятные исходы благоприятные исходы — это исходы удовлетворяющие требованиям задачи. В нашем случае, благоприятными будут те исходы, в которых при двух бросаниях симметричной монеты, орел выпадет только один раз. Вероятность события вычисляется как отношение количества благоприятных исходов к общему количеству исходов. Игральный кубик бросили один раз. Какова вероятность того, что выпало число очков, большее чем 4. Решение: Случайный эксперимент — бросание кубика. Элементарное событие — число на выпавшей грани. Биатлонист пять раз стреляет по мишеням.
Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся. Результат округлите до сотых. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что сумма выпавших очков равна 6. Ответ округлите до сотых Решение: Элементарный исход в этом опыте — упорядоченная пара чисел. Первое число выпадет на первом кубике, второе — на втором. Множество элементарных исходов удобно представить таблицей. Строки соответствуют количеству очков на первом кубике, столбцы —на втором кубике.
Напишем в каждой клетке сумму выпавших очков и закрасим клетки, где сумма равна 6. Таких ячеек 5. Ответ: 0,14. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле: Где Cnk - число сочетаний из n элементов по k, которое считается по формуле: 10 слайд Описание слайда: Задача 7. Найдите вероятность того, что орел выпадет ровно три раза. Ответ будет таким же. Ответ: 0,25 11 слайд Описание слайда: Задача 8. Монету бросают три раза. Решение Снова выписываем числа n и k.
Задачи о бросках кубика Задача 5. Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «сумма очков равна 8»?
Задача 6. Одновременно бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка.
Вообще, если бросают игральных костей кубиков , то имеется равновозможных исходов. Столько же исходов получается, если один и тот же кубик бросают раз подряд. Событию «в сумме выпало 4» благоприятствуют следующие исходы: 1 — 3, 2 — 2, 3 — 1.
Их количество равно 3. Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком. Таким образом, приблизительно равна 0,083…, округлив до сотых имеем 0,08.
Ответ: 0,08 Задача 7. Одновременно бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков.
Исходом будем считать тройку чисел: очки, выпавшие на первой, второй и третьей игральной кости. Всего имеется равновозможных исходов. Событию «в сумме выпало 5» благоприятствуют следующие исходы: 1—1—3, 1—3—1, 3—1—1, 1—2—2, 2—1—2, 2—2—1.
Их количество равно 6. Приблизительно получаем 0,027…, округлив до сотых, имеем 0,03. Под редакцией Ф.
Лысенко, С. Кулабухова Формулировка задачи: В случайном эксперименте симметричную монету бросают дважды. Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 10 Классическое определение вероятности.
Рассмотрим, как решаются подобные задачи на примерах. Пример задачи 1: В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу.
Нас интересуют только те из них, в которых нет ни одного орла.
Имеем: Теперь найдем p2 - вероятность того, что орел выпадет все 4 раза. Имеем: Чтобы получить ответ, осталось сложить вероятности p1 и p2.
Помните: складывать вероятности можно только для взаимоисключающих событий. Ответ: 0,125. Их сегодня мы и разберем.
Задачи о подбрасывании монеты Задача 1. Симметричную монету бросают дважды. Найдите вероятность того, что решка выпадет ровно один раз.
В таких задачах удобно выписать все возможные исходы, записывая их при помощи букв Р решка и О орел. Так, исход ОР означает, что при первом броске выпал орел, а при втором — решка. Благоприятствуют событию «решка выпадет ровно один раз» 2 исхода: РО и ОР.
Искомая вероятность равна. Ответ: 0,5. Задача 2.
Симметричную монету бросают трижды, Найдите вероятность того, что орел выпадет ровно два раза. Ответ: 0,375. Задача 3.
Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнет игру с мячом. Команда «Изумруд» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Изумруд» выиграет жребий ровно один раз.
Эта задача аналогична предыдущей. Пусть каждый раз выпадение решки означает выигрыш жребия «Изумрудом» такое предположение не влияет на вычисление вероятностей. Задача 4.
Симметричную монету бросают трижды. Найдите вероятность того, что наступит исход РОО в первый раз выпадает решка, во второй и третий - орёл. Вероятность наступления исхода РОО равна.
Задачи о бросках кубика Задача 5. Игральный кубик бросают дважды.
Число таких комбинаций - это n ; Среди полученных комбинаций отмечаем те, которые требуются по условию задачи. К сожалению, этот способ работает лишь для малого количества бросков. Потому что с каждым новым броском число комбинаций удваивается.
Например, для 2 монет придется выписать всего 4 комбинации. Взгляните на примеры - и сами все поймете: Задача. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество. Итак, монету бросают два раза.
Находим вероятность: Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу. Вроде, ничего не забыл. Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек.
Осталось найти вероятность: Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки? Лично я - не уверен. Поэтому давайте рассмотрим второй способ решения. Специальная формула вероятности Итак, в задачах с монетами есть собственная формула вероятности.
Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните: Теорема.
В случайном эксперименте симметричную монету бросают... раз
Найди верный ответ на вопрос«7. В случайном эксперименте симметричную монету бросают дважды. В случайном эксперименте симметричную монету бросают четырежды. Т. К нам не важен порядок выпадения стррон то у нас всего 5 вариантов(один из которых нам нужен) и зная что стороны симметричны у обоих сторон шанс выпадения одинаковый сл 1/5=20%. № 34 В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что решка выпадет ровно два раза. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет ровно два раза. Формулировка задачи: В случайном эксперименте симметричную монету бросают дважды.
Номер 55 учебник по вероятности и статистике Высоцкий, Ященко 7-9 класс часть 2
Мы можем найти эту вероятность, сложив вероятности выпадения орла 2, 3 и 4 раза. Таким образом, вероятность того, что орел выпадет от двух до четырех раз при пятикратном бросании монеты, равна 0. Мы можем сложить вероятности этих двух событий. Вероятность выпадения решки 3 раза мы уже находили в первом пункте и она равна 0.
Нас интересуют только те из них, в которых нет ни одного орла. Такая комбинация всего одна РР. Осталось лишь подсчитать вероятность выпадения этой комбинации. Найдите вероятность того, что орёл выпадет ровно два раза. Нас интересуют только те из них, в которых орел выпадает ровно 2 раза. Такая комбинация всего одна ОО.
К сожалению, в школах изучают только первый. Не будем повторять школьных ошибок. Итак, поехали! Метод перебора комбинаций Этот метод еще называется «решение напролом». Состоит из трех шагов: Выписываем все возможные комбинации орлов и решек. Число таких комбинаций - это n ; Среди полученных комбинаций отмечаем те, которые требуются по условию задачи. К сожалению, этот способ работает лишь для малого количества бросков. Потому что с каждым новым броском число комбинаций удваивается. Например, для 2 монет придется выписать всего 4 комбинации. Взгляните на примеры - и сами все поймете: Задача. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество. Итак, монету бросают два раза. Находим вероятность: Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу. Вроде, ничего не забыл. Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек. Осталось найти вероятность: Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки? Лично я - не уверен. Поэтому давайте рассмотрим второй способ решения. Специальная формула вероятности Итак, в задачах с монетами есть собственная формула вероятности. Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните: Теорема. Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле: Где C n k - число сочетаний из n элементов по k , которое считается по формуле: Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи. Более того, не имеет значения, что именно считать: решки или орлы. Ответ получится один и тот же. На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться - и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше. Найдите вероятность того, что орел выпадет ровно три раза. Подставляем n и k в формулу: Задача. Монету бросают три раза. Снова выписываем числа n и k. Осталось подставить числа n и k в формулу: Напомню, что 0! В случайном эксперименте симметричную монету бросают 4 раза.
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз. Решение: Для того чтобы найти вероятность указанного события, необходимо рассмотреть все возможные исходы эксперимента, а затем из них выбрать благоприятные исходы благоприятные исходы — это исходы удовлетворяющие требованиям задачи. В нашем случае, благоприятными будут те исходы, в которых при двух бросаниях симметричной монеты, орел выпадет только один раз. Вероятность события вычисляется как отношение количества благоприятных исходов к общему количеству исходов. Игральный кубик бросили один раз. Какова вероятность того, что выпало число очков, большее чем 4. Решение: Случайный эксперимент — бросание кубика. Элементарное событие — число на выпавшей грани. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся. Результат округлите до сотых. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что сумма выпавших очков равна 6. Ответ округлите до сотых Решение: Элементарный исход в этом опыте — упорядоченная пара чисел. Первое число выпадет на первом кубике, второе — на втором. Множество элементарных исходов удобно представить таблицей. Строки соответствуют количеству очков на первом кубике, столбцы —на втором кубике. Напишем в каждой клетке сумму выпавших очков и закрасим клетки, где сумма равна 6. Таких ячеек 5. Ответ: 0,14. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле: Где Cnk - число сочетаний из n элементов по k, которое считается по формуле: 10 слайд Описание слайда: Задача 7. Найдите вероятность того, что орел выпадет ровно три раза. Ответ будет таким же. Ответ: 0,25 11 слайд Описание слайда: Задача 8. Монету бросают три раза. Решение Снова выписываем числа n и k.
Номер 55 учебник по вероятности и статистике Высоцкий, Ященко 7-9 класс часть 2
Решение: Ровно один раз орёл выпадает в исходах под номерами 2 и 3 см. Отношение числа благоприятных исходов 2 к общему числу всех равновозможных исходов 4 определяет вероятность интересующего нас события: Ответ: 0,5. Найдите вероятность того, что орёл выпадет хотя бы один раз. Событие «орёл выпадет хотя бы один раз» означает, что орёл появится либо один раз первым или вторым , либо оба раза, что возможно при реализации исходов 2,3,4.
Благоприятных исходов, таким образом, три, при общем количестве возможных — четырёх. Вероятность, согласно классической формуле, равна Ответ: 0,75. Найдите вероятность того, что орёл выпадет ровно два раза.
Решение: Орёл выпадает оба раза — один исход при двух бросаниях математической монеты из четырёх возможных. Значит, вероятность равна. Ответ: 0,25.
Найдите вероятность того, что во второй раз выпадет то же, что и в первый. Решение: Формулировка «во второй раз выпадет то же, что и в первый» означает, что могут выпасть подряд два орла, либо выпадают две решки подряд, что соответствует исходам 1 и 2 в таблице к задаче 1. При общем количестве их 4 равновозможных исходов вычисляем вероятность.
Ответ: 0,5. Найдите вероятность того, что случайно выбранное трёхзначное число делится на 25. Решение: Найдем количество трёхзначных чисел.
Первое из них -100. Последнее -999. Определяем количество чисел, кратных 25.
Первое из них — 100. Последнее — 975. Таких чисел По классической формуле вычисляем вероятность.
Ответ: 0,04. Найдите вероятность того, что случайно выбранное трёхзначное число делится на 33. Решение: Как и в задаче 1.
Первое трёхзначное число, кратное 33, это - 132.
Шаги решения на русском языке: 1. Находим количество исходов, в которых не выпадет ни одной решки 3 орла. Вычитаем количество исходов с тремя орлами из общего количества исходов, чтобы найти количество благоприятных исходов исходы с хотя бы одной решкой.
Делим количество благоприятных исходов на общее количество исходов, чтобы найти вероятность выпадения хотя бы одной решки.
Метод перебора комбинаций Этот метод еще называется «решение напролом». Состоит из трех шагов: Выписываем все возможные комбинации орлов и решек. Число таких комбинаций - это n ; Среди полученных комбинаций отмечаем те, которые требуются по условию задачи. К сожалению, этот способ работает лишь для малого количества бросков.
Потому что с каждым новым броском число комбинаций удваивается. Например, для 2 монет придется выписать всего 4 комбинации. Взгляните на примеры - и сами все поймете: Задача. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество.
Итак, монету бросают два раза. Находим вероятность: Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу. Вроде, ничего не забыл.
Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек. Осталось найти вероятность: Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки? Лично я - не уверен. Поэтому давайте рассмотрим второй способ решения.
Специальная формула вероятности Итак, в задачах с монетами есть собственная формула вероятности. Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните: Теорема. Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле: Где C n k - число сочетаний из n элементов по k , которое считается по формуле: Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов.
Чаще всего эти числа даны прямо в тексте задачи. Более того, не имеет значения, что именно считать: решки или орлы. Ответ получится один и тот же. На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться - и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше.
Все знают, что монета имеет две стороны - орёл и решку. Нумизматы считают, что монета имеет три стороны - аверс, реверс и гурт. И среди тех, и среди других, мало кто знает, что такое симметричная или математическая монета. Зато об этом знают ну, или должны знать : , те, кто готовится сдавать ЕГЭ. В общем, в этой статье речь пойдёт о необычной монете, которая, к нумизматике никакого отношения не имеет, но, при этом, является самой популярной монетой среди школьников.
Симметричная монета - это воображаемая математически идеальная монета без размера, веса и диаметра. Как следствие, гурта у такой монеты тоже нет, то есть вот она-то действительно имеет только две стороны.
В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел …
Здесь размещен ответ по заданным параметрам. Если этот вариант ответа не полностью вас удовлетворяет, то с помощью автоматического умного поиска можно найти другие вопросы по этой же теме, в категории Математика. В случае если ответы на похожие вопросы не раскрывают в полном объеме необходимую информацию, то воспользуйтесь кнопкой в верхней части сайта и сформулируйте свой вопрос иначе. Также на этой странице вы сможете ознакомиться с вариантами ответов пользователей. Последние ответы Полинка1455 28 апр. Zajcikvb 28 апр.
Благоприятные исходы: 1 в первой игре владеет, а во второй и третьей не владеет мячом. В каждой игре 2 исхода например 0- не владеет и 1- владеет. Игр -3. Количество всевозможных сочетаний типа 000, 001,...
Количество благоприятных исходов - 3 : 100, 010, 001.
В случае если ответы на похожие вопросы не раскрывают в полном объеме необходимую информацию, то воспользуйтесь кнопкой в верхней части сайта и сформулируйте свой вопрос иначе. Также на этой странице вы сможете ознакомиться с вариантами ответов пользователей.
Последние ответы Полинка1455 28 апр. Zajcikvb 28 апр. Mario58 28 апр.
LokKomer 28 апр.
Делим количество благоприятных исходов на общее количество исходов, чтобы найти вероятность выпадения хотя бы одной решки. Получаем ответ в виде десятичной дроби или процента. Также искали:.
ЕГЭ профильный уровень. №4 Классическое определение вероятности. Задача 7
В случайном эксперименте симметричную монету бросают пять раз. 26)В случайном эксперименте симметричную монету бросают трижды. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу.