Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. На фото: физик-теоретик, участник Манхэттенского проекта от Великобритании, передавший сведения о ядерном оружии Советскому Союзу, Клаус Фукс.
Вестник РАН, 2021, T. 91, № 5, стр. 470-478
Экспериментальная установка для термоядерных реакций в городе Хэфэй работала на протяжении 17 минут. Ученым удалось разогреть плазму до 70 миллионов градусов по Цельсию, что выше температуры Солнце примерно в пять раз. Токамак представляет собой устройство, которое может генерировать сильное магнитное поле. Когда материал нагревается до очень высокой температуры, он превращается в плазму, в результате электроны отделяются от атома и превращаются в свободно движущиеся заряженные частицы, которые удерживаются сильным магнитным полем.
Однако эксперименты по сферическому обжатию термоядерной мишени, проводимые в нашей стране они начинались в ФИАНе в начале 70-х годов на установке «Кальмар» и за рубежом долго ни к чему не приводили. Поэтому сейчас, если подтвердятся полученные на установке NIF результаты, их можно будет считать первым экспериментальным подтверждением идеи Н.
Г Басова. Это устройство — конвертер - преобразует лазерное излучение в рентгеновское. И мишень симметрично, со всей сторон обжимается именно этим излучением. Идея эта оказалась хорошей, сегодня весь мир пошел по этому пути. Николай Басов.
Фото: ru. По сути, это маленький термоядерный взрыв, который отличается от взрыва бомбы тем, что является управляемым. Что дальше? Надо будет полученную энергию как-то собрать, преобразовать в тепло. Хоть термоядерная реакция и считается самой чистой из всех ядерных, но сильные потоки электронов, которые активируют окружающие вещества, никто отменить не может.
Но самый, пожалуй, главный вопрос заключается в том, действительно ли термоядерный реактор поможет нам вырабатывать дешевую электроэнергию? То есть, условно, на мишень попал 1 мегаджоуль, а выделилось 1,2 мегаджоуля. Но на самом деле надо смотреть, сколько установка потребила энергии из розетки.
Перебирая домашний архив, я обнаружил грамоту более, чем 40-летней давности, которую в свое время вручили моему деду за вклад в автоматизацию экспериментов на токамаках ФТИ, где я сейчас работаю! Так что, в науку я попал неслучайно В школе я любил алгебру, геометрию и физику.
С девятого класса я учился в специализированном лицее с физико-математическим уклоном. А потом поступил на кафедру экспериментальной ядерной физики в Политехнический тогда еще институт в Санкт-Петербурге. Преддипломную практику я проходил на токамаке «Глобус-М» в Физико-техническом институте им. Иоффе в группе лазерной диагностики плазмы.
Однако за год ученые так и не смогли повторить эксперимент. В четырех аналогичных опытах удалось получить только примерно половину от энергии, полученной в первоначальном успешном эксперименте. Физики будут продолжать свои эксперименты, чтобы снова воссоздать самоподдерживающийся термоядерный синтез.
Последние комментарии
- Главные новости
- Прорыв в термоядерном синтезе | Канал Наука | Дзен
- Статьи по теме «термоядерный синтез» — Naked Science
- Выбор сделан - токамак плюс - Российская газета
- Ученые в США провели третий успешный эксперимент с ядерным синтезом
- Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики
Термоядерный запуск. Как Мишустин нажал на большую красную кнопку
Мишень для исследования уравнения состояния в лазерных экспериментах представляет собой базовую пластину из алюминия или меди толщиной 40—60 мкм, на одну из сторон которой нанесены в виде ступеньки слои из материала базы и исследуемого материала толщиной 4—10 мкм. Ступеньки отстоят друг от друга на расстоянии 50—100 мкм. Другая сторона мишени, на которую воздействовал лазерный импульс, покрывалась слоем полипараксилилена толщиной 8—10 мкм. Шероховатость поверхности не превышала 80 нм для свинца, 50 нм для алюминия и 10 нм для меди и полипараксилилена.
При диагностике лазерного излучения и исследованиях плазмы на мощных лазерных установках ИЛФИ "Искра-5", "Луч" для проведения с субнаносекундным временным разрешением временной, пространственно-временной и спектрально-временной регистрации используются фотохронограф с щелевой разверткой СЭР-4 — для видимого и ближнего ИК-излучения, рентгеновский фотохронограф с щелевой разверткой РФР-4 — для мягкого и сверхмягкого рентгеновского излучения. Инфракрасный многокадровый фоторегистратор КИТ-3М базируется на полупроводниковой камере ионизационного типа и многокадровой электронно-оптической камере. Области применения: диагностика излучения лазеров ИК диапазона; развитие новых индустриальных технологий с использованием лазерной сварки, резки и закалки металлов; газодинамические исследования плавление металлов на ударной волне, изучение отколов, изучение динамики ударных волн ; дистанционная регистрация динамики тепловых полей тел при ударном и аэродинамическом нагружении; импульсная электродинамика.
Исследование мишеней инерциального термоядерного синтеза на основе тяжелоионного ускорителя Проблема зажигания термоядерного горючего в системах является одной из ключевых в разработке термоядерного реактора. Для систем на основе тяжелоионного драйвера при традиционном однопиковом режиме облучения необходима энергия ионного потока по представлениям на сегодняшний день 5—10 МДж в зависимости от степени оптимизма исследователей. Во ВНИИЭФ предложена оригинальная схема термоядерной мишени с тяжелоионным драйвером и выполнены тщательные расчетные исследования ее параметров.
Некоторые физические процессы, протекающие при работе мишени, моделировались в экспериментах на установке "Искра-5".
Чтобы избежать этого, ранее была разработана концепция так называемой потеющей стенки: внутренняя поверхность реактора покрывается сетью каналов, из которых истекает жидкий литий. В данном подходе слой жидкого лития берёт на себя часть защитных функций. Поэтому материал для «потеющей стенки» должен быть тугоплавким и теплопроводным, а также не должен вступать с жидким литием в химическое взаимодействие и при этом хорошо им смачиваться. Самый тугоплавкий металл — вольфрам, однако его теплопроводности для эффективного охлаждения стенки недостаточно. Медь обладает очень высокой теплопроводностью, но её нельзя применять для стенок реактора из-за легкоплавкости — металл просто атомизируется при взаимодействии с плазмой и попадёт внутрь реактора, что ухудшит качество плазмы. Также по теме Российский токамак с реакторными технологиями ТRТ находится на стадии разработки эскизного проекта, концепция будущего термоядерного...
На достижение этого потребовалось семь десятилетий. Теоретически внедрение термоядерных реакторов в широком коммерческом масштабе даст нам источник энергии, не загрязняющий окружающую среду, не сжигающий ископаемое топливо и не производящий радиоактивные отходы. Для поддержания термоядерной реакции 5 декабря 2022 года 192 гигантских лазера в Национальном комплексе лазерных термоядерных реакций National Ignition Facility, NIF разогрели цилиндрик размером с ластик, в котором в алмазной оболочке содержалось небольшое количество водорода.
Одновременно разогрев цилиндр сверху и снизу, лазерные лучи испарили его.
Ни ядерной зимы, которую все боятся. Ни чудовищной радиации, которая убьет всех вокруг, а кого не убьет, то те умрут в течение десяти лет от онкологии. Этого ничего не будет. А что будет — так это будет выведена из строя вся радиоэлектроника. Вся цифра, все спутники».
Вот эта камера, на которую меня сейчас снимают, вот этот телефон, который рядом со мной лежит. Мы вернемся с вами в год этак какой-нибудь 93-й. Проводные телефоны. Двушечка или не двушечка, я не помню, в телефоне-автомате. Я вам скажу: чудесно же жили. Вот право.
Я даже обрадуюсь. Как минимум мне не придется объяснять своим детям, почему у всех есть гаджеты, а у них нет. Я запрещаю своим детям иметь гаджеты. Это отдельная тема. Сейчас не об этом. Но как минимум вот это будет гора с плеч.
Каждый раз, когда дети возвращаются из школы: «Вот, у всех есть телефоны, айпады, а у нас нет, почему у нас нет? То есть эта опция, она остается. И это еще самая гуманная, самая такая, знаете, травоядная опция. Я не вижу никакого исхода, кроме приблизительно такого. Нравится мне это или нет.
Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика
Эта веха под названием чистый прирост возвестила бы о надежной и доступной альтернативе ископаемому топливу и традиционной ядерной энергетике. Федеральная Ливерморская национальная лаборатория имени Лоуренса в Калифорнии использует так называемый термоядерный синтез с инерционным удержанием — при этом крошечная частичка водородной плазмы бомбардируется крупнейшим в мире лазером. В ходе эксперимента за последние две недели удалось добиться чистого прироста энергии. Даже при том, что многие ученые считают, что создание термоядерных электростанций станет возможным лишь спустя десятилетия, потенциал этой технологии трудно переоценить. Реакции термоядерного синтеза не выделяют ни углерода, ни радиоактивных отходов с долгим периодом полураспада, а небольшая чашка водородного топлива теоретически может питать дом в течение сотен лет. Американский прорыв свершился в момент, когда мир столкнулся с высокими ценами на энергию и необходимостью скорейшего отказа от ископаемого топлива, чтобы не допустить опасного скачка средних мировых температур. В соответствии с Законом о снижении инфляции администрация Байдена вложит в новые субсидии на низкоуглеродную энергетику почти 370 миллиардов долларов — это поможет сократить выбросы и выиграть глобальную гонку за чистые технологии следующего поколения. Если все пройдет хорошо, этот проект позволит получать самую "зеленую" энергию. Французские читатели тронуты верностью россиян.
Все гиротроны предполагалось поставить в ITER в начале 2018 года [27].
Для ввода энергии в вакуумную камеру служат окна из поликристаллического искусственного алмаза. Диаметр каждого алмазного диска 80 мм, а толщина 1,1 мм. Алмаз выбран потому, что прозрачен для СВЧ излучения, прочен, радиационно стоек и обладает теплопроводностью в пять раз выше, чем у меди. Производством этих кристаллов занята лаборатория во Фрайбурге. Всего для ITER будет поставлено 60 алмазных окон [28]. Ion Cyclotron Resonance Heating разогревает ионы плазмы. Принцип этого нагрева такой же, как и бытовой СВЧ-печи. Частицы плазмы под воздействием электромагнитного поля высокой мощности с частотой от 40 до 55 МГц начинают колебаться, получая дополнительную кинетическую энергию от поля. При столкновениях ионы передают энергию другим частицам плазмы.
Система состоит из мощного радиочастотного генератора на тетродах будет установлен в Здании радиочастотного нагрева плазмы , системы волноводов для передачи энергии и излучающих антенн [29] , расположенных внутри вакуумной камеры. Инжектор нейтральных атомов[ править править код ] Инжектор «выстреливает» в плазменный шнур мощный пучок из атомов дейтерия, разогнанных до энергии 1 МэВ. Эти атомы, сталкиваясь с частицами плазмы, передают им свою кинетическую энергию и тем самым нагревают плазму. Поскольку разогнать в электрическом поле нейтральный атом невозможно, его нужно сперва ионизировать. Затем ион по сути, ядро дейтерия разгоняется в циклотроне до необходимой энергии. Теперь быстродвижущийся ион следует снова превратить в нейтральный атом. Если этого не сделать, ион будет отклонён магнитным полем токамака. Поэтому к разогнанному иону следует присоединить электрон. Для деионизации ион проходит через ячейки, наполненные газом.
Здесь ион, захватывая электрон у молекул газа, рекомбинирует. Не успевшие рекомбинировать ядра дейтерия отклоняются магнитным полем на специальную мишень, где тормозятся, рекомбинируют и могут быть использованы вновь. Требования к мощности «фабрики атомов» ITER настолько велики, что на этой машине впервые пришлось применить систему, которой не было на предшествующих токамаках. Это система отрицательных ионов. На таких высоких скоростях положительный ион просто не успевает превратиться в нейтральный атом в газовых ячейках. Поэтому используются отрицательные ионы, которые захватывают электроны в специальном радиочастотном разряде в среде плазмы дейтерия, экстрагируются и разгоняются высоким положительным потенциалом 1 МВ по отношению к источнику ионов , затем нейтрализуются в газовой ячейке. Оставшиеся заряженными ионы отклоняются электростатическим полем в специальную охлаждаемую водой мишень. При потреблении примерно 55 МВт электроэнергии, каждый из двух планируемых на ITER инжекторов нейтральных атомов способен вводить в плазму до 16 МВт тепловой энергии. Криостат[ править править код ] Криостат [30] [31] — самый большой компонент токамака.
Внутри криостата будут располагаться остальные элементы машины.
Но самый, пожалуй, главный вопрос заключается в том, действительно ли термоядерный реактор поможет нам вырабатывать дешевую электроэнергию? То есть, условно, на мишень попал 1 мегаджоуль, а выделилось 1,2 мегаджоуля. Но на самом деле надо смотреть, сколько установка потребила энергии из розетки. Это будут совсем другие цифры. Все это пока сильно охлаждает мысль о том, что завтра у нас будут фабрики с термоядерными управляемыми реакторами. И там тоже будет использоваться рентгеновский диапазон излучения для обжатия мишени, как и американцев, но есть свои интересные наработки. Работы пока проводятся на уровне энергии в несколько десятков килоджоулей..
На полный уровень энергии 2. Первая — это проблема устойчивости плазмы. На бумаге все было красиво, но жизнь внесла свои коррективы. Оказалось, что в реальности добиться сферического обжатия мишени очень сложно. Второе — не хватало мощности лазеров. По сравнению с первыми экспериментами они сегодня в несколько сотен раз мощнее. Им придется восстанавливать установку еще довольно долго. Но если коротко, многим, чем мы сегодня обладаем, мы обязаны этому человеку.
Как минимум мне не придется объяснять своим детям, почему у всех есть гаджеты, а у них нет. Я запрещаю своим детям иметь гаджеты. Это отдельная тема. Сейчас не об этом. Но как минимум вот это будет гора с плеч. Каждый раз, когда дети возвращаются из школы: «Вот, у всех есть телефоны, айпады, а у нас нет, почему у нас нет? То есть эта опция, она остается. И это еще самая гуманная, самая такая, знаете, травоядная опция. Я не вижу никакого исхода, кроме приблизительно такого. Нравится мне это или нет.
На этом программа была завершена. Реакция общества Московский политик Николай Королев отправил обращения в Следственный комитет и полицию после высказывания Маргариты Симоньян. Николай Королев попросил проанализировать рассуждения главного редактора RT. Высказался сегодня о перспективах термоядерного взрыва над Сибирью и мэр Новосибирска Анатолий Локоть , ответив на соответствующий вопрос NGS. Ничего хорошего в наземных термоядерных взрывах нет. Последствия могут сказываться даже не на сотни лет, а на тысячелетия. Потому что образуются неустойчивые элементы, период полураспада которых исчисляется сотнями лет, а некоторые — и тысячей лет. К проблеме наземных термоядерных испытаний и любых взрывов, связанных с выделением термоядерной энергии, ядерной энергии, надо относиться очень ответственно, — подчеркнул Анатолий Локоть. RU, что термоядерный взрыв — это подрыв сразу двух бомб. Сначала взрывается атомная бомба, которая в итоге является запалом водородной бомбы.
И сила у того взрыва колоссальная. Например, в Хиросиме США взорвали только относительно небольшую атомную бомбу, и последствия были ужасающие.
Прорыв в термоядерном синтезе
Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. Делается вывод о том, что термоядерные исследования способны выступать и уже выступают мощным драйвером научно-технологического прогресса, механизмом, стимулирующим. В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы.
Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии
«Национальная поджигательная установка» резко повысила эффективность термоядерного синтеза | Российские учёные разработали новый материал для термоядерного реактора. |
Статьи по теме «термоядерный синтез» — Naked Science | Физик объяснил важность создания прототипа российского термоядерного реактора. |
Физика плазмы и инерциальный термоядерный синтез | Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. |
Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца | Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". |
#термоядерный синтез
На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. Впервые термоядерная реакция произвела больше энергии, чем было затрачено на её поддержание. Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР.
Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя
Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. Физики из Helion Energy разогрели плазму до 100 млн градусов — температура, считающаяся оптимальной для термоядерной реакции. Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить. «Команда физиков, работающих на установке NIF, провела первый в истории контролируемый эксперимент по термоядерному синтезу, достигнув энергетической безубыточности.
До коммерческого получения термоядерной энергии еще далеко
- Физики США вторично добились положительного термоядерного синтеза
- Термоядерный синтез новости • AB-NEWS
- Учёным удалось получить полезную энергию в термоядерной реакции / Хабр
- Выбор сделан - токамак плюс
Что такое термоядерный синтез и зачем он нужен?
Американские ученые в результате реакции термоядерного синтеза впервые получили больше энергии, чем затратили. Инженер и старший преподаватель Института ядерной физики и. Пара слов о физике плазмы: на волне Волна боянов, Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост. Российские ученые совершили рывок к "главной задаче физики XXI века" — управляемой термоядерной реакции. Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии.