Новости температура земли на глубине

Петротермальные ресурсы (или использование глубинного тепла Земли) представляют собой часть тепловой энергии, которая заключена в практически водонепроницаемых сухих горячих горных породах, расположенных на глубинах 3-10 км. На этой глубине их температура.

Тепловое состояние внутренних частей земного шара

Температурные показатели планеты Земля Геотермический градиент — физическая величина, описывающая прирост температуры горных пород в °С на определённом участке земной толщи.
Индия получила первые данные о температуре с поверхности Луны - Ведомости 50 метров, преобладающим фактором является тепловая инерция верхнего слоя земли и температура там примерно равна среднегодовой температуре в данной местности.
Зависимость температуры от глубины. Температура внутри Земли Луноход «Прагьян», который был доставлен на Луну посадочным модулем миссии «Чандраян-3», передал на Землю первые научные данные о температуре поверхности Луны.

Внутреннее строение Земли

Теперь необходимо оценить, насколько в атмосфере вырастет количество метана и двуокиси углерода из-за таяния вечной мерзлоты. Известно, что в ней погребено огромное количество этих газов, но динамику их выбросов пока никто не подсчитал. Ускорившийся прогрев внутренних водоемов может радовать некоторых обывателей, ведь теперь купальный сезон можно будет начинать гораздо раньше. Однако ситуация хороша лишь с одной стороны. Изменение температурного режима неизбежно приведет к перестройке экосистем: в теплой воде больше микроорганизмов и водорослей и меньше кислорода, который необходим рыбам. Источник: Freepik В южных сельскохозяйственных районах планеты потепление поверхности может дать непредсказуемый результат. С одной стороны, экологи традиционно трубят тревогу — «урожай окажется под угрозой».

Ограничений практически нет. В теплице могут прекрасно чувствовать себя цитрусовые и даже ананасы. Но чтобы на практике все исправно функционировало, обязательно нужно соблюсти проверенные временем технологии, по которым строились подземные теплицы. Ведь эта идея не нова, еще при царе в России заглубленные теплицы давали урожаи ананасов, которые предприимчивые купцы вывозили на продажу в Европу.

Почему-то строительство подобных теплиц не нашло в нашей стране большого распространения , по большому счету, она просто забыта, хотя конструкция идеально подходит как раз для нашего климата. Вероятно, роль здесь сыграла необходимость рытья глубокого котлована, заливка фундамента. Строительство заглубляемой теплицы достаточно затратное, это далеко не парник, накрытый полиэтиленом, но и отдача от теплицы гораздо больше. От заглубления в землю не теряется общая внутренняя освещенность, это может показаться странным, но в некоторых случаях светонасыщенность даже выше, чем у классических теплиц. Нельзя не упомянуть о прочности и надежности конструкции, она несравнимо крепче обычной, легче переносит ураганные порывы ветра, хорошо противостоит граду, не станут помехой и завалы снега. Котлован Создание теплицы начинается с рытья котлована. Чтобы использовать тепло земли для обогрева внутреннего объема, теплица должна быть достаточно углублена. Чем глубже, тем земля становится теплее. Температура почти не изменяется в течение года на расстоянии 2-2,5 метра от поверхности. На глубине 1 м температура грунта колеблется больше, но и зимой ее значение остается положительным, обычно в средней полосе температура составляет 4-10 С, в зависимости от времени года.

Заглубленная теплица возводится за один сезон. То есть зимой она уже вполне сможет функционировать и приносить доход. Строительство не из дешевых, но, применив смекалку, компромиссные материалы, возможно сэкономить буквально на целый порядок, сделав своеобразный эконом-вариант теплицы, начиная с котлована. Например, обойтись без привлечения строительной техники. Хотя самую трудоемкую часть работы - рытье котлована -, конечно, лучше отдать экскаватору. Вручную вынуть такой объем земли тяжело и долго. Глубина ямы котлована должна быть не меньше двух метров. На такой глубине земля начнет делиться своим теплом и работать как своеобразный термос. Если глубина будет меньше, то принципиально идея будет работать, но заметно менее эффективно. Поэтому рекомендуется не жалеть сил и средств на углубление будущей теплицы.

В длину подземные теплицы могут быть любыми, но ширину лучше выдержать в пределах 5 метров, если ширина больше, то ухудшаются качественные характеристики по обогреву и светоотражению. По сторонам горизонта подземные оранжереи ориентировать нужно, как обычные теплицы и парники, с востока на запад, то есть так, чтобы одна из боковых сторон была обращена на юг. В таком положении растения получат максимальное количество солнечной энергии. Стены и крыша По периметру котлована заливают фундамент или выкладывают блоки. Фундамент служит основанием для стен и каркаса сооружения. Стены лучше делать из материалов с хорошими теплоизоляционными характеристиками, прекрасный вариант - термоблоки. Каркас крыши чаще делают деревянным, из пропитанных антисептическими средствами брусков. Конструкция крыши обычно прямая двускатная. По центру конструкции закрепляют коньковый брус, для этого на полу устанавливают центральные опоры по всей длине теплицы. Коньковый брус и стены соединяются рядом стропил.

Каркас можно сделать и без высоких опор. Их заменяют на небольшие, которые ставят на поперечные балки, соединяющие противоположные стороны теплицы, - такая конструкция делает внутреннее пространство свободнее. В качестве покрытия крыши лучше взять сотовый поликарбонат - популярный современный материал. Расстояние между стропилами при строительстве подгоняют под ширину поликарбонатных листов. Работать с материалом удобно. Покрытие получается с небольшим количеством стыков, так как листы выпускаются длиной 12 м. К каркасу они крепятся саморезами, их лучше выбирать со шляпкой в виде шайбы. Во избежание растрескивания листа, под каждый саморез нужно просверлить дрелью отверстие соответствующего диаметра. С помощью шуруповерта, или обычной дрели с крестовой битой, работа по остеклению движется очень быстро. Для того чтобы не оставалось щелей, хорошо заранее по верху проложить стропила уплотнителем из мягкой резины или другого подходящего материала и только потом прикручивать листы.

Пик крыши вдоль конька нужно проложить мягким утеплителем и прижать каким-то уголком: пластиковым, из жести, из другого подходящего материала. Для хорошей теплоизоляции крышу иногда делают с двойным слоем поликарбоната. Нужно учесть, что снег на такой крыше не тает. Поэтому скат должен находиться под достаточным углом, не менее 30 градусов, чтобы снег на крыше не накапливался. Дополнительно для встряхивания устанавливают электрический вибратор, он убережет крышу в случае, если снег все-таки будет накапливаться. Двойное остекление делают двумя способами: Между двумя листами вставляют специальный профиль, листы крепятся к каркасу сверху; Сначала крепят нижний слой остекления к каркасу изнутри, к нижней стороне стропил. Вторым слоем крышу накрывают, как обычно, сверху. После завершения работы желательно проклеить все стыки скотчем. Готовая крыша выглядит весьма эффектно: без лишних стыков, гладкая, без выдающихся частей. Утепление и обогрев Утепление стен проводят следующим образом.

Предварительно нужно тщательно промазать раствором все стыки и швы стены, здесь можно применить и монтажную пену. Внутреннюю сторону стен накрывают пленкой термоизоляции. В холодных частях страны хорошо использовать фольгированную толстую пленку, покрывая стену двойным слоем. Температура в глубине почвы теплицы выше нуля, но холоднее температуры воздуха, необходимой для роста растений. Верхний слой прогревается солнечными лучами и воздухом теплицы, но все-таки почва отбирает тепло, поэтому часто в подземных теплицах используют технологию «теплых полов»: нагревательный элемент - электрический кабель - защищают металлической решеткой или заливают бетоном. Во втором случае почву для грядок насыпают поверх бетона или выращивают зелень в горшках и вазонах. Применение теплого пола может быть достаточным для обогрева всей теплицы, если хватает мощности. Для хорошего роста им нужна температура воздуха 25-35 градусов при температуре земли примерно 25 С. Но вложенные в теплицу-термос средства со временем оправдываются. Во-первых, это экономия энергии на обогреве.

В странах Западной и Центральной Европы горизонтальные грунтовые теплообменники обычно представляют собой отдельные трубы, положенные относительно плотно и соединенные между собой последовательно или параллельно рис. Для экономии площади участка были разработаны усовершенствованные типы теплообменников, например, теплообменники в форме спирали, расположенной горизонтально или вертикально рис 4д, 4е. Такая форма теплообменников распространена в США. Виды горизонтальных грунтовых теплообменников а — теплообменник из последовательно соединенных труб; б — теплообменник из параллельно соединенных труб; в — горизонтальный коллектор, уложенный в траншее; г — теплообменник в форме петли; д — теплообменник в форме спирали, расположенной горизонтально так называемый «slinky» коллектор; е — теплообменник в форме спирали, расположенной вертикально Если система с горизонтальными теплообменниками используется только для получения тепла, ее нормальное функционирование возможно только при условии достаточных теплопоступлений с поверхности земли за счет солнечной радиации.

По этой причине поверхность выше теплообменников должна быть подвержена воздействию солнечных лучей. Вертикальные грунтовые теплообменники в англоязычной литературе принято обозначение «BHE» — «borehole heat exchanger» позволяют использовать низкопотенциальную тепловую энергию грунтового массива, лежащего ниже «нейтральной зоны» 10—20 м от уровня земли. Системы с вертикальными грунтовыми теплообменниками не требуют участков большой площади и не зависят от интенсивности солнечной радиации, падающей на поверхность. Вертикальные грунтовые теплообменники эффективно работают практически во всех видах геологических сред, за исключением грунтов с низкой теплопро- водностью, например, сухого песка или сухого гравия.

Системы с вертикальными грунтовыми теплообменниками получили очень широкое распространение. Схема отопления и горячего водоснабжения одноквартирного жилого дома посредством теплонасосной установки с вертикальным грунтовым теплообменником приведена на рис. Схема отопления и горячего водоснабжения одноквартирного жилого дома посредством теплонасосной установки с вертикальным грунтовым теплообменником Теплоноситель циркулирует по трубам чаще всего полиэтиленовым или полипропиленовым , уложенным в вертикальных скважинах глубиной от 50 до 200 м. Обычно используется два типа вертикальных грунтовых теплообменников рис.

В одной скважине располагаются одна или две реже три пары таких труб. Преимуществом такой схемы является относительно низкая стоимость изготовления. Двойные U-образные теплообменники — наиболее широко используемый в Европе тип вертикальных грунтовых теплообменников. Коаксиальный концентрический теплообменник.

Простейший коаксиальный теплообменник представляет собой две трубы различного диаметра. Труба меньшего диаметра располагается внутри другой трубы. Коаксиальные теплообменники могут быть и более сложных конфигураций. Сечение различных типов вертикальных грунтовых теплообменников Для увеличения эффективности теплообменников пространство между стенками скважины и трубами заполняется специальными теплопроводящими материалами.

Системы с вертикальными грунтовыми теплообменниками могут использоваться для тепло- и холодоснабжения зданий различных размеров. Для небольшого здания достаточно одного теплообменника; для больших зданий может потребоваться устройство целой группы скважин с вертикальными теплообменниками. Вертикальные грунтовые теплообменники этого колледжа располагают- ся в 400 скважинах глубиной 130 м. В Европе наибольшее число скважин 154 скважины глубиной 70 м используются в системе тепло- и холодоснабжения центрального офиса Германской службы управления воздушным движением «Deutsche Flug-sicherung».

Частным случаем вертикальных замкнутых систем является использование в качестве грунтовых теплообменников строительных конструкций, например фундаментных свай с замоноличенными трубопроводами. Сечение такой сваи с тремя контурами грунтового теплообменника приведено на рис. Схема грунтовых теплообменников, замоноличенных в фундаментные сваи здания и поперечное сечение такой сваи Грунтовой массив в случае вертикальных грунтовых теплообменников и строительные конструкции с грунтовыми теплообменниками могут использоваться не только как источник, но и как естественный аккумулятор тепловой энергии или «холода», например тепла солнечной радиации. Существуют системы , которые нельзя однозначно отнести к открытым или замкнутым.

Например, одна и та же глубокая глубиной от 100 до 450 м скважина, заполненная водой, может быть как эксплуатационной, так и нагнетательной. Диаметр скважины обычно составляет 15 см. В нижнюю часть скважины помещается насос, посредством которого вода из скважины подается к испарителям теплового насоса. Обратная вода возвращается в верхнюю часть водяного столба в ту же скважину.

Происходит постоянная подпитка скважины грунтовыми водами, и открытая система работает подобно замкнутой. Системы такого типа в англоязычной литературе носят название «standing column well system» рис. Схема скважины типа «standing column well» Обычно скважины такого типа используются и для снабжения здания питьевой водой. Однако такая система может работать эффективно только в почвах, которые обеспечивают постоянную подпитку скважины водой, что предотвращает ее замерзание.

Если водоносный горизонт залегает слишком глубоко, для нормального функционирования системы потребуется мощный насос, требующий повышенных затрат энергии. Большая глубина скважины обуславливает достаточно высокую стоимость подобных систем, поэтому они не используются для тепло- и холодоснабжения небольших зданий. Одно из перспективных направлений — использование в качестве источника низкопотенциальной тепловой энергии воды из шахт и туннелей. Температура этой воды постоянна в течение всего года.

Вода из шахт и туннелей легко доступна. Потребление энергии в течение следующего отопительного сезона вызывает еще большее понижение температуры грунта, и его температурный потенциал еще больше снижается. Это заставляет при проектировании систем использования низкопотенциального тепла Земли рассматривать проблему «устойчивости» sustainability таких систем. Часто энергетические ресурсы для снижения периода окупаемости оборудования эксплуатируются очень интенсивно, что может привести к их быстрому истощению.

Поэтому необходимо поддерживать такой уровень производства энергии, который бы позволил эксплуатировать источник энергетических ресурсов длительное время. Эта способность систем поддерживать требуемый уровень производства тепловой энергии длительное время называется «устойчивостью» sustainability. Для систем использования низкопотенциального тепла Земли дано следующее определение устойчивости : «Для каждой системы использования низкопотенциального тепла Земли и для каждого режима работы этой системы существует некоторый максимальный уровень производства энергии; производство энергии ниже этого уровня можно поддерживать длительное время 100—300 лет ». Проведенные в ОАО «ИНСОЛАР-ИНВЕСТ» исследования показали, что потребление тепловой энергии из грунтового массива к концу отопительного сезона вызывает вблизи регистра труб системы теплосбора понижение температуры грунта, которое в почвенно-климатических условиях большей части территории России не успевает компенсироваться в летний период года, и к началу следующего отопительного сезона грунт выходит с пониженным температурным потенциалом.

Потребление тепловой энергии в течение следующего отопительного сезона вызывает дальнейшее снижение температуры грунта, и к началу третьего отопительного сезона его температурный потенциал еще больше отличается от естественного. И так далее. Однако огибающие теплового влияния многолетней эксплуатации системы теплосбора на естественный температурный режим грунта имеют ярко выраженный экспоненциальный характер, и к пятому году эксплуатации грунт выходит на новый режим, близкий к периодическому, то есть, начиная с пятого года эксплуатации, многолетнее потребление тепловой энергии из грунтового массива системы теплосбора сопровождается периодическими изменениями его температуры. Таким образом, при проектировании теплонасосных систем теплоснабжения представляется необходимым учет падения температур грунтового массива, вызванного многолетней эксплуатацией системы теплосбора, и использование в качестве расчетных параметров температур грунтового массива, ожидаемых на 5-й год эксплуатации ТСТ.

В комбинированных системах , используемых как для тепло-, так и для холодоснабжения, тепловой баланс устанавливается «автоматически»: в зимнее время требуется теплоснабжение происходит охлаждение грунтового массива, в летнее время требуется холодоснабжение — нагрев грунтового массива. В системах, использующих низкопотенциальное тепло грунтовых вод, происходит постоянное пополнение водных запасов за счет воды, просачивающейся с поверхности, и воды, поступающей из более глубоких слоев грунта. Таким образом, теплосодержание грунтовых вод увеличивается как «сверху» за счет тепла атмосферного воздуха , так и «снизу» за счет тепла Земли ; величина теплопоступлений «сверху» и «снизу» зависит от толщины и глубины залегания водоносного слоя. За счет этих теплопоступлений температура грунтовых вод остается постоянной в течение всего сезона и мало меняется в процессе эксплуатации.

В системах с вертикальными грунтовыми теплообменниками ситуация иная. При отводе тепла температура грунта вокруг грунтового теплообменника понижается. На понижение температуры влияет как особенности конструкции теплообменника, так и режим его эксплуатации. Например, в системах с высокими величинами отводимой тепловой энергии несколько десятков ватт на метр длины теплообменника или в системах с грунтовым теплообменником, расположенным в грунте с низкой теплопроводностью например, в сухом песке или сухом гравии понижение температуры будет особенно заметным и может привести к замораживанию грунтового массива вокруг грунтового теплообменника.

Немецкие специалисты провели измерения температуры грунтового массива, в котором устроен вертикальный грунтовой теплообменник глубиной 50 м, расположенный недалеко от Франкфурта-на-Майне. Для этого вокруг основной скважины на расстоянии 2,5, 5 и 10 м от было пробурено 9 скважин той же глубины. Во всех десяти скважинах через каждые 2 м устанавливались датчики для измерения температуры — всего 240 датчиков. На рис.

В конце отопительного сезона хорошо заметно уменьшение температуры грунтового массива вокруг теплообменника. Возникает тепловой поток, направленный к теплообменнику из окружающего грунтового массива, который частично компенсирует снижение температуры грунта, вызванное «отбором» тепла. Схемы распределения температур в грунтовом массиве вокруг вертикального грунтового теплообменника в начале и в конце первого отопительного сезона Поскольку относительно широкое распространение вертикальные теполообменники стали получать примерно 15—20 лет назад, во всем мире ощущается недостаток экспериментальных данных, полученных при длительных несколько десятков лет сроках эксплуатации систем с теплообменниками такого типа. Возникает вопрос об устойчивости этих систем, об их надежности при длительных сроках эксплуатации.

Является ли низкопотенциальное тепло Земли во- зобновляемым источником энергии? Каков период «возобновления» этого источника? С 1986 года в Швейцарии неподалеку от Цюриха проводились исследования системы с вертикальными грунтовыми теплообменниками. В грунтовом массиве был устроен вертикальный грунтовой теплообменник коаксиального типа глубиной 105 м.

Этот теплообменник использовался в качестве источника низкопотенциальной тепловой энергии для теплонасосной системы, установленной в одноквартирном жилом доме. Вертикальный грунтовой теплообменник обеспечивал пиковую мощность примерно 70 Вт на каждый метр длины, что создавало значительную тепловую нагрузку на окружающий грунтовой массив. Годовое производство тепловой энергии составляет около 13 МВт ч На расстоянии 0,5 и 1 м от основной скважины были пробурены две дополнительных, в которых на глубине в 1, 2, 5, 10, 20, 35, 50, 65, 85 и 105 м установлены датчики температуры, после чего скважины были заполнены глинисто-цементной смесью. Температура измерялась каждые тридцать минут.

Кроме температуры грунта фиксировались и другие параметры: скорость движения теплоносителя, потребление энергии приводом компрессора теплового насоса, температура воздуха и т. Первый период наблюдений продолжался с 1986 по 1991 год. Измерения показали, что влияние тепла наружного воздуха и солнечной радиации отмечается в поверхностном слое грунта на глубине до 15 м. Ниже этого уровня тепловой режим грунта формируется главным образом за счет тепла земных недр.

За первые 2—3 года эксплуатации температура грунтового массива , окружающего вертикальный теплообменник, резко понизилась, однако с каждым годом понижение температуры уменьшалось, и через несколько лет система вышла на режим, близкий к постоянному, когда температура грунтового массива вокруг теплообменника стала ниже первоначальной на 1—2 оC.

Станция энергоснабжения Bunhill 2 в Лондоне, которая перекачивает горячий воздух из метро и использует его для отопления. И это далеко не единственный источник её постоянного и, что характерно, антропогенного нагрева. Ещё один, к примеру, — собственно говоря, сами системы отопления и горячего водоснабжения.

Даже трубы из самых лучших теплоизолирующих материалов всё равно какую-то часть тепла пропускают, не говоря уже о периодических прорывах, протечках и прочее. Соответственно, все эти теплопотери тоже греют землю, которой это совершенно не нужно. Добавляем в этот список высоковольтные кабели и, наконец, здания, которые нагреваются жарким летом и опять же передают весь этот жар в почву. Всё вместе создаёт картину, которую обозначили как "подземное изменение климата".

По усреднённым примерным оценкам, земля под разными городами по всему миру каждые 10 лет нагревается на 0,1—2,5 градуса Цельсия на глубине до ста метров.

Ученые встревожены резким нагреванием мирового океана

Тема 2: температура в недрах земли. Ученые из Австралийского национального университета обнаружили, что температура Земли на глубине трех тысяч километров на самом деле неоднородна, как думали ранее.
Почему ядро Земли такое горячее? | Пикабу Предполагается, что геотермический градиент уменьшается начиная с глубины 20–30 км: на глубине 100 км предположительные температуры около 1300–1500°C, на глубине 400 км — 1600°C, в ядре Земли (глубины более 6000 км) — 4000–5000°C.
Тепловое поле Земли Главная» Новости» В феврале температура грунта на глубине 7 метров выше чем на глубине 2 метра.
Индийский модуль «Викрам» зафиксировал рекордную температуру поверхности Луны — 70°C / Хабр Это постоянство температуры вызвало ученых предположить о возможном искусственном происхождении пещер, хотя окончательные выводы еще рано делать.

Распределение температуры в Земле

Ученые пришли к выводу, что в недрах на Земли, на глубине 2900 километров, около внешнего слоя ядра, существуют условия для образования ранее неизвестного минерала. Новости космос Луна оказалась горячее, чем считалось ра. Новости космос Луна оказалась горячее, чем считалось ра. Если при погружении на 2 сантиметра внутрь Земли колебания температуры составляют 2–3 градуса по Цельсию, то на Луне этот показатель достигает около 50 градусов.

Суша Земли стала нагреваться в 20 раз быстрее: чем это грозит

Распределение температуры в недрах земли. Глубина промерзания почвы таблица с температурами. Увеличение температуры с глубиной земли. График изменения температуры грунта с глубиной. Изменение температуры от глубины земли. Какая температура грунта на глубине. Глубина промерзания почвы в Ростовской области.

Таблица СП 131 глубина промерзания грунта. Саратовская область глубина промерзания почвы по месяцам. Глубина промерзания грунта таблица 5. Температура внутри земли. Температура почвы на глубине 100 метров. Геотермальная скважина глубина.

Геотермальная Энергетика в разрезе. Низкопотенциальной тепловой энергии земли. Температура земли на глубине 3 метра. Температура почвы зимой. График температуры земли в зависимости от глубины. Температура грунта на глубине 1 км.

Температура земли на глубине 1 километр. Среднегодовая температура грунта. Температура почвы в России. Суточный ход температуры поверхности почвы. Суточный ход температуры воздуха. Суточный и годовой ход температуры поверхности.

Температура почвы при промерзании. Температура промерзания грунта. При какой температуре промерзает земля. График распределения температуры грунта по глубине. Температура поверхности почвы. Соотношение температуры почвы и воздуха.

Температура почвы по глубине. Температура почвы на глубине 2 метра зимой. Температура грунта зимой. Температура грунта на глубине 3 метра. Температура грунта на глубине 5 метров. Температура грунта в зависимости от глубины и температуры воздуха.

Какая температура под землей. Повышение температуры воздуха.

Группа Кауфмана смоделировала климат прошлого, а затем сравнила показатели моделей со средней температурой в 19 и 20 веке, чтобы отследить, как промышленная революция могла повлиять на нее.

Как и ожидалось, 12 тысяч лет назад средняя температура Земли была намного ниже, чем в 19 веке. Однако в течение следующих нескольких тысячелетий она неуклонно росла и в конечном итоге превзошла базовый уровень. Пикового значения она достигла около 6500 лет назад, после чего атмосфера стала постепенно остывать примерно на 0,1 градуса Цельсия каждую тысячу лет.

По словам исследователей, это охлаждение могло быть связано с медленными циклами , обусловленными изменениями в земной орбите, из-за чего количество солнечного света, получаемого северным полушарием планеты, уменьшилось, и результатом стал малый ледниковый период последних веков. Однако затем картина изменилась.

Данные проекты выявили и ряд серьезных технических проблем использования петротермальной энергетики. В то же время данные проекты продемонстрировали и значительные преимущества петроэнрегетики, каких нет у других источников энергии. Такие электростанции работают непрерывно и не зависят от времени года или погоды. Петростанции можно устанавливать практически в любой точке Земли, в том числе в местах потребления без значительных затрат на системы хранения энергии. Они не требуют больших площадей, работают по системе замкнутого цикла без выбросов парниковых газов.

Анализ петротермальных ресурсов и потенциальных возможностей их использования в США показал, что на глубинах до 10 км содержится в 130 тысяч раз больше годового потребления энергии США. Мало того, предварительные расчёты показывают, что к 2030 г.

Получившаяся эталонная кривая климата дает детальную информацию об этом за последние 66 миллионов лет. И, кстати, ее начало совпадает с массовым вымиранием видов в конце мелового периода, жертвами которого, среди прочего, стали динозавры.

Именно тогда началась кайнозойская эра, которая продолжается по сей день. Две дюжины исследователей из шести стран утверждают, что теперь они "знают, когда на планете было теплее или холоднее, и лучше понимают динамику климатических изменений". Ученые разделили климатические состояния Земли на 4 вида, которые они назвали жаркое Hothouse , теплое Warmhouse , прохладное Coolhouse и холодное Icehouse. Эти климатические состояния сохранялись в течение миллионов или даже десятков миллионов лет.

Так, "теплое" преобладало в первые десять миллионов лет исследуемого периода, когда средняя температура была более чем на пять градусов по Цельсию выше сегодняшней.

Категории статей

Температура подземных вод на глубине 100 м. Температура земли в зависимости от глубины. В частности, измерили температуру поверхности Луны, а также на глубине около 10 сантиметров. В таблице переведены средние значения температуры грунта по месяцам по данным вытяжных термометров на глубине 0,4 0,8, 1,6 метра в крупных городах РФ и СНГ. Геотермический градиент – приращение температуры с глубиной, выраженной в 0С/км. «Обратной» характеристикой является геотермическая ступень – глубина в метрах, при погружении на которую температура повысится на 1 0С.

Под самой жаркой пустыней Земли обнаружили скрытую экосистему

Непосредственно измерять температуры на любых глубинах Земли мы пока не имеем возможности. Глубина в метрах, при которой температура повышается на 1°С, называется геотермической ступенью. Если на поверхности Земли температура 5 градусов, то на глубине 2000 метров она составит 65 градусов. В частности, измерили температуру поверхности Луны, а также на глубине около 10 сантиметров.

Температурные показатели планеты Земля

Вода из скважины температурой в 80 градусов Цельсия передавала свое тепло фреону, который вращал турбины. Первой в мире электростанцией, работающей с водой такой температуры, стала Паужетская геотермальная электростанция на Камчатке, построенная в 1967 году. Достоинства такой схемы очевидны — в любой точке Земли человечество сможет обеспечить себя теплом и электроэнергией, даже если погаснет Солнце. В толще земной коры запасена огромная энергия, более чем в 10 тысяч раз превышающая все топливопотребление современной цивилизации в год. И эта энергия постоянно возобновляется за счет притока тепла из недр планеты. Современные технологии позволяют добывать этот вид энергии. Интересные места для строительства подобных геотермальных электростанций есть и в Ленинградской области. Выражение "Питер стоит на болоте" применимо лишь с позиции строительства малоэтажных объектов, а с точки зрения "большой геологии" — осадочный чехол в окрестностях Петербурга достаточно тонок, всего десятки метров, а затем берут свое начало, как и в Финляндии, коренные магматические породы. Этот скальный щит неоднороден: он испещрен разломами, по некоторым из которых поднимается наверх тепловой поток. Первыми на это явление обратили внимание ботаники, которые нашли на Карельском перешейке и на Ижорском плато островки тепла, где произрастают растения либо с высокой скоростью воспроизводства, либо относящиеся к более южным ботаническим подзонам. А под Гатчиной и вовсе обнаружена ботаническая аномалия — растения альпийско-карпатской флоры.

Растения существуют благодаря тепловым потокам, идущим из-под земли. По результатам бурения в районе Пулково на глубине 1000 метров температура кристаллических пород составила плюс 30 градусов, то есть в среднем она повышалась на 3 градуса каждые 100 метров. Это "средний" уровень температурного градиента, но он почти в два раза больше, чем в районе Эспоо, в Финляндии. Это означает, что в Пулково достаточно пробурить скважину на глубину всего лишь до 3500 метров, соответственно, такая теплоцентраль обойдется гораздо дешевле, чем в Эспоо. Стоит учесть, что срок окупаемости подобных станций зависит также и от тарифов на теплоснабжение и электроэнергию для потребителей в этой стране или региона. Столь невысокая цена на электричество в Финляндии связана, в том числе, с тем, что страна имеет собственные атомные генерирующие мощности. А вот в Латвии, которая вынуждена постоянно закупать электроэнергию и топливо, отпускная цена электроэнергии практически вдвое выше , чем в Финляндии. Однако финны полны решимости построить станцию в Эспоо, в не самом удачном по геотермическому градиенту месте. Дело в том, что геотермальная энергетика требует долгосрочных инвестиций. В этом смысле она ближе к крупной гидроэнергетике и атомной энергетике.

ГеоТЭС гораздо сложнее возвести, чем солнечную или ветростанцию. И нужно быть уверенными, что политики не начнут играть с ценами и правила не будут меняться на ходу.

Ниже располагается верхняя кора гранито-гнейсовый или «гранитный» слой , сложенный магматическими и метаморфическими породами богатыми кремнезёмом в среднем соответствующими по химическому составу гранодиориту. В основании верхней коры выделяется сейсмический раздел Конрада, отражающий возрастание скорости сейсмических волн при переходе к нижней коре. Но этот раздел фиксируется не повсеместно: в континентальной коре часто фиксируется постепенное возрастание скоростей волн с глубиной. Согласно наиболее приятой модели её состав соответствует гранулиту.

В формировании континентальной коры принимают участие породы различного геологического возраста, вплоть до самых древних возрастом около 4 млрд. Океанская кора имеет относительно небольшую мощность, в среднем 6-7 км. В её разрезе в самом общем виде можно выделить 2 слоя. Нижний слой — «базальтовый» - сложенный основными магматическими породами вверху — базальтами, ниже — основными и ультраосновными интрузивными породами. Возраст древнейших пород современной океанской коры около 160 млн. Мантия представляет собой наибольшую по объёму и массе внутреннюю оболочку Земли, ограниченную сверху границей Мохо, снизу — границей Гутенберга.

В её составе выделяется верхняя мантия и нижняя мантия, разделённые границей 670 км. Верхняя мания по геофизическим особенностям разделяется на два слоя. Верхний слой - подкоровая мантия - простирается от границы Мохо до глубин 50-80 км под океанами и 200-300 км под континентами и характеризуется плавным нарастанием скорости как продольных, так и поперечных сейсмических волн, что объясняется уплотнением пород за счёт литостатического давления вышележащих толщ. Ниже подкоровой мантии до глобальной поверхности раздела 410 км расположен слой пониженных скоростей. Как следует из названия слоя, скорости сейсмических волн в нем ниже, чем в подкоровой мантии. Более того, на некоторых участках выявляются линзы, вообще не пропускающие S-волны, это даёт основание констатировать, что вещество мантии на этих участках находится в частично расплавленном состоянии.

Этот слой называют астеносферой от греч. Таким образом, астеносфера — это слой в верхней мантии расположенный на глубине около 100 км под океанами и около 200 км и более под континентами , выявляемый на основании снижения скорости прохождения сейсмических волн и обладающий пониженной прочностью и вязкостью. Поверхность астеносферы хорошо устанавливается и по резкому снижению удельного сопротивления до значений около 100 Ом. Наличие пластичного астеносферного слоя, отличающегося по механическим свойствам от твёрдых вышележащих слоёв, даёт основание для выделения литосферы - твердой оболочки Земли, включающей земную кору и подкоровую мантию, расположенную выше астеносферы. Мощность литосферы составляет от 50 до 300 км. Нужно отметить, что литосфера не является монолитной каменной оболочкой планеты, а разделена на отдельные плиты, постоянно движущиеся по пластичной астеносфере.

К границам литосферных плит приурочены очаги землетрясений и современного вулканизма. Глубже раздела 410 км в верхней мантии повсеместно распространяются и P-, и S-волны, а их скорость относительно монотонно нарастает с глубиной. Исчезновение поперечных волн даёт основание предполагать, что внешнее ядро Земли находится в жидком состоянии. Ниже раздела 5150 км находится внутреннее ядро, в котором возрастает скорость Р-волн, и вновь начинают распространяться S-волны, что указывает на его твёрдое состояние. Фундаментальный вывод из описанной выше скоростной модели Земли состоит в том, что наша планета состоит из серии концентрических оболочек, представляющих железистое ядро, силикатную мантию и алюмосиликатную кору. Плотность Плотность оболочек закономерно возрастает к центру Земли см.

Это заставляет при проектировании систем использования низкопотенциального тепла Земли рассматривать проблему «устойчивости» sustainability таких систем. Часто энергетические ресурсы для снижения периода окупаемости оборудования эксплуатируются очень интенсивно, что может привести к их быстрому истощению. Поэтому необходимо поддерживать такой уровень производства энергии, который бы позволил эксплуатировать источник энергетических ресурсов длительное время. Эта способность систем поддерживать требуемый уровень производства тепловой энергии длительное время называется «устойчивостью» sustainability. Для систем использования низкопотенциального тепла Земли дано следующее определение устойчивости : «Для каждой системы использования низкопотенциального тепла Земли и для каждого режима работы этой системы существует некоторый максимальный уровень производства энергии; производство энергии ниже этого уровня можно поддерживать длительное время 100—300 лет ». Проведенные в ОАО «ИНСОЛАР-ИНВЕСТ» исследования показали, что потребление тепловой энергии из грунтового массива к концу отопительного сезона вызывает вблизи регистра труб системы теплосбора понижение температуры грунта, которое в почвенно-климатических условиях большей части территории России не успевает компенсироваться в летний период года, и к началу следующего отопительного сезона грунт выходит с пониженным температурным потенциалом. Потребление тепловой энергии в течение следующего отопительного сезона вызывает дальнейшее снижение температуры грунта, и к началу третьего отопительного сезона его температурный потенциал еще больше отличается от естественного. И так далее. Однако огибающие теплового влияния многолетней эксплуатации системы теплосбора на естественный температурный режим грунта имеют ярко выраженный экспоненциальный характер, и к пятому году эксплуатации грунт выходит на новый режим, близкий к периодическому, то есть, начиная с пятого года эксплуатации, многолетнее потребление тепловой энергии из грунтового массива системы теплосбора сопровождается периодическими изменениями его температуры.

Таким образом, при проектировании теплонасосных систем теплоснабжения представляется необходимым учет падения температур грунтового массива, вызванного многолетней эксплуатацией системы теплосбора, и использование в качестве расчетных параметров температур грунтового массива, ожидаемых на 5-й год эксплуатации ТСТ. В комбинированных системах , используемых как для тепло-, так и для холодоснабжения, тепловой баланс устанавливается «автоматически»: в зимнее время требуется теплоснабжение происходит охлаждение грунтового массива, в летнее время требуется холодоснабжение — нагрев грунтового массива. В системах, использующих низкопотенциальное тепло грунтовых вод, происходит постоянное пополнение водных запасов за счет воды, просачивающейся с поверхности, и воды, поступающей из более глубоких слоев грунта. Таким образом, теплосодержание грунтовых вод увеличивается как «сверху» за счет тепла атмосферного воздуха , так и «снизу» за счет тепла Земли ; величина теплопоступлений «сверху» и «снизу» зависит от толщины и глубины залегания водоносного слоя. За счет этих теплопоступлений температура грунтовых вод остается постоянной в течение всего сезона и мало меняется в процессе эксплуатации. В системах с вертикальными грунтовыми теплообменниками ситуация иная. При отводе тепла температура грунта вокруг грунтового теплообменника понижается. На понижение температуры влияет как особенности конструкции теплообменника, так и режим его эксплуатации. Например, в системах с высокими величинами отводимой тепловой энергии несколько десятков ватт на метр длины теплообменника или в системах с грунтовым теплообменником, расположенным в грунте с низкой теплопроводностью например, в сухом песке или сухом гравии понижение температуры будет особенно заметным и может привести к замораживанию грунтового массива вокруг грунтового теплообменника.

Немецкие специалисты провели измерения температуры грунтового массива, в котором устроен вертикальный грунтовой теплообменник глубиной 50 м, расположенный недалеко от Франкфурта-на-Майне. Для этого вокруг основной скважины на расстоянии 2,5, 5 и 10 м от было пробурено 9 скважин той же глубины. Во всех десяти скважинах через каждые 2 м устанавливались датчики для измерения температуры — всего 240 датчиков. На рис. В конце отопительного сезона хорошо заметно уменьшение температуры грунтового массива вокруг теплообменника. Возникает тепловой поток, направленный к теплообменнику из окружающего грунтового массива, который частично компенсирует снижение температуры грунта, вызванное «отбором» тепла. Схемы распределения температур в грунтовом массиве вокруг вертикального грунтового теплообменника в начале и в конце первого отопительного сезона Поскольку относительно широкое распространение вертикальные теполообменники стали получать примерно 15—20 лет назад, во всем мире ощущается недостаток экспериментальных данных, полученных при длительных несколько десятков лет сроках эксплуатации систем с теплообменниками такого типа. Возникает вопрос об устойчивости этих систем, об их надежности при длительных сроках эксплуатации. Является ли низкопотенциальное тепло Земли во- зобновляемым источником энергии?

Каков период «возобновления» этого источника? С 1986 года в Швейцарии неподалеку от Цюриха проводились исследования системы с вертикальными грунтовыми теплообменниками. В грунтовом массиве был устроен вертикальный грунтовой теплообменник коаксиального типа глубиной 105 м. Этот теплообменник использовался в качестве источника низкопотенциальной тепловой энергии для теплонасосной системы, установленной в одноквартирном жилом доме. Вертикальный грунтовой теплообменник обеспечивал пиковую мощность примерно 70 Вт на каждый метр длины, что создавало значительную тепловую нагрузку на окружающий грунтовой массив. Годовое производство тепловой энергии составляет около 13 МВт ч На расстоянии 0,5 и 1 м от основной скважины были пробурены две дополнительных, в которых на глубине в 1, 2, 5, 10, 20, 35, 50, 65, 85 и 105 м установлены датчики температуры, после чего скважины были заполнены глинисто-цементной смесью. Температура измерялась каждые тридцать минут. Кроме температуры грунта фиксировались и другие параметры: скорость движения теплоносителя, потребление энергии приводом компрессора теплового насоса, температура воздуха и т. Первый период наблюдений продолжался с 1986 по 1991 год.

Измерения показали, что влияние тепла наружного воздуха и солнечной радиации отмечается в поверхностном слое грунта на глубине до 15 м. Ниже этого уровня тепловой режим грунта формируется главным образом за счет тепла земных недр. За первые 2—3 года эксплуатации температура грунтового массива , окружающего вертикальный теплообменник, резко понизилась, однако с каждым годом понижение температуры уменьшалось, и через несколько лет система вышла на режим, близкий к постоянному, когда температура грунтового массива вокруг теплообменника стала ниже первоначальной на 1—2 оC. Осенью 1996 года, через десять лет после начала эксплуатации системы, измерения были возобновлены. Эти измерения показали, что температура грунта существенным образом не изменилась. В последующие годы были зафиксированы незначительные колебания температуры грунта в пределах 0,5 градусов C в зависимости от ежегодной отопительной нагрузки. Таким образом, система вышла на квазистационарный режим после первых нескольких лет эксплуатации. На основании экспериментальных данных были построены математические модели процессов, проходящих в грунтовом массиве, что позволило сделать долгосрочный прогноз изменения температуры грунтового массива. Математическое моделирование показало, что ежегодное понижение температуры будет постепенно уменьшаться, а объем грунтового массива вокруг теплообменника, подверженного понижению температуры, с каждым годом будет увеличиваться.

По окончании периода эксплуатации начинается процесс регенерации: температура грунта начинает повышаться. Характер протекания процесса регенерации подобен характеру процесса «отбора» тепла: в первые годы эксплуатации происходит резкое повышение температуры грунта, а в последующие годы скорость повышения температуры уменьшается. Продолжительность периода «регенерации» зависит от продолжительности периода эксплуатации. Эти два периода примерно одинаковы. В рассматриваемом случае период эксплуатации грунтового теплообменника равнялся тридцати годам, и период «регенерации» также оценивается в тридцать лет. Таким образом, системы тепло- и холодоснабжения зданий, использующие низкопотенциальное тепло Земли, представляют собой надежный источник энергии, который может быть использован повсеместно. Этот источник может использоваться в течение достаточно длительного времени, и может быть возобновлен по окончании периода эксплуатации. Литература 1. Rybach L.

International course of geothermal heat pumps, 2002 2. Васильев Г. Энергоэффективная сельская школа в Ярославской области. Sanner B. Ground Heat Sources for Heat Pumps classification, characteristics, advantages. International course of geothermal heat pumps, 2002 5. IGA News no. Ground-source heat pump systems — the European experience. GeoHeat- Center Bull.

Maxi Brochure 08. Atkinson Schaefer L. Georgia Institute of Technology, 2000 9.

Это небольшие энергозатраты, и в связи с этим нужно внимательно относиться к выбору пикового доводчика.

Наиболее рациональным с точки зрения как удельных капвложений в 1 кВт мощности, так и автоматизации являются пиковые электродоводчики. Заслуживает внимание использование котлов, работающих на пеллетах. Эта проблема представляет сегодня очень серьезную задачу, для решения которой необходим серьезный численный анализ, учитывающий и специфику нашего климата, и особенности применяемого инженерного оборудования, инфраструктуры централизованных сетей, а также экологическую ситуацию в городах, ухудшающуюся буквально на глазах, и многое другое. Очевидно, что сегодня уже некорректно формулировать какие-либо требования к оболочке здания без учета его здания взаимосвязей с климатом и системой энерго-снабжения, инженерными коммуникациями и пр.

Литература 1. Sanner B. Ground Heat Sources for Heat Pumps classification, characteristics, advantages. Course on geothermal heat pumps, 2002.

Васильев Г. Теплохладоснабжение зданий и сооружений с использованием низкопотенциальной тепловой энергии поверхностных слоев Земли: Монография. Издательский дом «Граница». Please wait...

Поделиться статьей в социальных сетях: Все иллюстрации приобретены на фотобанке Depositphotos или предоставлены авторами публикаций. Подпишитесь на наши статьи и вы будете узнавать свежие новости и получать новые статьи одним из первых!

Географы создали карту Всемирного потопа

Через несколько секунд после появления страшного звука прогремел взрыв… В конце 70-х — начале 80-х устроиться работать на Кольскую сверхглубокую, как запанибратски называли скважину жители поселка Заполярный Мурманской области, было сложнее, чем попасть в отряд космонавтов. Из сотен претендентов выбирали одного-двух. Вместе с приказом о приеме на работу счастливцы получали отдельную квартиру и зарплату, равную двойному-тройному окладу московской профессуры. На скважине одновременно работало 16 исследовательских лабораторий, каждая — размером со средний завод. С подобным упорством землю копали только немцы, но, как свидетельствует Книга рекордов Гиннеса, самая глубокая немецкая скважина чуть ли не вдвое короче нашей.

Отдаленные галактики изучены человечеством куда лучше, чем то, что находится под земной корой в каких-то нескольких километрах от нас. Кольская сверхглубокая — своеобразный телескоп в загадочный внутренний мир планеты. Скважина не похожа на шахту, которую рисует нам воображение. Никаких спусков под землю, в толщу уходит только бур диаметром чуть больше 20 сантиметров.

Воображаемый разрез Кольской сверхглубокой скважины выглядит как тонюсенькая иголочка, пронзившая земную толщу. Бур с многочисленными датчиками, находящийся на конце иголочки, поднимают и опускают в течение нескольких дней. Быстрее нельзя: прочнейший композитный трос может оборваться под собственным весом. Что происходит в глубине, доподлинно неизвестно.

Температура окружающей среды, шумы и прочие параметры передаются наверх с минутным запаздыванием. Тем не менее, бурильщики рассказывают, что даже такой контакт с подземельем может не на шутку испугать. Звуки, доносящиеся снизу, и впрямь похожи на вопли и завывания. К этому можно добавить длинный список аварий, преследовавших Кольскую сверхглубокую, когда она достигла глубины 10 километров.

Дважды бур доставали оплавленным, хотя температуры, от которых он может расплавиться, сравнимы с температурой поверхности Солнца. Однажды трос как будто дернули снизу — и оборвали.

Изменение температурного режима неизбежно приведет к перестройке экосистем: в теплой воде больше микроорганизмов и водорослей и меньше кислорода, который необходим рыбам. Источник: Freepik В южных сельскохозяйственных районах планеты потепление поверхности может дать непредсказуемый результат. С одной стороны, экологи традиционно трубят тревогу — «урожай окажется под угрозой». С другой — любой огородник знает, что в теплом грунте растения чувствуют себя лучше. Возможно, повышение температуры поверхности заставляет ее быстрее терять влагу и приводит к дополнительным затратам на полив. Но при потеплении в целом количество влаги в атмосфере увеличивается : чем сильнее нагреваются океаны, тем больше воды испаряется. И, соответственно, тем больше осадков выпадает.

Наблюдения продолжаются».

Индийский луноход «Прагьян». В районе лунного южного полюса также обнаружены выходы породы, которые могут многое рассказать об образовании Луны.

Мы надеемся, что в ближайшие дни, за оставшиеся 10 дней, мы сможем завершить все эксперименты».

Нижегородский ученый объяснил изменения температуры на Луне

Они не требуют больших площадей, работают по системе замкнутого цикла без выбросов парниковых газов. Анализ петротермальных ресурсов и потенциальных возможностей их использования в США показал, что на глубинах до 10 км содержится в 130 тысяч раз больше годового потребления энергии США. Мало того, предварительные расчёты показывают, что к 2030 г. То есть этот показатель является одним из самых низких для энергетического сектора. Согласно программе, уже к 2050 г.

По прямому использованию тепла петроэнрегетика может выйти к 2050 году на уровень 320 ГВт вместо текущих 0,1 ГВт. Более подробно тема использования геотермальной и петротермальной энергии раскрыта в новом докладе «Глобальной энергии» «10 прорывных идей в энергетике на следующие 10 лет».

Геотермический градиент Геотермический градиент - это скорость изменения температуры по мере увеличения глубины недр Земли. Как правило, температура земной коры повышается с глубиной из-за теплового потока от гораздо более горячей мантии.

Нижегородский ученый объяснил изменения температуры на Луне Ранее ряд СМИ в очередной раз поставил под сомнение высадку американцев на спутнике Земли.

Температура поверхности Луны меняется в больших пределах, сообщил в беседе с корреспондентом ИА «Время Н» лектор Нижегородского планетария им.

Кстати, это у них первое в истории централизованное отопление. Станция энергоснабжения Bunhill 2 в Лондоне, которая перекачивает горячий воздух из метро и использует его для отопления. И это далеко не единственный источник её постоянного и, что характерно, антропогенного нагрева. Ещё один, к примеру, — собственно говоря, сами системы отопления и горячего водоснабжения. Даже трубы из самых лучших теплоизолирующих материалов всё равно какую-то часть тепла пропускают, не говоря уже о периодических прорывах, протечках и прочее.

Соответственно, все эти теплопотери тоже греют землю, которой это совершенно не нужно. Добавляем в этот список высоковольтные кабели и, наконец, здания, которые нагреваются жарким летом и опять же передают весь этот жар в почву. Всё вместе создаёт картину, которую обозначили как "подземное изменение климата".

Распределение температуры в Земле

Теоретики обещали, что температура Балтийского щита останется сравнительно низкой до глубины по крайней мере 15 километров. На некоторой глубине от поверхности Земли располагается пояс постоянной температуры, ниже его происходит увеличение температуры. Амплитуда температуры почвы (на глубине 10 см под землей) за февраль составила всего 0,4 градуса, весь месяц температура держалась в пределах +0,7 +1,1°С, плавно понижаясь к концу месяца.

Индийский аппарат передал первые данные с Луны, почва которой оказалась горячей

Но уже на 5 километрах окружающая температура перевалила за 700 градусов по Цельсию, на семи – за 1 200, а на глубине 12 тысяч метров – 2 200 градусов. от десятков до сотен метров - температура грунта держится постоянной, равной среднегодовой температуре воздуха у поверхности Земли. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15–20 м. Если допустить, что температура с глубиной возрастает непрерывно, то в центре Земли она должна измеряться десятками тысяч градусов.

Похожие новости:

Оцените статью
Добавить комментарий