Новости термоядерная физика

На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. Если в ядерных реакциях ядрам урана, плутония, тория выгодней распадаться для запуска цепной взрывной реакции, то при термоядерном варианте, наоборот, балом правит реакция.

Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика

Европейский токамак обновил рекорд по количеству полученной в ходе термоядерной реакции энергии. Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез. Пара слов о физике плазмы: на волне Волна боянов, Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост. Физик объяснил важность создания прототипа российского термоядерного реактора.

Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика

Предыдущий рекорд был установлен на том же EAST в 2017 году и составлял 101 секунду. С момента начала работы в 2006 году EAST является открытой испытательной платформой для китайских и международных ученых для проведения экспериментов и исследований, связанных с термоядерным синтезом. В качестве следующего шага планируется создание на его основе будущего китайского испытательного термоядерного реактора CFETR , который рассматривается как «искусственное солнце» нового поколения и который станет первым в мире демонстрационным термоядерным реактором.

В зависимости от направления вращения магнитного поля плазма в установке либо "тормозится", в результате чего увеличивается время удержания плазмы, либо, напротив, ускоряется, что, в случае ракетного двигателя, создает реактивную тягу.

Использовать для удержания плазмы открытые, то есть незамкнутые магнитные ловушки для плазмы при проведении управляемой термоядерной реакции предложил еще в 1950-е гг. Устройство получило название "пробкотрон Будкера" - технически более простой и надежный способ по сравнению с традиционным, так называемым "токамаком".

Одна из них заключается в использовании жидкого лития как материала с низким зарядовым числом в промежуточном слое между плазмой и стенкой или пластинами дивертора. При этом возможные функции такого литиевого слоя могут несколько разниться. Литий должен собираться специальными литиесборниками и очищаться от абсорбированных продуктов — но уже вне камеры. Извлечённые изотопы водорода направляются в систему подачи топлива.

Кроме того, часть принимаемой литиевым слоем энергии может высвечиваться в виде ультрафиолетового излучения, снижая температуру пристеночной плазмы и способствуя более равномерному распределению тепловой нагрузки по стенке камеры [ 11 ]. Большие объёмы циркулирующего лития и его проникновение в основную плазму — вот основные трудности на пути реализации этого подхода. Можно ли обеспечить относительно быстрое ламинарное течение тонкого слоя жидкого лития по металлической пластине, полностью поглощаю-щего попадающие в него частицы плазмы так называемый случай нулевого рециклинга? Будет ли при этом автоматически достигаться улучшение удержания плазмы в основном объёме реактора и, как следствие, повышение температуры?

Продуктивность этой концепции [ 12 ] и иных возможностей использования лития требует детальной экспериментальной проверки. Дальнейшая экстраполяция этой концепции заключается в полном отказе от стенки, ограждаю-щей плазменный объём. Речь идёт о проработке возможности сооружения магнитного термоядерного реактора в космосе на околоземной орбите. Такой подход имеет ряд потенциальных преимуществ включая гарантированную реализацию нулевого рециклинга , хотя и представляется труднореализуемым.

При этом магнитная конфигурация термоядерного реактора космического базирования может и должна быть предметом оптимизации, в том числе по параметрам таким как вес, присутствие дополнительных систем, простота монтажа и пр. Поэтому реализацию этого направления следовало бы начать с глубокой концептуальной проработки и маломасштабных космических экспериментов. Следует отметить, что идеи космического размещения энергетического реактора обсуждались ещё в 1970-х годах. Целесообразность их рассмотрения в настоящий момент оправдывается качественно иным достигнутым уровнем развития космонавтики, с одной стороны, и прогрессом в термоядерных технологиях и в понимании физики термоядерной плазмы, с другой стороны, что переводит эти идеи из области гипотез в сферу проектов, доступных для воплощения в жизнь за обозримое время, хотя они и не имеют пока достаточно сторонников для серьёзной проработки.

Практически с момента начала работ над УТС высказывались идеи об использовании термоядерных нейтронов для производства делящихся изотопов как основы ядерного топлива для АЭС или боеприпасов. В своих воспоминаниях, относящихся к 1951 г. Так как выделение энергии на один акт реакции при процессе деления гораздо больше, чем при процессе синтеза, экономические и технические возможности такого комбинированного двухступенчатого производства энергии оказываются выше, чем при получении энергии непосредственно в термоядерном реакторе. Сегодня при анализе так называемого гибридного подхода, сочетающего термоядерный источник нейтронов ТИН и окружающий его бланкет с сырьевым материалом или отработавшим ядерным топливом ОЯТ , гибридный реактор рассматривают в двух возможных ипостасях: как наработчик топлива для традиционных реакторов деления, используемых на существующих или планируемых АЭС, и как высокоэффективный дожигатель минорных младших актинидов, накапливающихся в результате работы ядерных реакторов.

Реакторы деления, составляющие основу существующей атомной энергетики, будут обеспечены делящимися изотопами, произведёнными в гибридных реакторах. Существенно, что бланкет гибридного реактора работает в подкритическом режиме с внешним источником нейтронов, что исключает последствия запроектных аварий с изменением мощности реактивностные аварии и с захолаживанием теплоносителя без срабатывания систем защиты. Оценки показывают, что наибольший эффект в продвижении интегрированной синтез—деление технологии топливного цикла реализуется при ориентации на уран-ториевый топливный цикл, к числу преимуществ которого принято относить следующие.

За искусственным Солнцем: термоядерная энергия. Встреча третья В ходе работ 5 декабря на самой мощной в мире лазерной установке NIF ученые смогли получить больше энергии, чем было потрачено на зажигание термоядерной реакции. На топливо, состоящее из редких разновидностей водорода дейтерий и тритий , в сфере размером с пулю для пневматического пистолета со всех сторон направили 192 лазера. Энергия «на входе» составила 2,05 МДж, а «на выходе» более чем в полтора раза больше — 3,15 МДж.

При этом лазеры выдали на топливо мощность, равную 2,05 МДж.

Ракетчики начали строить термоядерный двигатель

Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды Американские физики утроили энергетическую эффективность экспериментального термоядерного реактора NIF.
Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить Слишком часто разработчики термоядерных реакторов сталкивались с непредсказуемостью, завышенными оценками, новыми неприятными фактами из области физики плазмы.
Как работает изобретенный китайцами токамак и зачем он нужен | 360° В начале 2023 года появилась новость, что сроки запуска Международного экспериментального ядерного реактора (ИТЭР) переносятся с 2025 года на неопределенный срок из-за выявленных.
Выбор сделан - токамак плюс - Российская газета На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз.

˜˜˜˜˜ и ˜˜˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜

Американцы произвели термоядерный прорыв к 100-летию советского академика Басова - МК Двигатель на термоядерной тяге разгонит космический корабль до 800 000 километров в час.
Прорыв в термоядерном синтезе Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа.
Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака познакомьтесь с новейшими разработками, впечатляющими функциями и глубоким анализом ядерной физики.
Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии Американские физики утроили энергетическую эффективность экспериментального термоядерного реактора NIF.

Академик В.П. Смирнов: термояд — голубая мечта человечества

Физика плазмы и инерциальный термоядерный синтез Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток.
Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития.
Вестник РАН, 2021, T. 91, № 5, стр. 470-478 Специалисты Института ядерной физики СО РАН уверены, что для Сибири термоядерный взрыв будет иметь катастрофические последствия.
˜˜˜˜˜: истории из жизни, советы, новости, юмор и картинки — Горячее | Пикабу Физики из Helion Energy разогрели плазму до 100 млн градусов — температура, считающаяся оптимальной для термоядерной реакции.

Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики

Британская аэрокосмическая компания Pulsar Fusion собирается первой в мире запустить в космосе двигатель термоядерного синтеза. Предполагается, что эта технология позволит сократить время полета на Марс вдвое, а до Титана с десяти до двух лет. По мнению Ричарда Динана, главы компании, такие ракетные двигатели — «неизбежность» для космонавтики. Компания сообщила, что начала строительство опытной установки в Блетчли Англия. Также по теме.

Для контроля за состоянием теплоносителя на ITER установлены акустические датчики. По шуму, который создают пузырьки в трубопроводах, будет оцениваться режим, в котором находится теплоноситель. Системы нагрева плазмы[ править править код ] Для того, чтобы ядра трития вступили в реакцию слияния с ядрами дейтерия, они должны преодолеть взаимное электростатическое отталкивание — кулоновский барьер. При такой высокой температуре кинетическая энергия ядер становится достаточной, чтобы кулоновский барьер был преодолён и термоядерная реакция «зажглась». После зажигания термоядерной реакции предполагается, что можно будет выключить внешние нагреватели плазмы или снизить их мощность. Ожидается, что термоядерная реакция станет самоподдерживающейся.

Кроме того, можно задействовать для нагрева плазмы еще и центральный соленоид. Поднимая напряжение в соленоиде от нуля до 30 кВ, можно индуцировать в короткозамкнутом плазменном витке электрический ток. За счет омического нагрева выделяется дополнительное тепло. Такой способ нагрева называется индукционным. Electron Cyclotron Resonance Heating разогревает электроны плазменного шнура, а также используется для отвода тепла в определённых местах в плазме в качестве механизма минимизации нарастания определённых неустойчивостей, приводящих к охлаждению плазмы. Она выполняет роль «стартера» плазмы в начале выстрела, разогревая нейтральный газ, заполняющий вакуумную камеру.

В качестве источников энергии применены гиротроны , каждый мощностью 1 МВт, рабочей частотой 170 ГГц и длительностью импульса более 500 с. Всего гиротронов 24. Они расположены в Здании радиочастотного нагрева и передают свою энергию по волноводам, длина которых составляет 160 м. Производством гиротронов заняты Япония, Россия, Европа и Индия. В конце февраля 2015 года Япония продемонстрировала первый произведённый гиротрон. Все гиротроны предполагалось поставить в ITER в начале 2018 года [27].

Для ввода энергии в вакуумную камеру служат окна из поликристаллического искусственного алмаза. Диаметр каждого алмазного диска 80 мм, а толщина 1,1 мм. Алмаз выбран потому, что прозрачен для СВЧ излучения, прочен, радиационно стоек и обладает теплопроводностью в пять раз выше, чем у меди. Производством этих кристаллов занята лаборатория во Фрайбурге. Всего для ITER будет поставлено 60 алмазных окон [28]. Ion Cyclotron Resonance Heating разогревает ионы плазмы.

Принцип этого нагрева такой же, как и бытовой СВЧ-печи. Частицы плазмы под воздействием электромагнитного поля высокой мощности с частотой от 40 до 55 МГц начинают колебаться, получая дополнительную кинетическую энергию от поля. При столкновениях ионы передают энергию другим частицам плазмы. Система состоит из мощного радиочастотного генератора на тетродах будет установлен в Здании радиочастотного нагрева плазмы , системы волноводов для передачи энергии и излучающих антенн [29] , расположенных внутри вакуумной камеры. Инжектор нейтральных атомов[ править править код ] Инжектор «выстреливает» в плазменный шнур мощный пучок из атомов дейтерия, разогнанных до энергии 1 МэВ.

Зачем нужен термояд? Прежде всего для мировой промышленности. Дело в том, что уже в ближайшее время, где-то к 2050-му г.

Потому что чем выше уровень цивилизации, тем больше энергии она требует. И, несмотря на то, что пока еще сохраняются ресурсы нефти, угля, газа, дефицит энергии никак не покроешь за их счет. Единственный выход — это термоядерная энергетика. Вот над этим и работают исследователи, особенно в Европе, и лидеры там — немцы. Это уникальная нация, и они это сделают — создадут термоядерную энергетику. А мы, если всерьез не возьмемся за разработки в этой области, окажемся на задворках истории в решении столь серьезной проблемы. Известны две дорожные карты. Одна — с очень дорогими термоядерными электростанциями, огромными по размеру, до 9 метров большого радиуса тора токамака-реактора.

Вторая — с дешевыми, всего 6 американских центов за 1 квт-час электроэнергии, и 1,6-2,0 метров большого радиуса, и это можно сделать на сферических токамаках, на одном из которых мы и работаем, разрабатывая для него системы управления плазмой. Но можно говорить об их разнообразии? Да, существуют различные сферические токамаки. Они сферические в том плане, что у них аспектное отношение, то есть отношение большого радиуса токамака к малому, составляет, примерно, 1,5, а все другие, конвенциальные, имеют аспектное отношение, приблизительно, 3-4 и выше, и это, в отличие от сферических, не может дать дешевую электроэнергию. Можно строить небольшие установки модульного типа, а потом их наращивать, допустим, вместо одного модуля сделать 10. Модуль — это небольшая часть всей термоядерной установки, это одна независимая небольшая термоядерная электростанция. Это приведет к снижению цены за электроэнергию по современным представлениям. Когда стали создаваться термоядерные установки, возникла большая наука — это физика высокотемпературной плазмы.

Большая, серьезная наука, не все могут ее понимать и осваивать. Тем более, что теория не всегда совпадает с экспериментом, и адекватное понимание эксперимента очень часто основывается на так называемых скейлингах, то есть экспериментальных формулах. В мире сейчас около 40 действующих установок типа токамак, три работающие установки находятся в России. Они никакой термоядерной энергии не производят, они экспериментальные, на них исследуют плазму, материалы, системы управления плазмой и т. На некоторых установках делали эксперименты с тритием. На них было показано, что термоядерная реакция в принципе возможна, но коэффициент усиления был не больше единицы. Тем не менее, она возможна, потому что возникают нейтроны именно термоядерного происхождения, которые улавливались внешней оболочкой. Здесь сомнений нет.

Вопрос только технологический — можно ли построить термоядерную электростанцию, так, чтобы она действительно давала термоядерную электроэнергию, и чтобы там реально функционировали все системы, которые туда входят. Это сильная альтернатива. У атомных станций два серьезных недостатка. Первое: они производят отходы, у которых период полураспада сотни и тысячи лет, их нужно где-то хранить, и их много, они накапливаются. Второй недостаток — они могут взрываться. Взрывы были сначала в Чернобыле, и затем на Фукусиме. В токамаках принципиально невозможен взрыв. Очень просто.

Когда работает токамак, в его камеру постоянно поступает газообразное топливо, например, смесь трития и дейтерия. Имеются специальные быстродействующие клапаны, через которые поступает топливо.

В ТГУ сделали шаг к поиску способов повышения энергоэффективности термоядерного синтеза 4. Ученый физического факультета Томского госуниверситета Михаил Егоров выясняет, для каких реакций и при каких энергиях и температурах выделяющаяся полезная энергия может превышать энергетические потери, связанные с движением заряженных частиц.

Термоядерный запуск. Как Мишустин нажал на большую красную кнопку

Зачем на самом деле строится самый большой термоядерный реактор. Хорошие новости продолжают поступать в области исследований ядерного синтеза. К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся. Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки. Справка «МК» Классическая термоядерная реакция происходит при преодолении электростатического отталкивания двух положительно заряженных ядер дейтерия и трития. Ученые Института ядерной физики а СО РАН (ИЯФ, Новосибирск) добились ускорения плазмы в термоядерной установке "СМОЛА", где вещество удерживается.

Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды

Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. И все из-за нового термоядерной установки токамак, аналогов которой нет нигде в мире. 83-летний физик Питер Хиггс, еще в 60-х предсказавший существование поля, которое отвечает за массу всех элементарных частиц, расплакался. К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся.

Что такое термоядерный синтез и зачем он нужен?

Воспроизвести процессы, идущие в сердцах звезд, — непростая задача. Наиболее распространенная конструкция термоядерных реакторов — токамаков — работает за счет перегрева плазмы. Термоядерным реакторам требуются температуры во много раз выше, чем на Солнце, потому что они должны работать при гораздо более низком давлении. Разогреть плазму несложно, но пока не получается найти способ долго удержать ее, чтобы она не прожигала стенки реактора, не нарушая при этом процесс термоядерного синтеза.

Впрочем, основного заказчика этой установки все устраивало. Дело в том, что условия, создающиеся в топливной капсуле и хольрауме очень похожи на то, что происходит в термоядерном боеприпасе в момент срабатывания. И изначально NIF создавался как большой стенд для верификации нового поколения программ, симулирующих поведение ядерного оружия, а энергетическое направление было приятным бонусом, на который выделялось меньше трети фондирования. Но команда термоядерщиков LLNL продолжала совершенствовать режимы работы лазеров, конструкцию хольраума и капсулы. Вместе это позволило поднять симметричность и стабильность сжатия капсулы, побороть лазерно-плазменные неустойчивости на хольрауме, увеличить эффективность передачи энергии от лазеров на хольраум и от хольраума на сжатие капсулы.

Как работает NIF Специально профилированный во времени затравочный импульс «мастер-лазера» расщепляется на 192 луча, каждый из которых проходит 4 раза через 192 усилителя лазерного излучения и направляется на систему преобразования частоты, где исходное инфракрасное превращается в рабочий ультрафиолет. Через систему фокусировки 192 луча с точностью в 10 микрон проходят через окна в хольрауме, попадая на его внутренние стенки, за 10 наносекунд разогревая их до 3 миллионов градусов. Сфера с топливом, «купаясь» в излучаемом хольраумом рентгеновском излучении начинает испаряться снаружи, а реактивная сила отдачи начинает сжимать внутренние слои к центру симметрии капсулы. Примерно за 2 наносекунды при давлении в 200 миллиардов атмосфер размер сферы уменьшается в 30 раз, а плотность топлива возрастает до 1000-1300 грамм на кубический сантиметр — примерно в 100 раз плотнее свинца. В момент максимального сжатия, в разогретой центральной части начинается термоядерная реакция, которая, как пожар, распространяется от центра к периферии. Всего несколько десятков пикосекунд продолжается горение, мощность которого в этот короткий миг сравнимо с потоком солнечной энергии на всю планету Земля и в десятки тысяч раз превосходит всю остальную мощность человеческой цивилизации. Как итог — в 2019-2020 году выход термоядерной энергии в экспериментах NIF начал заметно расти, перешагнул порог 100 килоджоулей, а весной 2021 года несколько выстрелов дали энергии от 400 до 700 килоджоулей и наконец 8 августа 2021 года — 1350 килоджоулей. Эта энергия в 2-5 раз превосходила энергию рентгеновского излучения от стенок хольраума и в 10-20 раз — энергию, переданную топливной сфере и свидетельствовала о том, что зажженная термоядерная реакция в маленькой точке в центре сжатой сферы успевает прогреть и поджечь окружающий ее относительно холодный топливный материал.

Теперь ученые, работающие в NIF провели пресс-конференцию, где рассказали, что 5 декабря 2022 года, при мощности лазера в 114 процентов от номинальной командой было получено заметное превышение выхода термоядерной энергии 3,15 мегаджоулей над вложенной энергией лазера 2,05 мегаджоулей , что является рекордным достижением для всех установок термоядерного синтеза. Журнал Science добавляет несколько деталей про выстрел 5 декабря. Рекордный эксперимент потребовал заметных усилий от команды экспериментаторов. Для корпуса топливной капсулы использовался искусственный алмаз, который давал наиболее гладкую сферическую поверхность без пор. Было максимально уменьшено отверстие, через которое капсула заполняется топливом. Лазер был настроен на максимальную мощность и энергию, что позволило придать испаренной оболочке капсулы больше ускорения и сжать топливо чуть больше. За три месяца до рекорда, команда NIF уже опробовала эти улучшения, получив энерговыход в 1,2 мегаджоуля. Проблема, как оказалась, лежала в недостаточно симметричном обжатии, на последнем этапе капсула превратилась скорее в блин, чем в плотный шарик.

Путем подстройки мощности каждого из 192 лучей удалось улучшить сферичность сжатия и как итог — получить рекордную термоядерную энергию. Никаких других подробностей об эксперименте нет: команда не опубликовала научную статью о своем результате. Много это или мало? Эффективность термоядерных установок оценивают в Q — это отношение выделившейся термоядерной энергии к вложенной в плазму энергии нагрева. Сейчас Q в эксперименте на NIF достиг значения 1,54.

Но потенциальные отходы будут обрабатываться, упаковываться и храниться прямо на месте, а период полураспада большинства радиоизотопов, содержащихся в этих отходах, составит менее 10 лет. Таким образом, в течение 100 лет радиоактивность материалов уменьшится настолько, что их можно будет переработать и в дальнейшем использовать на других термоядерных установках. ИТЭР находится в области с умеренной сейсмической активностью, однако строится из специально армированного бетона и опирается на плиты, рассчитанные на землетрясения; сейсмические датчики вокруг площадки контролируют даже незначительную сейсмическую активность. В дизайн проекта ИТЭР заложены несколько защитных барьеров: корректный выбор надежных современных материалов поможет минимизировать количество отходов будущих термоядерных реакторов; системы активного плазменного отключения, быстрого разряда и отвода тепла, а также сейсмический контроль не допустят аварии; специальная система вентиляции и пониженное давление в здании реактора предотвратят утечку трития и распространение радиоактивной пыли за пределы здания. Академик Арцимович говорил: как только приспичит человечеству, тут же термояд и сделают. Пока, значит, не приспичило. Мой ответ другой: в 2054 году. В 1954 году запустили первую АЭС, а мы любим отмечать юбилеи с размахом. Термоядерная энергетическая установка будет более безопасной, чем современные ядерные, — нет критмассы. Но хватает своих проблем. Скорее всего, не будет сразу чистого термояда, вначале плазменные термоядерные установки используют как внешний источник нейтронов, который будет нарабатывать топливо из 238U или тория. Эта технология должна быть разработана с учетом современных требований к безопасности ядерных объектов. DEMO: перспективы Если проект ИТЭР покажет перспективные рабочие показатели по достижению, а главное — удержанию «чистой» плазмы, следующим этапом на пути к термоядерному будущему станет строительство промышленного демонстрационного реактора DEMO с запланированной мощностью всей станции около 3 ГВт. DEMO позволит распахнуть двери в мир промышленной и коммерческой эксплуатации термоядерной энергии. Скептики продолжают задаваться вопросом: а стоит ли овчинка выделки? Очевидно, что вложения и затраты на электроэнергию термоядерных электростанций будут значительно выше вложений в существующие АЭС — несмотря на то что стоимость топлива будет минимальной. Причина — высокая стоимость замены поврежденных ядерных компонентов. Тепловая и нейтронная нагрузки ядерных компонентов будут настолько сильными, что срок службы некоторых ядерных элементов можно будет оценить от 4,5 до 10,5 лет — значительно короче срока службы типичной АЭС 40 лет. В начальный период эксплуатации это приведет к тому, что цена электроэнергии от термоядерных электростанций будет сопоставима с ценой электроэнергии от солнечных и ветряных станций. При этом производство электроэнергии высокой мощности не будет зависеть от времени года или погоды, и не нужно будет поддерживать резервные ископаемые ресурсы. Для выработки электроэнергии от коммерческого термоядерного синтеза электростанция должна быть проще и бюджетнее, чем ИТЭР. Дизайн компании основан на конфигурации с обратной поляризацией, сочетающей особенности основных термоядерных концепций. В отличие от других устройств термоядерного синтеза, таких как токамак, обратная поляризация обеспечивает топологию магнитного поля, при которой осевое поле внутри реактора изменяется вихревыми токами в плазме. Корпорация EMC2 Inc. Финансирование проекта по термояду должно отражать эти и иные альтернативные ноу-хау. В целом у термоядерных проектов неплохие шансы стать самым чистым и доступным источником энергии, учитывая неисчерпаемое и дешевое топливо, ядерную безопасность и минимальное воздействие на окружающую среду. Гибридный синтез Пока ведутся дискуссии на тему: быть термояду или нет — звучат предложения рассмотреть вариант гибридной установки, которая может стать разумным компромиссом. Идея не нова, она обсуждалась еще на заре освоения ядерных технологий, но после серьезных аварий от нее отказались в пользу развития «чистой» энергии от термоядерного синтеза без нарабатываемых делящихся материалов.

С момента начала работы в 2006 году EAST является открытой испытательной платформой для китайских и международных ученых для проведения экспериментов и исследований, связанных с термоядерным синтезом. В качестве следующего шага планируется создание на его основе будущего китайского испытательного термоядерного реактора CFETR , который рассматривается как «искусственное солнце» нового поколения и который станет первым в мире демонстрационным термоядерным реактором. В свою очередь в Германии было объявлено о собственном прорывном достижении в области термоядерного синтеза.

Прорыв в термоядерном синтезе

После зажигания термоядерной реакции предполагается, что можно будет выключить внешние нагреватели плазмы или снизить их мощность. Ожидается, что термоядерная реакция станет самоподдерживающейся. Кроме того, можно задействовать для нагрева плазмы еще и центральный соленоид. Поднимая напряжение в соленоиде от нуля до 30 кВ, можно индуцировать в короткозамкнутом плазменном витке электрический ток. За счет омического нагрева выделяется дополнительное тепло. Такой способ нагрева называется индукционным. Electron Cyclotron Resonance Heating разогревает электроны плазменного шнура, а также используется для отвода тепла в определённых местах в плазме в качестве механизма минимизации нарастания определённых неустойчивостей, приводящих к охлаждению плазмы. Она выполняет роль «стартера» плазмы в начале выстрела, разогревая нейтральный газ, заполняющий вакуумную камеру.

В качестве источников энергии применены гиротроны , каждый мощностью 1 МВт, рабочей частотой 170 ГГц и длительностью импульса более 500 с. Всего гиротронов 24. Они расположены в Здании радиочастотного нагрева и передают свою энергию по волноводам, длина которых составляет 160 м. Производством гиротронов заняты Япония, Россия, Европа и Индия. В конце февраля 2015 года Япония продемонстрировала первый произведённый гиротрон. Все гиротроны предполагалось поставить в ITER в начале 2018 года [27]. Для ввода энергии в вакуумную камеру служат окна из поликристаллического искусственного алмаза.

Диаметр каждого алмазного диска 80 мм, а толщина 1,1 мм. Алмаз выбран потому, что прозрачен для СВЧ излучения, прочен, радиационно стоек и обладает теплопроводностью в пять раз выше, чем у меди. Производством этих кристаллов занята лаборатория во Фрайбурге. Всего для ITER будет поставлено 60 алмазных окон [28]. Ion Cyclotron Resonance Heating разогревает ионы плазмы. Принцип этого нагрева такой же, как и бытовой СВЧ-печи. Частицы плазмы под воздействием электромагнитного поля высокой мощности с частотой от 40 до 55 МГц начинают колебаться, получая дополнительную кинетическую энергию от поля.

При столкновениях ионы передают энергию другим частицам плазмы. Система состоит из мощного радиочастотного генератора на тетродах будет установлен в Здании радиочастотного нагрева плазмы , системы волноводов для передачи энергии и излучающих антенн [29] , расположенных внутри вакуумной камеры. Инжектор нейтральных атомов[ править править код ] Инжектор «выстреливает» в плазменный шнур мощный пучок из атомов дейтерия, разогнанных до энергии 1 МэВ. Эти атомы, сталкиваясь с частицами плазмы, передают им свою кинетическую энергию и тем самым нагревают плазму. Поскольку разогнать в электрическом поле нейтральный атом невозможно, его нужно сперва ионизировать. Затем ион по сути, ядро дейтерия разгоняется в циклотроне до необходимой энергии. Теперь быстродвижущийся ион следует снова превратить в нейтральный атом.

В данном случае речь идёт о выработке минимального количества энергии, очень далёкого от промышленных масштабов. Если точнее, этой энергии хватило бы на то, чтобы вскипятить 10 чайников воды. Однако само по себе научное достижение от этого менее значимым не становится.

И запуск российской установки — большой шаг на этом пути.

Токамак Т-15 МД размером с небольшой дачный домик полностью спроектировали и построили в России за 10 лет. Подобный термоядерный реактор должен помочь заменить атомные электростанции и работать на безопасном и доступном топливе — дейтерии и тритии. На несколько порядков больше, чем сжигание нефти или газа того же количества, в десятки тысяч раз», — сообщил научный руководитель комплекса термоядерной энергетики и плазменных технологий НИЦ «Курчатовский институт» Петр Хвостенко. Еще в 50-х годах прошлого века советские ученые придумали установку в форме тора, или бублика, где разогретую плазму удерживает магнитное поле. Тогда и родился термин «токамак» тороидальная камера с магнитной катушкой.

Сегодня в работе с токамаками российские специалисты по-прежнему впереди планеты всей. В термоядерном синтезе множество задач, которые никому не удается решить уже десятки лет. Глава правительства Михаил Мишустин дал старт большому проекту класса «Мегасайенс», который должен помочь выйти за рамки современных научных догм. И, конечно, я сразу же хочу поздравить весь ваш дружный коллектив, который много лет работал над тем, чтобы продвинуться еще дальше.

Однако за год ученые так и не смогли повторить эксперимент. В четырех аналогичных опытах удалось получить только примерно половину от энергии, полученной в первоначальном успешном эксперименте. Физики будут продолжать свои эксперименты, чтобы снова воссоздать самоподдерживающийся термоядерный синтез. Поделиться: Подписывайтесь на «Газету.

Ученые в США провели третий успешный эксперимент с ядерным синтезом

Эксперимент, в ходе которого был преодолен порог термоядерного синтеза, проводили на установке National Ignition Facility (NIF). Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия. Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного. С середины прошлого века физики всего мира ищут возможность воспроизвести реакцию термоядерного синтеза, происходящую в центре звезд.

Похожие новости:

Оцените статью
Добавить комментарий