Теория суперсимметрии обобщает часто встречающееся в природе явление симметрии на уровень элементарных частиц и утверждает, что существует некоторое преобразование. Теория Суперсимметрии имеет дело с Суперпространством, в котором трехмерие дополняется принципиально ненаблюдаемыми измерениями. В новостях можно иногда встретить утверждение, что отрицательные данные LHC ставят крест на идее суперсимметрии.
"Теория проигрывает эксперименту": новый кризис в физике высоких энергий?
Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов.
Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия. Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц.
Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали.
В 1959 году, выступая на конференции по физике высоких энергий в Киеве, Лев Ландау объявил, что прежний, гамильтонов, подход к теории поля умер, и остается лишь организовать ему достойные похороны. Возникли новые методы, в которых было очень много красивой математики, но не так уж много физического содержания. Но уже через десять лет в рамках старого, уже, казалось бы, похороненного подхода, появилась теория сильных взаимодействий, квантовая хромодинамика, и Стандартная модель, появились соответствующие предсказания, которые затем были блестяще подтверждены в новых экспериментах. Последнее из этих подтверждений — обнаружение хиггсовского бозона, это, так сказать, теоретический привет из шестидесятых. Само по себе это нормально, но вопрос о том, сменится ли эта фаза реальным прогрессом в понимании природы, остается, на мой взгляд, открытым.
Прошлые успехи не гарантируют успеха в будущем. Кроме того, сейчас имеется серьезная объективная трудность: в отличие от 1950-х годов, у нас сейчас не так много экспериментальных данных. Вот если бы БАК или другой ускоритель нашли бы "новую физику", тогда дело бы пошло веселей. А так, в основном, мы имеем только косвенные подтверждения, что новая физика есть. По сути, мы сейчас идем за экспериментами — мы строим коллайдер, он, к счастью, находит бозон Хиггса, но не открывает микро-черные дыры или какие-то другие новые и интересные объекты, вроде суперпартнеров. Теоретики задыхаются от недостатка новых данных и у них, образно говоря, начинаются разнообразные сугубо математические галлюцинации… И это все при том, что острые нерешенные вопросы еще у нас есть. Мне, теоретику, ситуация, в которой теория становится ведомой, совсем не по душе. Мне кажется, что вопрос "нужно ли идти дальше?
Я верю в то, что тяга к фундаментальному знанию будет существовать до тех пор, пока существует человечество. Не думаю, что апокалиптическая картина "общества всеобщего потребления", которую нам часто рисуют футуристы, будет воплощена в жизнь до такой степени, что фундаментальная наука станет никому не нужна и ее полностью прекратят финансировать. С другой стороны, есть немало примеров саморазрушительной динамики на уровне индивидуумов и сообществ, поэтому гарантий тут нет. Что касается чисто технической стороны, то в последнее время большое внимание уделяется разработке новых принципов ускорения частиц. Если прогресс в этом направлении будет достигнут, вовсе необязательно строить ускоритель размером с половину континента. В любом случае, пока экспериментаторы ведут в изучении физики частиц, мы будем двигаться в этом направлении. Бозон Хиггса - недостающее звено Стандартной модели За пределами Стандартной модели сейчас находится своеобразная "полоса незнания", побуждающая экспериментаторов строить новые машины и копаться в ней. Это копание проявляется в двух вещах — мы сталкиваем частицы на все более высоких энергиях, надеясь найти что-то новое, и более точно промеряем параметры их взаимодействий.
Это тоже очень большая работа, которая, может быть, не принесет каких-то громких фундаментальных открытий, но крайне важна для понимания общей картины устройства мироздания. Иными словами, я пока не готов окончательно хоронить ни экспериментальную, ни теоретическую физику высоких энергий. При этом меня очень раздражает то, что мы уже несколько десятилетий топчемся на одном месте и так и не можем сформулировать убедительного обобщения всего, что было открыто за последние годы и того, что лежит за пределами Стандартной модели. Я бы сказал, что теоретическая физика высоких энергий находится в кризисе, причем достаточно серьезном.
Всё нормально. Если все "красивые" гипотезы подтверждались, то давно всё было бы открыто, и, естественно, развитие на этом кончилось бы, и всё бы закончилось. И ничего не было бы больше.
Члены коллаборации CMS пытались обнаружить «суперпартнеров» кварков и глюонов. Если бы эти частицы рождались в столкновениях протонов на коллайдере, они распадались бы на «обычные» кварки и глюоны, а также легкие стабильные частицы нейтралино, из которых, согласно, теории может состоять «темная материя». Кварки и глюоны, в свою очередь, создавали бы потоки джеты других частиц, а нейтралино, не взаимодействующие с обычной материей, «улетали» бы незамеченными. Детектор CMS мог бы видеть джеты, и ученые, обнаружив «недостачу» энергии, унесенной нейтралино, могли бы сделать вывод о рождении суперсимметричных частиц. Однако на данный момент число столкновений, которые бы удовлетворяли всем этим условиям, относительно невелико. Участники коллаборации CMS в статье, опубликованной в электронной библиотеке Корнеллского университета, говорят лишь о новых ограничениях, которые накладываются на один из вариантов теории суперсимметрии. Ученые, работающие с детектором ATLAS, пытаются обнаружить рождение суперпартнеров, фиксируя рождение электронов и мюонов с потерей энергии.
Суперсимметрия
Новые методы в классической и квантовой теории поля с расширенной суперсимметрией | Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. |
Экзамены суперсимметричной модели вселенной 1978 | Еще не все потеряно, есть усложненные теории суперсимметрии, по которым суперсимметричных частиц так просто не обнаружишь. |
«Обнаруженные частицы Хиггса подтверждают теорию суперсимметрии»
Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц.
По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее.
Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза.
Во-вторых, от новых физических теорий можно требовать выполнения различных симметрий. Чем больше таких требований — тем меньше произвол в построении теории. Примером физической теории, обладающей симметрией, является обычная квантовая механика, оперирующая волновыми функциями. Волновая функция частицы — это комплексная функция, например, пространственных координат грубо говоря, комплексное число в каждой точке. Ее можно рассчитать из уравнения Шрёдингера. Физический смысл имеет не сама волновая функция, а квадрат ее модуля, который показывает вероятность нахождения частицы в каком-либо месте. Если все волновые функции умножить на одно и то же комплексное число с модулем 1, никакие предсказания теории не изменятся.
Действительно, модуль произведения комплексных чисел равен произведению модулей, и от такого домножения никакие вероятности не изменяются. Это пример так называемой глобальной симметрии глобальной — потому, что волновая функция умножалась в разных точках на одно и то же число. Суть этой симметрии заключается в том, что теория не изменяется относительно некоторого класса преобразований в нашем случае эти преобразования — умножение на произвольное комплексное число с модулем, равным 1. Квантовая электродинамика обладает симметрией относительно преобразований, называемых калибровочными. Эти преобразования заключаются в домножении поля электронов на комплексное число с модулем 1 правда, чтобы теория не изменялась, одновременно с преобразованием поля электронов нужно выполнить и некоторые другие преобразования электромагнитного поля. В отличие от рассмотренного выше случая квантовой механики, это число уже может быть в каждой точке различным локальная симметрия. Интересно отметить следующий момент. Как было сказано выше, с каждой симметрией связана сохраняющаяся величина. В случае калибровочных преобразований квантовой электродинамики такой сохраняющейся величиной является обычный электрический заряд.
В пятидесятых годах Янг и Миллс построили модель, уравнения которой не менялись под действием более сложных локальных калибровочных преобразований. Сначала интерес был исключительно математическим. Однако потом на основе теории Янга — Миллса были созданы важнейшие теории взаимодействия элементарных частиц — теория электрослабых взаимодействий и квантовая хромодинамика. Эти теории, обладающие калибровочной симметрией, получили экспериментальное подтверждение. Стандартная модель фундаментальных взаимодействий В шестидесятых годах удалось объединить электромагнетизм и слабые взаимодействия. Салам, Глэшоу и Вайнберг построили теорию электрослабых взаимодействий. В 1979 году им была присуждена Нобелевская премия. Новая теория предсказала существование новых частиц, так называемых W- и Z-бозонов. Они отвечают за «перенос» слабого взаимодействия.
Эти бозоны были открыты на протонном суперсинхротроне в 1983 году. Казалось бы, каким образом можно объединить электромагнитные и слабые взаимодействия, если у первых радиус взаимодействия бесконечен действительно, мы видим свет — электромагнитное излучение — от удаленных галактик и других астрономических объектов , а у вторых он не превышает размеры атомного ядра? Оказывается, такая «несимметричность» связана с тем, что масса фотонов равна нулю, а масса W- и Z-бозонов очень большая, они примерно в 100 раз тяжелее протона. Нарушение так называемой электрослабой симметрии является важным свойством теории электрослабых взаимодействий этой симметрией обладают уравнения теории. В результате нарушения W- и Z-бозоны и некоторые другие частицы например, электроны приобретают массы. В рамках модели Янга — Миллса калибровочные бозоны нельзя сделать массивными, не разрушив калибровочную симметрию. Для нарушения электрослабой симметрии был придуман механизм Хиггса. Основная идея заключается в том, что все пространство пронизывает специальное хиггсовское поле, которое взаимодействует с остальными полями и нарушает симметрию, хотя уравнения теории остаются симметричными. Возмущения хиггсовского поля должны проявляться на эксперименте как новые частицы — хиггсовские бозоны.
Бозон Хиггса — очень тяжелая частица, тяжелее W- и Z-бозонов. Поэтому она пока не открыта экспериментально. Теория сильных взаимодействий, квантовая хромодинамика, тоже основана на уравнениях Янга — Миллса. Квантовая хромодинамика говорит, что многие элементарные частицы — мезоны и барионы например, протон — состоят из кварков. Однако изолированные кварки никогда не наблюдались это явление называется конфайнментом. Из-за сложности уравнений квантовой хромодинамики конфайнмент до сих пор не выведен из них напрямую. Кстати, решение уравнений Янга — Миллса и объяснение конфайнмента является одной из семи проблем тысячелетия, за которые институт Клэя назначил приз в миллион долларов. Квантовая хромодинамика также находит подтверждение в ускорительных экспериментах. Стандартная модель фундаментальных взаимодействий включает в себя модель электрослабых взаимодействий и квантовую хромодинамику.
Стандартная модель оказалась в состоянии объяснить практически все экспериментальные данные, полученные к настоящему времени в физике элементарных частиц. Суперсимметрия Идея суперсимметрии Перед тем, как перейти к обсуждению суперсимметрии, рассмотрим понятие спина. Спин — это собственный момент импульса, присущий каждой частице. Он измеряется в единицах постоянной Планка и бывает целым или полуцелым. Спин является исключительно квантовомеханическим свойством, его нельзя представить с классической точки зрения. Наивная попытка трактовать элементарные частицы как маленькие «шарики», а спин — как их вращение, противоречит специальной теории относительности, так как точки на поверхности шариков должны в таком случае двигаться быстрее света. Суперсимметрия — это симметрия между частицами с целым и полуцелым спином. Идея суперсимметрии была предложена в теоретических работах Гольфанда и Лихтмана, Волкова и Акулова, а также Весса и Зумино около 40 лет назад. Вкратце она заключается в построении теорий, уравнения которых не изменялись бы при преобразовании полей с целым спином в поля с полуцелым спином и наоборот.
С тех пор были написаны тысячи статей, суперсимметризации были подвергнуты все модели квантовой теории поля, был разработан новый математический аппарат, позволяющий строить суперсимметричные теории. Стандартную модель фундаментальных взаимодействий, рассмотренную ранее, тоже можно сделать суперсимметричной. При этом решается ряд ее проблем. Рассмотрим некоторые из них. Мотивировка суперсимметрии Несмотря на огромные успехи Стандартной модели в объяснении экспериментальных данных, она обладает рядом теоретических трудностей, которые не позволяют Стандартной модели быть окончательной теорией, описывающей наш мир. Оказывается, часть этих трудностей может быть преодолена при суперсимметричном расширении Стандартной модели. Объединение констант связи Гипотеза великого объединения, которой придерживаются многие физики, говорит, что различные фундаментальные взаимодействия есть проявления одного, более общего, взаимодействия. Это взаимодействие должно проявляться при огромных энергиях по различным оценкам, энергия великого объединения в 1013 или даже в 1016 раз превосходит энергию, доступную современным ускорителям элементарных частиц. При понижении энергии от объединенного взаимодействия «отщепляется» сначала гравитационное взаимодействие, потом сильное, а в завершение электрослабое взаимодействие распадается на слабое и электромагнитное.
Нейтралино — одна из гипотетических частиц, предсказываемых теориями, включающими суперсимметрию. Так как суперпартнёры Z-бозона, фотона и бозона Хиггса соответственно: зино, фотино и хиггсино имеют одинаковые квантовые числа, они смешиваются, образуя собственные состояния массового оператора, называемые нейтралино.
БАК не обнаружил никаких ранее неизвестных частиц, кроме бозона Хиггса, который, как уже предполагалось, существует как часть Стандартной модели , и, следовательно, не обнаружил никаких доказательств суперсимметричного расширения Стандартной модели. Косвенные методы включают поиск постоянного электрического дипольного момента EDM в известных частицах Стандартной модели, который может возникнуть, когда частица Стандартной модели взаимодействует с суперсимметричными частицами. Постоянный EDM в любой фундаментальной частице указывает на нарушение физики обращения времени и, следовательно, на нарушение CP-симметрии через теорему CPT. Такие эксперименты EDM также намного более масштабируемы, чем обычные ускорители частиц, и предлагают практическую альтернативу обнаружению физики, выходящей за рамки стандартной модели, поскольку эксперименты на ускорителях становятся все более дорогостоящими и сложными в обслуживании. Текущий лучший предел для EDM электрона уже достиг чувствительности, чтобы исключить так называемые «наивные» версии суперсимметричных расширений Стандартной модели. Текущий статус Отрицательные результаты экспериментов разочаровали многих физиков, которые считали суперсимметричные расширения Стандартной модели и других основанных на ней теорий наиболее многообещающими теориями для «новой» физики, выходящей за рамки Стандартной модели, и надеялись на признаки неожиданные результаты экспериментов. В частности, результат LHC кажется проблематичным для минимальной суперсимметричной стандартной модели, поскольку значение 125 ГэВ относительно велико для модели и может быть достигнуто только с помощью больших радиационных петлевых поправок от верхних скварков , которые многие теоретики считают «неестественными».
В ответ на так называемый «кризис естественности» в минимальной суперсимметричной стандартной модели некоторые исследователи отказались от естественности и изначальной мотивации решать проблему иерархии естественным образом с помощью суперсимметрии, в то время как другие исследователи перешли к другим суперсимметричным моделям, таким как суперсимметрия расщепления. Третьи перешли к теории струн в результате кризиса естественности. Бывший активный сторонник Михаил Шифман дошел до того, что призвал теоретическое сообщество искать новые идеи и признать, что суперсимметрия - неудавшаяся теория в физике элементарных частиц. Однако некоторые исследователи предположили, что этот кризис «естественности» был преждевременным, потому что различные расчеты были слишком оптимистичными относительно пределов масс, которые позволили бы суперсимметричное расширение Стандартной модели в качестве решения. Общая суперсимметрия Суперсимметрия появляется во многих связанных контекстах теоретической физики. Возможно иметь несколько суперсимметрий, а также суперсимметричные дополнительные измерения. Расширенная суперсимметрия Может существовать более одного вида преобразования суперсимметрии. Теории с более чем одним преобразованием суперсимметрии известны как расширенные суперсимметричные теории. Чем больше суперсимметрии в теории, тем более ограничены содержание поля и взаимодействия.
Обычно количество копий суперсимметрии является степенью 2 1, 2, 4, 8...
Исследователям удалось исключить варианты теории, согласно которым масса суперпартнера глюона — глюино — меньше 700 гигаэлектронвольт. Вместе с тем, многие ученые полагают, что отсутствие признаков суперсимметрии в данных коллайдера не является дурным предзнаменованием для этой теории, которая сама по себе состоит из сотен разных вариантов, зависящих от сочетаний десятков возможных параметров. Его коллега, итальянский физик Томмазо Дориго полагает, что есть основания для беспокойства. Суперсимметрия должна нарушаться, чтобы суперпартнеры стали тяжелее «обычных» частиц. Причем это нарушение должно происходить при той же энергии, при которой нарушается электрослабая симметрия, в точке, когда переносчики слабого взаимодействия — W- и Z-бозоны — становятся массивными, а переносчики электромагнитного — фотоны — остаются безмассовыми. Считалось, что такое нарушение происходит при энергиях около 250 гигаэлектронвольт. Однако результаты БАКа показывают, что «точка разрыва» находится выше этого значения.
Большой адронный коллайдер подорвал позиции теории суперсимметрии
Она основана на предположении, что существует гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие и наоборот. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории. Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии.
Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами. Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение. На сегодня эта гипотеза не была подтверждена экспериментально.
К примеру, сила тяжести, она же гравитация, заставляет объекты падать на землю и не позволяет отрываться от нее без приложения другой силы. Но, как утверждает международная команда физиков, в ходе исследований в рамках эксперимента Muon g-2, проводившихся в лаборатории городка Батавия рядом с Чикаго, они, возможно, обнаружили новую, пятую силу природы. Теоретики полагают, что она может быть каким-то образом связана с еще не открытой субатомной частицей. Насчет этой гипотетической частицы есть сразу несколько предположений. Это может быть так называемый лептокварк частица, переносящая информацию между кварками и лептонами или Z-бозон который сам для себя служит античастицей. Эксперимент был поставлен в Национальной ускорительной лаборатории имени Ферми Фермилаб в городе Батавия, штат Иллинойс, с целью изучения поведения субатомной частицы под названием мюон.
Два экспермента изменят наше понимание мира Еще в прошлом месяце физики, проводившие эксперимент на Большом адронном коллайдере в Европе, отмечали, что полученные результаты могут свидетельствовать о наличии новой частицы и силы. Долгое время в ЦЕРНе физики сталкивали протоны друг с другом, чтобы посмотреть, что произойдет после. Один из экспериментов измеряет, что происходит при столкновении частиц, называемых красными или нижними кварками. Стандартная модель предсказывает, что эти крушения красивых кварков должны приводить к равному количеству электронов и мюонов. Но этого не произошло. При этом электронов значительно больше, чем мюонов, сказал исследователь эксперимента Шелдон Стоун из Университета Сиракьюса. Что в итоге? Первый результат нового эксперимента полностью согласуется с результатами Брукхейвена, что усиливает свидетельство того, что предстоит открыть новую физику. Объединенные результаты Фермилаба и Брукхейвена показывают отличие от Стандартной модели при значении 4,2 сигмы или стандартных отклонений , что немного меньше, чем 5 сигм, которые необходимы ученым, чтобы заявить об открытии, но все же убедительное свидетельство новой физики.
Вероятность того, что результаты являются статистическими колебаниями, составляет примерно 1 из 40 000. И все же данные заставили физиков во всем мире задуматься, верно ли наше понимание мира. Такого не было со времен открытия бозона Хиггса, часто называемого «частицей Бога». Британский Совет по научно-техническому оборудованию уже объявил, что результаты экспериментов в США дают весомые подтверждения существованию доселе неизвестной субатомной частицы или новой силы. По словам исследователей, повторное проведение экспериментов — запланированное в обоих случаях — через год или два позволит достичь невероятно строгих статистических требований, предъявляемых физиками к открытию.
Стандартная парадигма для включения суперсимметрии в реалистичную теорию состоит в том, чтобы базовая динамика теории была суперсимметричной, но основное состояние теории не соблюдает симметрию, и суперсимметрия нарушается спонтанно. Нарушение суперсимметрии не может происходить постоянно частицами MSSM в том виде, в котором они появляются в настоящее время. Это означает, что есть новый сектор теории, ответственный за взлом. Единственное ограничение на этот новый сектор состоит в том, что он должен постоянно нарушать суперсимметрию и давать суперчастицам массу масштаба ТэВ. Есть много моделей, которые могут это сделать, и большинство их деталей не имеют значения.
Чтобы параметризовать соответствующие особенности нарушения суперсимметрии, в теорию добавляются произвольные члены с мягким нарушением суперсимметрии, которые временно нарушают SUSY явно, но никогда не могут возникнуть из полной теории нарушения суперсимметрии. Поиски и ограничения суперсимметрии SUSY-расширения стандартной модели ограничены множеством экспериментов, включая измерения низкоэнергетических наблюдаемых - например, аномального магнитного момента мюона в Фермилабе ; WMAP измерение плотности темной материи и эксперименты прямого обнаружения - например, ксенон -100 и LUX ; и экспериментами на коллайдере частиц, включая B-физику , феноменологию Хиггса и прямой поиск суперпартнеров частиц , на Большом электрон-позитронном коллайдере , Тэватроне и LHC. Фактически, ЦЕРН публично заявляет, что если суперсимметричная модель Стандартной модели «верна, суперсимметричные частицы должны появляться в столкновениях на LHC». Исторически сложилось так, что самые жесткие ограничения были связаны с прямым производством на коллайдерах. Позже LEP установил очень строгие ограничения, которые в 2006 году были расширены экспериментом D0 на Тэватроне. От 2003-2015, WMAP - х и Планка «ы темной материи измерение плотности сильно ограничены суперсимметричные расширения Стандартной модели, которые, если они объясняют темную материю, должно быть настроена для вызова конкретного механизма достаточно уменьшить Нейтралино плотность. Ожидалось, что нейтралино и слептоны будут довольно легкими, причем самый легкий нейтралино и самый легкий стау, скорее всего, будут обнаружены между 100 и 150 ГэВ. Первые запуски LHC превзошли существующие экспериментальные пределы для Большого электронно-позитронного коллайдера и Теватрона и частично исключили вышеупомянутые ожидаемые диапазоны. В 2011—2012 годах LHC обнаружил бозон Хиггса с массой около 125 ГэВ и связями с фермионами и бозонами, которые согласуются со Стандартной моделью. MSSM предсказывает, что масса легчайшего бозона Хиггса не должна быть намного больше массы Z-бозона и, в отсутствие точной настройки с масштабом нарушения суперсимметрии порядка 1 ТэВ , не должна превышать 135 ГэВ.
БАК не обнаружил никаких ранее неизвестных частиц, кроме бозона Хиггса, который, как уже предполагалось, существует как часть Стандартной модели , и, следовательно, не обнаружил никаких доказательств суперсимметричного расширения Стандартной модели. Косвенные методы включают поиск постоянного электрического дипольного момента EDM в известных частицах Стандартной модели, который может возникнуть, когда частица Стандартной модели взаимодействует с суперсимметричными частицами.
Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга.
Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и наоборот. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Эти физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории.
Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии. Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами. Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение.
На сегодня эта гипотеза не была подтверждена экспериментально. Для того чтобы фактически проверить ее, существует несколько возможностей.
СУПЕРСИММЕТРИЯ
На днях теория суперсимметрии получила еще один удар от Большого адронного коллайдера (БАК). суперсимметрия. Киральная симметрия (от греч. cheir — рука) — инвариантность уравнений квантовой теории поля относительно преобразований, перемешивающих состояния частиц как с различными.
Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
Telegram: Contact @rasofficial | Лектор рассказывает о теории суперструн, голографических чёрных дырах, столкновениях параллельных вселенных и о других интересных явлениях. |
Суперсимметрия в свете данных LHC: что делать дальше? | Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК. |
Теория суперструн популярным языком для чайников
Для завершения обоснования суперсимметрии природы инфраструктурной динамикой -позитрония в «условиях резонанса» остаётся напомнить о возможности представления. На днях теория суперсимметрии получила еще один удар от Большого адронного коллайдера (БАК). Напр., в теории С. происходит сокращение бесконечностей, которые присущи всем релятивистским теориям и представляют проблему, особенно в квантовой гравитации. Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на. Теории, включающие суперсимметрию, дают возможность решить несколько проблем, присущих Стандартной модели.
«Обнаруженные частицы Хиггса подтверждают теорию суперсимметрии»
Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы. Поскольку суперсимметрия является необходимым компонентом теории суперструн, любая обнаруженная суперсимметрия будет согласована с теорией суперструн. Теория суперсимметрии возникла в 1970-х годах как способ исправить существенные недостатки Стандартной модели физики высоких энергий. Теория суперсимметрии предполагает, что физические законы должны оставаться неизменными при перестановке бозонных и фермионных частиц. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и суперсимметрии выдвигалась многими.
СУПЕРСИММЕТРИЯ
Доказательство суперсимметрии полностью изменит наше понимание Вселенной | Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы. |
Стивен Хокинг надеялся, что M-теория объяснит Вселенную. Что это за теория? | Пикабу | С момента ввода в обиход теории суперсимметрии и до настоящего времени эта теория являлась лишь только неподтвержденной физической гипотезой. |
Суперсимметрия в свете данных LHC: что делать дальше?
Тем не менее этот вопрос был решен в начале 1980-х годов вместе с введением в теорию струн так называемой “суперсимметрии”. Суперсимметрия дает способ объединить электрослабое и сильные взаимодействия и в конечном счете создать единую теорию поля. Для завершения обоснования суперсимметрии природы инфраструктурной динамикой -позитрония в «условиях резонанса» остаётся напомнить о возможности представления. Для завершения обоснования суперсимметрии природы инфраструктурной динамикой -позитрония в «условиях резонанса» остаётся напомнить о возможности представления. Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория. Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН) на.