Хотя многочисленные исследования подтвердили отсутствие радиационных последствий аварии на Три-Майл-Айленд, отношение общественности к этой аварии и к самой атомной энергетике, сформированное СМИ, практически не изменилось. После аварии на Три-Майл-Айленд в США не было построенони одной новой АЭС. Крупнейшая авария в истории атомной энергетики США произошла 28 марта 1979 года на втором энергоблоке АЭС Три-Майл-Айленд по причине своевременно не обнаруженной утечки теплоносителя первого. Сейчас АЭС «Три-МАйл-Айленд» продолжает вырабатывать электроэнергию из первого блока и обеспечивает 800000 жителей дешёвой электроэнергией. Уроки аварии реактора pwr на АЭС три-майл-айленд в США в 1979 г.
Авария на Три-Майл-Айленд, хроника событий
Авария на Три-Майл-Айленд, хроника событий | Сотрудники станции в Три-Майл-Айленде не имели инструкций на случай аварии. |
Три-Майл-Айленд– крупнейшая авария на АЭС в США | Серьёзность аварии на АЭС Три-Майл-Айленд заключалась в том, что расплавилось урановое ядерное топливо. |
Авария на АЭС Три-Майл-Айленд в США. 28 марта 1979. Хронология событий
По сегодняшним оценкам ученых, от аварии серьезно пострадали десятки, а то и сотни тысяч людей. Фукусима не была столь же разрушительной — во всяком случае, если отталкиваться от того, что нам известно. В результате события никто не погиб непосредственно от взрывов, однако около 1600 человек погибли от стресса в основном пожилые люди после аварии. Воздействие на окружающую среду также было менее серьезным. Исследование, проведенное в 2013 году в Университете штата Колорадо, показало, что станция Фукусима выпустила около 520 петабеккерелей радиоактивного материала по сравнению с 5300 петабеккерелями, выпущенными Чернобыльской АЭС.
В то время как чернобыльская радиация распространилась по всей Европе, большая часть радиации Фукусимы попала в Тихий океан. Корхилл говорит, что на площадке в Фукусиме до сих пор генерируются миллионы галлонов радиоактивной воды, которая в настоящее время хранится в резервуарах, однако команда по очистке «очень хорошо справляется». Три-Майл-Айленд был не таким разрушительным Чернобыль и Фукусима находятся в отдельной категории от Три-Майл-Айленда, который, по словам Корхилл, был «совершенно другим, не столь ужасного масштаба». Этот инцидент произошел 28 марта 1979 года, когда сбой системы вызвал частичное разрушение реактора на АЭС в Три-Майл-Айленде, недалеко от Гаррисберга, штат Пенсильвания.
По сообщениями Всемирной ядерной ассоциации, в результате этого события не было случаев смерти, травм или неблагоприятных последствий для здоровья, хотя некоторые местные жители оспаривали эти выводы.
NRC chairman Joseph Hendrie and commissioner Victor Gilinsky [59] initially viewed the accident as a "cause for concern but not alarm". However, the NRC faced the same problems in obtaining accurate information as the state, and was further hampered by being organizationally ill-prepared to deal with emergencies, as it lacked a clear command structure and did not have the authority either to tell the utility what to do or to order an evacuation of the local area. A group of workers took manual readings from the thermocouples and obtained a sample of primary loop water. Seven hours into the emergency, new water was pumped into the primary loop and the backup relief valve was opened to reduce pressure so that the loop could be filled with water. After 16 hours the primary loop pumps were turned on once again, and the core temperature began to fall. A large part of the core had melted , and the system was still dangerously radioactive. In order to do this, someone needed to draw a boron concentration sample in order to ensure there was enough of it in the primary system to shut down the reactor entirely. Richard Dubiel, the shift supervisor, asked Pete Velez, the radiation protection foreman for Unit 2, to join him. Velez would monitor airborne radiation levels and ensure that no overexposure would occur for either of them.
However, Houser had lost his pocket dosimeter while taking measurements. The two spent five minutes in the building, then withdrew. A hydrogen explosion might not only breach the pressure vessel but, depending on its magnitude, might compromise the integrity of the containment building leading to a large-scale release of radioactive material. However, it was determined that there was no oxygen present in the pressure vessel, a prerequisite for hydrogen to burn or explode. Immediate steps were taken to reduce the hydrogen bubble and, by the following day, it was significantly smaller. Over the next week, steam and hydrogen were removed from the reactor using a catalytic recombiner and by venting directly into the open air. Fission products were released into the reactor coolant. The auxiliary building was outside the containment boundary. This was evidenced by the radiation alarms that eventually sounded. However, since very little of the fission products released were solids at room temperature, very little radiological contamination was reported in the environment.
According to the Rogovin report, the vast majority of the radioisotopes released were noble gases xenon and krypton resulting in an average dose of 1. Continuous monitoring at 11 stations was not established until April 1, and was expanded to 31 stations on April 3.
Тем не менее, эта авария оказала огромное влияние на ядерную энергетику в США.
После серии массовых протестных акций, прокатившихся по всем Соединенным Штатам в одном только Вашингтоне в мае 1979 года вышли на улицы 65 тысяч человек развитие отрасли было фактически заморожено. В течение следующих 20 лет после аварии в США не была введена в строй ни одна новая атомная электростанция.
Открылся импульсный предохранительный клапан на системе компенсации давления, сбрасывающий пар в специальную ёмкость, барботёр. Давление стало повышаться гораздо медленнее. Высокое давление в первом контуре, примерно 17 МПа, послужило причиной остановки реактора действием аварийной защиты через 9 секунд после исходного события. Теплоноситель в контуре перестал нагреваться, средняя температура упала, и объём воды стал уменьшаться.
Рост давления резко перешёл в его падение. В этот момент проявилась ещё одна техническая неисправность — предохранительный клапан должен был закрыться по нижней уставке срабатывания, но этого не произошло и сброс теплоносителя первого контура продолжался. Индикатор на пульте оператора при этом показывал, что клапан закрыт, хотя, на самом деле, лампочка сигнализировала лишь о том, что с клапана было снято питание. Других средств контроля не было предусмотрено. Утечка теплоносителя продолжалась почти 2,5 часа, пока не был закрыт отсечной клапан. Поэтому на несколько минут теплоотвод из первого контура практически полностью прекратился.
Они отключили один, а затем и второй аварийный насос из трёх работающих, а на оставшемся вручную уменьшили расход более чем в 2 раза, такого количества воды было недостаточно для компенсации течи. Причиной такого решения послужили показания уровнемера компенсатора объёма, из которых следовало, что вода подаётся в первый контур быстрее, чем выходит через неисправное предохранительное устройство. Управляющий реактором персонал был обучен предотвращать заполнение водой компенсатора давления не «вставать на жёсткий контур» , так как при этом затрудняется регулирование давления в контуре, что опасно с точки зрения его целостности, поэтому они отключили «лишние» по их мнению насосы высокого давления. Как оказалось впоследствии, уровнемер давал неправильные показания. На самом деле в это время происходило дальнейшее падение давления в первом контуре из-за некомпенсированной течи. Когда давление упало до точки насыщения, в активной зоне начали образовываться пузырьки пара, которые начали вытеснять из неё воду в компенсатор давления, тем самым ещё больше увеличивая ложные показания уровнемера.
Всё ещё обеспокоенные необходимостью не допустить переполнения компенсатора, операторы начали сливать воду из него ещё и через дренажную линию первого контура. Персонал понял, что аварийная питательная вода не поступает в парогенераторы, задвижки открыли и началось её поступление.
СМИ вспомнили аварию на американской АЭС
Авария на Три-Майл-Айленд, хроника событий | Однако, авария на Три-Майл-Айленд вызвала, в первую очередь, широкий информационный резонанс и, получив пятый уровень опасности по шкале ИНЕС, ускорила развитие антиядерной кампании в США, которая привела к застою в атомной энергетике страны на десятилетия. |
Авария на АЭС Три-Майл-Айленд — Википедия с видео // WIKI 2 | Аварии на атомных станциях случались не только в СССР. Здесь и сейчас, мы расскажем о самом крупном инциденте в США. |
Авария на атомной станции. США 1979 год | Авария на АЭС Три-Майл-Айленд усилила уже существовавший в атомной отрасли кризис. |
26 апреля — День памяти жертв радиационных аварий и катастроф
Авария на АЭС Три-Майл-Айленд – крупнейшая авария в истории коммерческой атомной энергетики США, произошедшая 28 марта 1979 года на втором энергоблоке станции. Причина ав. АЭС Три-Майл-Айленд, которой суждено было стать местом самой серьёзной аварии в американской атомной отрасли, была заложена в 1968 году, а спустя шесть лет первый её энергоблок был пущен в эксплуатацию. После аварии на АЭС Три-Майл-Айленд в США было принято решение больше не строить атомных электростанций, что привело к застою в американской атомной энергетике. Авария на АЭС «Три-Майл Айленд» в США заставила западный мир переоценить свое отношение к ядерной и радиационной опасности с точки зрения обеспечения ее безопасной эксплуатации. Объект: АЭС «Три-Майл-Айленд», США Дата: март 1979 года Что произошло: в результате серии сбоев в работе оборудования и ошибок операторов на одном из энергоблоков произошло расплавление активной зоны реактора.
Авария на Три-Майл-Айленде
События, произошедшие здесь, оставили значительный отпечаток на развитии ядерной энергетики и безопасности ядерных установок. На протяжении десятилетий Три-Майл-Айленд служил символом обсуждения проблем ядерной безопасности и вызвал изменения в политике регулирования атомной энергетики. Разбирательства после инцидента помогли определить новые стандарты и протоколы безопасности для ядерных электростанций, направленных на предотвращение подобных ситуаций в будущем. Исследование и понимание событий на Три-Майл-Айленд также подчеркивают важность не только технологических аспектов ядерной энергетики, но и неотъемлемой необходимости в обучении персонала, соблюдении строгих стандартов безопасности и внимательном мониторинге работы ядерных установок. История и развитие В начале XX века Три-Майл-Айленд привлек внимание ученых и инженеров своим стратегическим расположением. В 1948 году на острове была построена первая атомная лаборатория, которая заложила основы для будущих исследований в области ядерной физики.
В 1962 году на Три-Майл-Айленде началось строительство ядерной электростанции, предназначенной для обеспечения энергией окрестных регионов. Завершение строительства и запуск станции в 1974 году сделали остров центром внимания в области энергетики. Однако в 1979 году произошел тяжелый ядерный инцидент. Инцидент на Три-Майл-Айлендской ядерной электростанции вызвал обеспокоенность общественности и привел к изменениям в законодательстве и нормах безопасности в ядерной энергетике. После инцидента правительство приняло решение провести обширный анализ безопасности ядерных электростанций.
Это привело к ужесточению норм и стандартов в области ядерной безопасности, что содействовало более тщательному контролю за ядерными установками. В последующие десятилетия научные исследования на Три-Майл-Айленде стали сосредотачиваться не только на энергетике, но и на экологически устойчивом развитии и новых технологиях. Остров превратился в центр инноваций и экологического исследования. С приходом новых технологий и усиленного внимания к экологии началась программа по восстановлению природы на острове. Создание заповедников и охраняемых природных зон способствовало сохранению уникальной флоры и фауны региона.
В настоящее время Три-Майл-Айленд продолжает развиваться как центр инноваций и экологически устойчивого развития.
Проанализированы тысячи страниц документации на АЭС. Расследование не ограничилось самой станцией. Отдельное внимание было уделено работе комиссии по ядерному регулированию США, также была оценена готовность различных государственных служб к радиационным авариям. Выводы были сделаны из анализа реакции СМИ и достоверности предоставляемой ими информации. По заказу комиссий были проведены детальные научно-технические экспертизы и исследования в областях ядерной физики, теплогидравлики, эргономики и др.
Собранный одной только президентской комиссией материал занял более 90 погонных метров библиотечных полок [94]. Интересно, что многие необходимые для анализа произошедшего точные параметры состояния реакторной установки были получены из записей специального диагностического прибора, который лишь случайно не был демонтирован после окончания пусконаладочных работ на станции [95]. Основное заключение о причинах и последствиях аварии [ править править код ] Комиссия президента США весьма критично сформулировала свои выводы. По мнению комиссии, для предотвращения таких серьёзных аварий, как на Три-Майл-Айленд, необходимы фундаментальные изменения в организации, процедурах и практиках, и, сверх этого, в положении атомного регулятора, а также всей атомной отрасли. Корень проблем с безопасностью комиссия связала в первую очередь с людьми, а не с техникой, хотя последняя и играет свою немаловажную роль. Под «людьми» здесь понимаются не конкретные личности, а вся «система» которая производит, эксплуатирует и контролирует атомные станции.
Комиссия констатировала, что существует множество структурных проблем внутри организаций, недостатков в принятых практиках и проблем с коммуникацией между ключевыми лицами и организациями [96]. Исходными событиями аварии стали отказы оборудования, однако сами по себе эти отказы не могли привести к столь серьёзным последствиям. Несомненно, тяжесть аварии определили ошибочные действия операторов, в частности им ставилось в вину отключение системы аварийного охлаждения. Комиссия президента США, не отрицая этого факта, попыталась найти фундаментальные причины произошедшего и проанализировала мотивы действий персонала. Основными факторами, приведшими к неадекватным действиям операторов, были названы [97] : Слабая тренировка персонала, недостаточная для управления станцией в аварийных ситуациях. Противоречивая эксплуатационная документация.
Опыт предыдущей эксплуатации не был доведён до операторов. Комиссия констатировала отсутствие «замкнутого цикла» при эксплуатации АЭС: ранее имевшие место инциденты, связанные с безопасностью, хоть и были известны и отчасти изучались, но их анализ не доводился до логического завершения, а полученный в результате анализа опыт не передавался лицам и организациям обязанным его учитывать. Так, факты ошибочного отключения персоналом системы аварийного охлаждения реактора инцидент на АЭС Дэвис-Бесс 24 сентября 1977 года были известны производителю реакторной установки, и за 13 месяцев до аварии на Три-Майл-Айленд в Babcock and Wilcox велась внутренняя переписка о необходимости доведения до операторов АЭС чётких рекомендаций по обращению с этой системой [98]. Однако ни одной новой инструкции выпущено не было [99]. Несмотря на серьёзное загрязнение самой станции, радиационные последствия для населения и окружающей среды оказались крайне незначительными. Практически все радиоактивные вещества остались в пределах АЭС [100].
Основным вредным фактором для населения был назван психологический стресс [101] , вызванный противоречивой информацией из СМИ и рекомендацией губернатора штата о добровольной эвакуации. Человеко-машинный интерфейс [ править править код ] Свой вклад в дезориентацию управляющего персонала внесли недостатки блочного щита управления БЩУ. В целях расследования была на контрактной основе привлечена компания Essex Corporation, участвовавшая в разработке панелей управления космических челноков. Essex выявила серьёзные проблемы с человеко-машинным интерфейсом на АЭС. Замечания касались как логики работы, так и физического расположения приборов и ключей на панелях щита. Так, в первые минуты аварии на БЩУ сработала аварийная сигнализация более чем по ста параметрам [99] , которые никак не были ранжированы по степени значимости.
Принтер, печатавший диагностические данные, мог выдавать лишь одну строку в четыре секунды и в итоге отстал на два часа от реальных событий [102]. Во многих случаях ключи управления и индикаторы не были расположены в какой-либо логической последовательности или сгруппированы. Для оценки некоторых критических параметров необходимо было обходить основные панели вокруг и осматривать шкафы управления позади них. Essex Corporation также провела беглую оценку ещё нескольких АЭС и заключила, что проблемы с человеко-машинным интерфейсом имеются не только на Три-Майл-Айленд и, соответственно, могут быть свойственны отрасли в целом [103]. Анализ безопасности АЭС [ править править код ] Базовые принципы оценки безопасности АЭС, спроектированных в 1970-е годы, подверглись критике. Как правило, при анализе безопасности этих станций не уделялось внимания последствиям небольших отказов и ошибочных действий персонала.
Считалось, что достаточно учесть лишь наиболее тяжёлые аварийные ситуации, например, связанные с разрушением трубопроводов максимального диаметра. При этом подразумевалось, что действия персонала могут лишь улучшить ситуацию, но никак не наоборот. Однако тяжёлые аварии быстротечны и требуют реакции систем автоматики, тогда как мелкие неисправности более зависимы от действий персонала, к тому же вероятность возникновения вторых существенно выше [104]. Наиболее вероятно, это произошло в результате растекания топливо-содержащего расплава из активной зоны реактора. Ситуацию спасло то, что днище реактора было засыпано слоем обломков твэлов ещё до стекания расплава вниз, а также включением и стабильной работой системы аварийного охлаждения вскоре после этого события. Эти факторы способствовали охлаждению корпуса реактора и сохранению его прочности [105].
Необходимость работы этой системы непосредственно в течение аварии не вполне очевидна [108] , однако затем её использование стало неизбежным с целью удаления водорода из объёма первого контура [109]. В проекте АЭС «Три-Майл-Айленд» была предусмотрена автоматическая изоляция герметичной оболочки путём перекрытия всех пересекающих её трубопроводов. Однако, во-первых, изоляция срабатывала лишь по сигналу превышения давления под оболочкой, независимо от показаний приборов радиационного контроля гермооболочка была автоматически изолирована только через 4 часа после начала аварии, когда теплоноситель уже был сильно загрязнён. Во-вторых, изоляция герметичной оболочки была вручную отключена операторами, так как, по их мнению, работа системы продувки-подпитки была нужна для управления реакторной установкой [110]. Радиоактивные материалы, прежде всего газы ксенон -133 и иод-131 , через многочисленные протечки в системах продувки-подпитки и газоочистки несущественные при нормальной эксплуатации попали в помещения вспомогательного реакторного здания, где были захвачены системой вентиляции и выброшены через вентиляционную трубу. Так как система вентиляции оснащена специальными фильтрами-адсорберами, в атмосферу поступило только небольшое количество радиоактивного йода [111] , тогда как радиоактивные благородные газы практически не были отфильтрованы [106].
Выбросы иода-131 могли бы быть в пять раз меньше, если бы на АЭС вовремя менялись фильтрующие элементы картриджи в фильтрах были заменены только после аварии в течение апреля 1979 года [112]. Утечек загрязнённых радиоактивными материалами жидкостей за пределы зданий АЭС в сколь-либо значимых количествах обнаружено не было [107]. Подсчитанная за период с 28 марта до 8 мая активность выбросов радиоактивного йода составила около 15 Ки. Эти данные были получены при анализе картриджей фильтров-адсорберов, которые периодически заменялись в течение указанного времени. Утечки радиоактивного йода после 8 мая не могли быть сколь-либо значимы ввиду его малого периода полураспада 8 суток [113]. Количество выброшенных радиоактивных благородных газов составило около 2,37 миллиона Кюри преимущественно 133Xe [106].
В течение нескольких недель после аварии контроль над радиационной обстановкой вокруг станции был усилен. Основной объём радиоактивного выброса пришёлся на первые несколько дней после аварии [115]. Начиная с 28 марта были собраны сотни образцов воздуха, воды, молока, растений и почвы.
Когда шесть лет спустя удалось войти в ограждение, камера, введенная в резервуар, показала, что значительная часть топлива расплавилась, но не прошла через резервуар, кориум расслоен на дне резервуара.
Первые минуты аварии Панель управления реактором ТМИ-2 с надписями, которые могут скрывать световые индикаторы. Эти ярлыки были обвинены в том, что насосы системы аварийного охлаждения не могли работать из-за того, что клапан оставался закрытым из-за халатного отношения оператора, и что ему потребовалось 8 минут, чтобы заметить эту аномалию и открыть клапан. Однако эта неисправность мгновенно изменила термодинамические условия в парогенераторе , уменьшив его способность охлаждать первый контур , давление в котором сразу же увеличилось из-за повышения температуры. Этот клапан должен был закрываться, как только давление упало, но, несмотря на команду автоматического закрытия, этого не произошло.
Усугубляющим фактором является то, что сигнальные лампы в диспетчерской показали, что клапан находится в закрытом положении сигнальная лампа фактически указала на то, что был отдан приказ на закрытие, но не на то, что маневр был выполнен. Следовательно, давление в первичном контуре продолжало снижаться, который опорожнялся через этот клапан, который оставался открытым потеря второго защитного барьера. Однако по мере падения давления в емкости и в первом контуре образовывались «пустоты» фактически водяной пар.
Эту неполадку операторы обнаружили лишь через 2,5 часа. Барботер переполнился, расположенные на нем предохранительные мембраны лопнули, а кипяток и пар стали поступать в помещения. Сработала система аварийного охлаждения реактора. Из-за не закрывшегося клапана через барботер вода начала поступать и в гермооболочку. Датчики показывали, что в реакторе слишком много воды, хотя на самом деле он был практически пуст. Операторы, опираясь на показания, отключили все аварийные насосы, закачивающие воду в первый контур. Лишь на следующий день уже новая смена операторов разобралась в ситуации.
Сотрудники станции закрыли электромагнитный клапан компенсатора давления и смогли запустить принудительное охлаждение активной зоны. Но к этому времени топливо расплавилось.
СМИ вспомнили аварию на американской АЭС
Сейчас АЭС «Три-МАйл-Айленд» продолжает вырабатывать электроэнергию из первого блока и обеспечивает 800000 жителей дешёвой электроэнергией. 28 марта 1979 года в США на АЭС «Три-Майл-Айленд» в штате Пенсильвания произошло повреждение активной зоны реактора. Авария на Три-Майл-Айленд произошла на АЭС 5-го уровня.
Крупные аварии на атомных электростанциях: до Чернобыля и после
Объект: АЭС «Три-Майл-Айленд», США Дата: март 1979 года Что произошло: в результате серии сбоев в работе оборудования и ошибок операторов на одном из энергоблоков произошло расплавление активной зоны реактора. Авария на Три-Майл-Айленде произошла в США и получила «5 уровень». Авария на Три-Майл-Айленде произошла в результате частичного расплавления реактора энергоблока 2 (ТМИ-2) в Пенсильвании. Последний энергоблок атомной станции Три-Майл-Айленд остановят 30 сентября 2019 г. Хотя многочисленные исследования подтвердили отсутствие радиационных последствий аварии на Три-Майл-Айленд, отношение общественности к этой аварии и к самой атомной энергетике, сформированное СМИ, практически не изменилось. Но авария на Три-Майл-Айленд фактически остановила расширение отрасли, что заставило американцев обратить внимание на развитие альтернативных источников и изменить свою международную энергетическую политику.
28 марта 32 года назад произошла авария на АЭС Три-Майл-Айленд
Часть радиоактивных веществ были подняты взрывом на высоту 1-2 км и образовали облако, состоящее из жидких и твёрдых аэрозолей. В течение 10-11 часов радиоактивные вещества выпали на протяжении 300—350 км в северо-восточном направлении от места взрыва по направлению ветра. Более 23 тыс. На этой территории находилось 217 населенных пунктов с более 280 тысячами жителей, ближе всех к эпицентру катастрофы было несколько заводов комбината «Маяк», военный городок и колония заключенных.
Они проработают на станции до 2060 года, на них же возложена ответственность за постепенную утилизацию опасных материалов. Понравился пост? Есть что сказать?
Присоединяйтесь: Поделиться.
Первым делом все подумали о неисправность оборудования реактора, осматривать которое отправились двое рабочих станции. Когда они добрались до самого реактора, то к своему ужасу увидели, что он был охвачен огнем. Поначалу, рабочие не использовали воды, потому что операторы станции высказывали опасения, что огонь настолько горяч, что вода будет будет распадаться мгновенно, а как известно водород в воде способен вызвать взрыв. Все испробованные средства не помогали, и тогда сотрудники станции открыли шланги. Слава Богу, вода смогла остановить огонь безо всякого взрыва. По некоторым оценкам, в Великобритании из-за Уиндскейла рак развился у 200 человек, половина из них умерли. Точное число жертв неизвестно, поскольку британские власти пытались скрыть эту катастрофу. Премьер-министр Гарольд Макмиллан опасался, что этот инцидент мог подорвать общественную поддержку ядерным проектам.
Проблема подсчета жертв этой катастрофы усугубляется еще тем, что излучение от Уиндскейла распространилось на сотни км по всей северной Европе. Уиндскейл 4 место. Рейтинг: 5 авария с риском для окружающей среды До Чернобыльской аварии, случившейся через семь лет, авария на АЭС «Три-Майл Айленд» считалась крупнейшей в истории мировой ядерной энергетики и до сих пор считается самой тяжёлой ядерной аварией в США. Блок No 2 на АЭС "Тримайл-Айленд", как оказалось, не был оснащен дополнительной системой обеспечения безопасности, хотя подобные системы на некоторых блоках этой АЭС имеются. Несмотря на то, что ядерное топливо частично расплавилось, оно не прожгло корпус реактора и радиоактивные вещества, в основном, остались внутри. По разным оценкам, радиоактивность благородных газов, выброшенных в атмосферу составила от 2,5 до 13 миллионов кюри , однако выброс опасных нуклидов, таких как йод-131, был незначительным. Территория станции также была загрязнена радиоактивной водой, вытекшей из первого контура. Было решено, что в эвакуации населения, проживавшего рядом со станцией нет необходимости, однако власти посоветовали покинуть 8-километровую зону беременным женщинам и детям дошкольного возраста.
Вы пишете о 1976 годе. Что же было тремя годами раньше? Привело ли это событие к диверсии, саботажу? Но человеческий фактор, несомненен.
Авария на Три-Майл-Айленд, хроника событий
В результате то, что должно было стать простым испытанием турбогенератора в режиме выбега что предусматривало использование кинетической энергии, запасённой во вращающемся роторе турбогенератора, для выработки электроэнергии, необходимой для питания циркуляционных насосов в аварийной ситуации , превратилось в катастрофу. Они имеют отношение к реактивности реактора — к количеству нейтронов с определённой скоростью температурой нейтронов , присутствующих в некий момент времени в нейтронном эффективном сечении используемого в реакторе топлива. В случае с ураном-235 необходимы так называемые тепловые нейтроны, но в ходе цепной ядерной реакции производится множество более быстрых нейтронов их называют «быстрыми нейтронами». Быстрые нейтроны могут быть замедлены до состояния тепловых нейтронов с использованием замедлителей нейтронов.
Это повышает реактивность реактора. Для снижения реактивности реактора используются поглотители нейтронов , которые могут быть представлены водой и управляющими стержнями, которые часто делают из карбида бора. В большинстве легководных реакторов обычная вода используется и для замедления нейтронов, и для поглощения нейтронов.
А это значит, что если реактивность реактора возрастает, повышается скорость закипания воды, что увеличивает количество пара. Появление пара означает ухудшение возможностей замедления нейтронов, а это, в свою очередь, приводит к уменьшению количества имеющихся тепловых нейтронов, что создаёт цикл отрицательной обратной связи. Это — то, что называется отрицательным паровым коэффициентом реактивности.
Собственно говоря, в РБМК графит тоже использовался в роли замедлителя нейтронов. Хотя это позволяло применять природный уран, это ещё и означало то, что РБМК работал с положительным паровым коэффициентом реактивности. Когда вода в контуре охлаждения реактора закипала и в ней возникали пузырьки, её возможности по поглощению нейтронов ухудшались, а эффект замедления нейтронов не менялся, что создавало возможность возникновения бесконтрольной ядерной реакции.
Эта неоднозначная особенность была признана приемлемой, так как она позволяла реакторам РБМК выдавать тепловую мощность, значительно превышающую ту, которую обеспечивали западные реакторы того времени. Предполагалось, что у хорошо обученного персонала не будет проблем с управлением реактором РБМК. Как уже было бесчисленное количество раз доказано, например, когда затонул Титаник, менеджеры и маркетологи регулярно берут верх над инженерами.
Любая катастрофа, которой можно было бы избежать за счёт правильного обслуживания техники и тщательного обучения персонала, становится неизбежной в условиях отсутствия культуры безопасности. Но, прямо перед тем, как было запланировано начать эксперимент, решено было оставить реактор в работающем состоянии ещё на 11 часов, так как энергосеть нуждалась в энергии, вырабатываемой энергоблоком. Эта задержка привела к тому, что персонал дневной смены, который и должен был проводить эксперимент, сменился сотрудниками вечерней смены.
Им, как результат, из-за отключённой САОР, пришлось вручную регулировать вентили гидравлической системы реактора. Когда на службу пришли работники ночной смены, ожидающие, что им придётся иметь дело с остановленным и остывающим реактором, им сообщили о том, что эксперимент должны проводить они. Это означало, что мощность реактора нужно было снизить, перейти с полной мощности к 700 — 1000 МВт тепловых , а потом — прекратить подачу пара на турбину.
Схема контуров охлаждения РБМК У реактора РБМК есть одна особенность, которая выражается в том, что он крайне нестабилен и сложен в управлении на низких уровнях мощности. Учитывая положительный паровой коэффициент реактивности, несовершенство конструкции управляющих стержней и образование, в качестве побочного продукта работы реактора, ксенона-135, поглощающего много нейтронов, мощность реактора упала менее чем до 100 МВт. Это привело к тому, что операторы начали убирать всё больше и больше управляющих стержней включая стержни, имеющие отношение к автоматической системе управления в попытке увеличить реактивность реактора.
Открылся импульсный предохранительный клапан на системе компенсации давления, сбрасывающий пар в специальную ёмкость - барботёр. Давление в первом контуре стало повышаться гораздо медленнее. Высокое давление в первом контуре, примерно 17 МПа, послужило причиной остановки реактора действием аварийной защиты через 9 секунд после исходного события. Теплоноситель в контуре перестал нагреваться, средняя температура упала, и объём воды стал уменьшаться. Рост давления резко перешёл в его падение. В этот момент проявилась ещё одна техническая неисправность — предохранительный клапан должен был закрыться по нижней уставке срабатывания, но этого не произошло и сброс теплоносителя первого контура продолжался. Индикатор на пульте оператора при этом показывал, что клапан закрыт, хотя, на самом деле, лампочка сигнализировала лишь о том, что с клапана было снято питание. Других средств контроля не было предусмотрено. Утечка теплоносителя продолжалась почти 2,5 часа, пока не был закрыт отсечной клапан. В результате ряда ошибок персонала, в том числе связанных с неправильными показаниями уровнемера компенсатора давления, циркуляция в первом контуре была настолько нарушена, что начали сильно вибрировать два из четырёх главных циркуляционных насоса, вследствие смешения в контуре воды и пара.
Операторы выключили насосы, чтобы предотвратить их разрушение или повреждение трубопроводов первого контура. Затем были выключены оставшиеся два насоса по той же причине. Принудительная циркуляция в первом контуре прекратилась, а возникновению естественной циркуляции воспрепятствовал парогазовый пузырь под крышкой реактора.
Если уж говорим про крупные аварии на АЭС, то про все, причем спокойно, без привнесения политических страстей.
По причине накопившегося в реакторе газопарового пузыря, естественная циркуляция также была нарушена. В результате была остановлена течь. Однако, разрушение активной зоны реактора продолжилось. Температура достигла 2 200 градусов по Цельсию. Началось окисление оболочек ТВЭЛов, что привело их к последующему разрушению и стеканию вниз реактора. Тем не менее, временно активная зона реактора была накрыта. Была предпринята попытка поднять давление и запустить циркуляционные насосы, но неудачная. В целом это было неудачно. Аккумуляторы работали недолго и воды в реактор поступило недостаточное количество. С другой стороны падение давления мешало запуску циркуляционных насосов. В активной зоне началось возгорание водорода. Этого хватило, чтобы залить реактор несколькими десятками кубометров воды, сконденсировавшей пар. В результате были запущены остальные циркуляционные насосы. Водород под крышкой реактора был постепенно удален. Холодный останов реактора был завершен только спустя месяц.
ТОП-5 катастроф на АЭС планеты
Провокации Киева, или Люди, будьте бдительны! | Авария на Три-Майл вызвала широкий резонанс в американском обществе, где и так нарастал скепсис по отношению к отрасли. |
Американская ядерная катастрофа 1979 года | В 1979-ом название «Три-Майл-Айленд» не сходило с заголовков газет – знаменитая авария на одноименной АЭС привела к тяжелейшим последствиям. |
26 апреля — День памяти жертв радиационных аварий и катастроф | Энергоблок №1 АЭС Три-Майл-Айленд во время аварии не пострадал и продолжает свою работу и сейчас. |
Авария на Три-Майл-Айленде
Авария на Три-Майл-Айленде произошла в США и получила «5 уровень». АЭС Три-Майл-Айленд, которой суждено было стать местом самой серьёзной аварии в американской атомной отрасли, была заложена в 1968 году, а спустя шесть лет первый её энергоблок был пущен в эксплуатацию. А ведь были ещё аварии на Три-Майл-Айленд, Фукусиме и множестве других, не столь известных объектов, но при этом также разрушительные и смертоносные. По информации издания, 28 марта 1979 года в четыре утра по местному времени питательный насос второго контура остановился во втором энергоблоке атомной электростанции «Три-Майл-Айленд» в американском штате Пенсильвания. Авария на Три-Майл-Айленде произошла в результате частичного расплавления реактора энергоблока 2 (ТМИ-2) в Пенсильвании. Авария на АЭС «Три-Майл Айленд» произошла через несколько дней после выхода в прокат кинофильма «Китайский синдром», сюжет которого построен вокруг расследования проблем с надёжностью атомной электростанции.
День в истории: 28 марта
Это означало поступление пара в помещение гермооболочки реактора. Насосы были выключены, так как не было понимания о большом количестве воды в баке. Было замечено снижение поглотителя — борной кислоты. А нейтронный поток наоборот стал усиливаться, хотя регулирующие стержни были полностью погружены. Все эти факторы указывали на появление сильной течи внутри реактора. Операторы приняли решение ввести бор для снижения критичности реактора. В целях сохранения целостности их и трубопроводов, насосы отключили. По причине накопившегося в реакторе газопарового пузыря, естественная циркуляция также была нарушена. В результате была остановлена течь. Однако, разрушение активной зоны реактора продолжилось.
Температура достигла 2 200 градусов по Цельсию. Началось окисление оболочек ТВЭЛов, что привело их к последующему разрушению и стеканию вниз реактора. Тем не менее, временно активная зона реактора была накрыта. Была предпринята попытка поднять давление и запустить циркуляционные насосы, но неудачная. В целом это было неудачно.
Помещения АЭС подверглись значительному радиоактивному загрязнению, однако радиационные последствия для окружающей среды оказались несущественными. Эта ядерная авария выпустила 13 миллионов кюри радиоактивных газов в атмосферу и вызвала потерю 2400 долларов США. Десять судебных дел были также поданы в различные органы власти в отношении этой аварии, и им потребовалось 15 долгих лет для восстановления. К счастью жертв и пострадавших не оказалось. Владелец дилер-свалки в Гоянии нашёл на ней деталь из установки для радиотерапии, ранее похищенную и выкинутую мародерами. Он принес находку домой, чтобы показать всем эту интересную штуковину — светящийся голубым светом порошок. Мелкие фрагменты источника брали в руки, натирали ими кожу, передавали другим людям в качестве подарков, и в результате началось распространение радиоактивного загрязнения. В течение более чем двух недель с порошкообразным хлоридом цезия контактировали всё новые люди, и никто из них не знал о связанной с ним опасности. Окружающая среда была серьезно загрязнены. Многие здания пришлось снести. В результате заражения погибло четверо человек. Радиоактивное загрязнение вызвало 33 смерти вследствие рака. Авария соответствует 5-му уровню по международной шкале ядерных событий INES и является крупнейшей в истории ядерной индустрии Великобритании. Огонь выпустил приблизительно 20 000 кюри йода-131, а также 594 кюри цезия-137 и 24 000 кюри ксенона-133 среди других радионуклидов. Серия взрывов водородного газа швырнула четырехтонный купол газохранилища на четыре фута по воздуху, где он застрял в надстройке. Тысячи курий продуктов деления были выброшены в атмосферу, и миллион галлонов радиоактивно загрязненной воды пришлось откачивать из подвала и «удалять» в мелкие окопы недалеко от реки Оттава. Ядро реактора NRX нельзя обеззараживать; его нужно было похоронить как радиоактивные отходы. Радиационные аварии в россии. Эта авария была особо засекреченная и узнали о ней только в начале 90, после произошедшей аварии в Чернобыле. Изначально, строительство завода, было ошибкой. В погоне за американскими успешными атомными технологиями, СССР решили тоже не отставать. И в 1945 году было принято решение о строительстве завода по производству атомной бомбы. С 1948 года завод начал функционировать и проводить опыты с радиоактивными веществами. В связи с плохой осведомленностью об опасности радиоактивных веществ и об их хранении и утилизации в период 1949-1951 гг радиоактивные отходы сбрасывались в ближайшую реку Теча. Позже, в силу достигнутого опыта и знаний, отходы стали сбрасываться в замкнутый водоем - озеро Карачай. В более позднее время озеро было законсервировано. Более опасные радиоактивные отходы хранились в специальных "банках". Технология строительства банки происходила так: В котловане диаметром 20 метров, на глубине 10 метров, создается бетонная конструкция в форме стакана с толщиной стен около метра. Монумент ликвидаторам последствия радиационных катастроф. Авария В результате неисправной системы охлаждения, работники поздно заметили, что одна из "банок" сильно разогрелась. В результате произошел взрыв такой мощности, что даже 160 тонная крышка отлетела на 25 метров. В результате взрыва соседние "банки" тоже треснули, а в радиусе трех километров в округе выбило стекла. В атмосферу было выброшено 20 млн кюри загрязненных веществ. В результате загрязненного облака прошел радиоактивный дождь - в последствии эти территории называются "Восточно-Уральский радиоактивный след" ВУРС. Это зона 300 км в длину, в которой проживали 270000 человек. Неверная информация В ночь катастрофы многие жители видели свечение в небе, которое ошибочно приняли за "Северное сияние". Последствия аварии Многие люди пострадали в результате радиоактивных осадков, особенно дети в возрасте от 2 до 7 лет.
Работники рассказывали, что во время отжига заметили, что внезапно температура в реакторе начала расти вместо того, чтобы падать. Пожар сначала боялись тушить водой, опасаясь, что вода начнет быстро распадаться, а водород приведет к взрыву. Но когда ничего не помогало — сотрудники открыли краны с водой. Взрыва, к счастью, не было, однако вследствие аварии облучение получили около 300 человек. Но на тот момент Озерск был засекреченным городом, а Кыштым находился рядом с ним. От взрыва пострадало около 270 тыс. Жители 23 населенных пунктов были и вовсе отселены, а их дома и скот пришлось уничтожить, чтобы избежать распространения радиации. Сейчас на территории завода находится Восточно-Уральский заповедник. Она оценивается как катастрофа наивысшего уровня по шкале INES. Причина радиационной катастрофы — очень сильное землетрясение и цунами, которым не смогла противостоять АЭС. В результате перестала работать система охлаждения и началось расплавление активной зоны реактора. Высокая температура и концентрация пара стали причиной взрыва водорода на первом энергоблоке. На следующий день случился взрыв на третьем энергоблоке, потом — на втором и четвертом. В результате череды взрывов на АЭС «Фукусима-1» возникла утечка радиации, как в воздухе, так и в воде. Поэтому было принято решение эвакуировать людей со станции и из 20-километровой зоны. На АЭС осталось только 50 сотрудников. Вследствие цунами и аварии на атомной электростанции погибло около 18,5 тысяч людей, которых уже 8 лет подряд в день трагедии вспоминают японцы, собираясь на побережье 11 марта. Читайте далее: Кислота разъедает Армянск: последствия катастрофы Последствия аварий на атомных электростанциях Ученые подсчитали, что для полной ликвидации последствий каждой аварии на атомных электростанциях потребуется от 30 до 40 лет. И хотя люди хотят вернуться в свои дома в зонах отчуждения, они вынуждены держаться от них подальше. Ведь родной дом еще не один десяток лет может угрожать их здоровью и жизни.
В значительной степени нервный срыв у целой страны был спровоцирован губернаторским распоряжением о добровольной эвакуации, не отмененном даже после заверений Комиссии по ядерному регулированию о том, что опасность миновала и в эвакуации нет нужды к этому не прислушались почти 200 тысяч человек. Но руководство и Комиссии, и штата, и страны в целом намеренно сделали ставку на максимальную открытость для прессы. А спустя четыре дня после аварии на Три-Майл-Айленд, ряд помещений которой подверглись существенному радиоактивному загрязнению, АЭС лично посетил президент Джимми Картер. Там он долго и многозначительно смотрел на приборы. Все это, впрочем, не помогло ему переизбраться. Наоборот, авария в Пенсильвании добила его шансы на второй срок. Диссидент во главе государства Картер — нетипичный человек для Белого дома. По сути, он правозащитник в кресле президента. Слишком левый и либеральный для своей эпохи деятель, избрание которого стало возможным только из-за кризиса доверия к власти на фоне разоблачения Никсона и «Уотергейта». Картер был близок к простому народу, много занимался проблемами бедных и меньшинств в те годы болезненно актуальных , верил в возможности мира во всем мире, отказался от поддержки «своих сукиных сынов» в Латинской Америке именно благодаря этому в Никарагуа пал диктатор Сомоса и к власти пришел Ортега и от военных вторжений туда же. Джимми Картер во время визита на АЭС Три-Майл-Айленд Впоследствии он активно занимался международной миротворческой деятельностью вручение ему Нобелевской премии мира отнюдь не постыдно, в отличие от случая Обамы , критиковал состояние американской демократии и по сей день обладает большим авторитетом в Демократической партии, несмотря на крайне неудачное президентство и разгромное поражение на выборах от Рейгана. Да, экономика страны сбоила. А в остальном прогрессивному Картеру просто не повезло: на его каденцию пришлась цепь событий, по совокупности ввергнувших Америку в депрессию.