Почему металлические опилки, притянувшиеся к одному полюсу магнита, расходятся своими концами?
Подносим магнит к яблоку: ищем железо внутри
Почему кусок железа притягивается к магниту | Они притягиваются к магниту достаточно сильно — так, что притяжение ощущается. |
Расплавленное железо против магнита: увлекательный эксперимент | Почему железо притягивается к магниту Почему магнит не притягивает органические вещества? На самом деле, взаимодействие магнита с веществами имеет гораздо. |
Притягивает ли магнит железо? | Например, длинный железный гвоздь начинает притягивать к себе другие железные предметы, которых не может притянуть магнит, который намагнитил гвоздь. |
Все о магнитах - интересные факты, самые популярные вопросы и ответы » Электрик Инфо | Микроатомы обладают магнитным эффектом и состоят в полном равновесии, но магниты своим притяжением влияют на некоторые виды металлов, таких как: железо, никель, кобальт. |
Какие металлы магнитятся? | Почему магнит притягивает железо, а не алюминий? Железо притягивается к магнитам из-за его высокопроводящей природы. |
Магнит и магнитное поле: почему притягивается только металл? .
Этот элемент создает на поверхности металла оксидную пленку, которая препятствует окислению металла. Благодаря наличию легирующих компонентов, нержавейка относится к цветмету, соответственно, цена такого лома значительно выше. Подтверждением этому выступают данные в прайс-листе, который опубликован на сайте компании «Интерлом». Получить такое вознаграждение не так просто, поскольку, в отличие от традиционного цветмета, некоторые типы нержавейки сохраняют магнетические свойства. Например, ферритные и мартенситные нержавеющие стали сохраняют магнитные свойства. Аустенитная нержавейка, напротив, никак не проявляет ферромагнитных свойств. Визуально отличить их не представляется возможным, поэтому сдатчику приходится учитывать происхождение лома. Например, если речь идет о деталях, которые работали при повышенной влажности в условиях химически агрессивных сред, то, скорее всего, они сделаны из нержавейки, даже если металл магнитится. Бронза Наиболее ценной на вторичном рынке считается двухкомпонентная оловянистая бронза, которая состоит из олова и меди, она никак не проявляет магнитных свойств.
Более дешевый аналог — безоловянная бронза, в которой в качестве замены олова выступает алюминий и другие легирующие металлы. Такой сплав имеет обозначение БрАЖ, наличие в сплаве железа придает способность примагничиваться. Сила притяжения зависит от соотношения основных компонентов в сплаве. Лучше всего магнитится бронза марки БрАЖН -10-4-4.
Когда эти металлы подвергаются особому процессу под воздействием сильного магнитного поля, они выравнивают свою внутреннюю структуру в одном направлении. Электрические токи образуют постоянный магнит, который трудно размагнитить. Когда металлы пересекают температуру Кюри, они становятся постоянными магнитами. Если есть необходимость размагнитить насыщенный магнит, мы должны приложить определенные магнитные поля.
Сила этого магнитного поля зависит от коэрцитивной силы материала. Твердые постоянные магниты, как и кобальт, обладают высокой коэрцитивной силой. Для мягкого магнита коэрцитивная сила мала. Силу магнита можно измерить по его магнитному моменту. Другой метод заключается в измерении полного магнитного потока, создаваемого им. Электромагниты созданы руками человека. Электромагнит представляет собой катушку из проволоки, которая ведет себя как магнит, когда через нее пропускают электрический ток. Однако он перестает быть магнитом, как только прекращается ток.
Эта катушка часто наматывается на сердечник, чтобы усилить генерируемое магнитное поле. Сердечник изготовлен из мягкого ферромагнитного материала, такого как нержавеющая сталь. Эти электромагниты обладают всеми магнитными свойствами. Причина, по которой магниты имеют магнитное поле Магниты — это материалы, которые притягивают к себе другие магнитные материалы или полностью их отталкивают. Магнетизм возникает в металле из-за движения в нем электрических зарядов. Мы знаем, что вещества состоят из атомов. У каждого атома есть несколько электронов; это частицы, которые несут электрические заряды. Движение электронов генерирует электрический ток, в результате чего каждый отдельный электрон действует как магнит на микроскопическом уровне.
Это электромагниты. Магнитное поле — это периферийная область магнита, обладающая магнитной силой. Магнетизм — это сила, с которой магниты притягиваются или отталкиваются друг от друга. Направление этих электронов выровнено в случае стержневого магнита. В большинстве немагнитных металлов одинаковое число электронов обычно вращается в противоположных направлениях.
Например, видимый свет - это волна. Некоторого физического поля, в котором произошло возмущение волновой природы - фотона - вполне себе материального объекта, только материя эта особенная, живущая по своим законам.
Не может же быть волны, без того, что эту волну образует? Вот на рубеже 19-20 веков на этот вопрос окончательно ответил Эйнштейн, заявив, что свет является частицей, подчиняющейся волновой природе, и что не существует никакой иной субстанции эфира в корой эти возмущения и происходят.
Поскольку у них нет сопротивляющихся полей, у этих электронов есть орбитальный магнитный момент. Магнитный момент — это вектор, который имеет свою величина и направленность. В таких металлах как железо орбитальный магнитный момент заставляет соседние атомы выстраиваться вдоль северо-южных силовых линий. Железо, как и другие ферромагнитные материалы, имеют кристаллическую структуру. Когда они остывают после процесса литья, группы атомов с параллельной орбиты вращения выстраиваются в линию внутри кристаллической структуры. Так образуются магнитные домены. Вы, возможно, заметили, что материалы, из которых получаются хорошие магниты, также способны притягивать сами магниты. Это происходит потому, что магниты притягивают материалы с непарными электронами, которые вращаются в одном направлении.
Иными словами, качество, которое превращает металл в магнит также притягивает металл к магнитам. Многие другие элементы - диамагнитны — они состоят из неспаренных атомов, которые создают магнитное поле, слегка отталкивающее магнит. Несколько материалы совсем не взаимодействуют с магнитами. Измерение магнитного поля Измерить магнитное поле можно с помощью специальных инструментов , например, флюксметра. Описать его можно несколькими способами: -- Магнитные силовые линии измеряются в веберах ВБ. В электромагнитных системах этот поток сравнивают с током. Сила поля, или плотность потока, измеряется в Тесла T или в единице измерения гаусс Гс. Один тесла равен 10 000 гаусс. Напряженность поля можно также измерить в веберах на квадратный метр. Мифы о магните С магнитами мы сталкиваемся целый день.
Они есть, например, в компьютерах: жесткий диск записывают всю информацию при помощи магнита, а также магниты используют во многих компьютерных мониторах. Магниты также являются неотъемлемой частью телевизоров с электронно-лучевой трубкой, акустических колонок , микрофонов, генераторов, трансформаторов, электромоторов, кассет, компасов и автомобильных спидометров. Магниты обладают удивительными свойствами. Они могут индуктировать ток в проводах и заставить электродвигатель вращаться. Достаточно сильное магнитное поле может поднять мелкие объекты или даже небольших животных. Поезда на магнитной подвеске развивают большую скорость только за счет магнитного толчка. Согласно Wired magazine, некоторые люди даже вставляют крошечные неодимовые магниты в пальцы для того, чтобы определять электромагнитные поля. Приборы отображения магнитного резонанса, работающие за счет магнитного поля, позволяют докторам исследовать внутренние органы пациентов. Также доктора используют электромагнитное импульсное поле для того, чтобы посмотреть правильно ли срастаются сломанные кости после удара. Подобное электромагнитное поле используется астронавтами, которые долгое время находятся в невесомости для того, чтобы предотвратить растяжение мышц и ломки костей.
Магниты также применяются в ветеринарной практики для лечения животных. Например, коровы часто страдают травматическим ретикулоперикардитисом, эта сложная болезнь, развивающаяся у этих животных, которые часто вместе с кормом заглатывают мелкие металлические предметы, которые могут повредить стенки желудка, легкие или сердце животного. Поэтому, часто перед кормлением коров опытные фермеры с помощью магнита очищают их пищу от мелких несъедобных деталей. Однако, если корова уже проглотила вредные металлы, то магнит дают ей вместе с едой. Длинные, тонкие алнико магниты, также называемые «коровьими магнитами», притягивают все металлы и не позволяют им причинить вред желудку коровы. Такие магниты действительно помогают вылечить больное животное, но все же лучше следить за тем, чтобы в коровью еду не попадало вредных элементов. Что касается людей, то им противопоказано глотать магниты, поскольку те, попав в разные части организма, все равно будут притягиваться, что может привести к блокированию кровяного потока и разрушению мягких тканей. Поэтому, когда человек глотает магнит, ему необходима операция. Некоторые люди считают, что магнитная терапия — это будущее медицины, поскольку это один из наиболее простых, но эффективных методов лечения многих болезней. Многие люди уже на практике убедились в действии магнитного поля.
Магнитные браслеты, ожерелья, подушки и многие другие подобные изделия лучше таблеток лечат самые разнообразные заболевания — от артрита и до рака. Некоторые врачи также считают, что стакан намагниченной воды в качестве профилактики может избавить от появления большинства неприятных недугов. В Америке ежегодно на магнитную терапию расходуется около 500 миллионов долларов, а люди во всем мире на такое лечение в среднем тратят 5 миллиардов долларов. Сторонники магнитной терапии по-разному трактуют полезность этого метода лечения. Одни говорят, что магнит способен притягивать железо, содержащееся в гемоглобине в крови, тем самым улучшая кровообращение. Другие уверяют, что магнитное поле каким-то образом меняет структуру соседних клеток. Но в то же время проведенные научные исследования не подтвердили, что использование статических магнитов может избавить человека от боли или вылечить болезнь. Некоторые сторонники также предлагают всем людям использовать магниты для очищения воды в домах. Как говорят сами производители, большие магниты могут очистить жесткую воду за счет того, что удалят из нее все вредные ферромагнитные сплавы. Однако, ученые говорят, что жесткой воду делают не ферромагниты.
Более того два года использования магнитов на практике не показали никаких изменений в составе воды. Но, даже не смотря на то, что магниты вряд ли обладают лечебным действием, они все равно стоят изучения. Кто знает, возможно, в будущем мы все же раскроем полезные свойства магнитов. В электромагните магнитное поле порождается изменением электрического поля, либо за счёт движения проводника с постоянным током, либо за счёт протекания по проводнику переменного тока. В любом случае, при отключении тока магнитный эффект пропадает. Совсем другое дело - постоянный магнит. Никакого тока здесь и в помине нет. А магнитное поле есть. Строгое объяснение принципа действия постоянного магнита невозможно без привлечения аппарата квантовой физики. Если же объяснять «на пальцах», то наиболее адекватное объяснение звучит следующим образом.
Каждый электрон сам по себе является магнитом, обладает магнитным моментом - это его неотъемлемое физическое свойство. Если атомы, которым «принадлежат» электроны, в веществе ориентированы хаотично, то магнитные моменты электронов друг друга компенсируют и вещество магнитных свойств не проявляет. Если по какой-то причине атомы хотя бы какая-то их часть ориентируются в каком-то одном направлении, то магнитные свойства электронов складываются и вещество становится магнитом. Получается, что сильный магнит - это такой магнит, в котором много атомов ориентированы в одном направлении, и чем меньше атомов имеют одинаковую ориентацию, тем слабее получается магнит. Понятно также, что жидкости и газы магнитами в принципе быть не могут - ведь сохранять ориентацию атомы могут только в твёрдых телах. Со временем магниты теряют свои свойства, но это происходит под действием внешних причин: внешнего магнитного поля, высокой температуры , механических повреждений. Притягивая какое-то тело, магнит затрачивает часть своей энергии на это притяжение и становится чуть-чуть менее сильным. Но когда вы отрываете это тело от магнита, он полностью возвращает себе потраченную энергию. Таким образом, суммарная механическая работа постоянного магнита остаётся нулевой, и теоретически магнит может сохранять свои свойства сколь угодно долгое время.
Движение электронов и магнитное поле
- Можно ли найти цветные металлы с помощью поискового магнита
- Вы можете написать и разместить на портале статью.
- Почему магниты притягивают железо?
- Как сэкономить деньги, нервы и здоровье на магнитах | Пикабу
- 3 разных типа магнитов и их применение |
- Почему кусок железа притягивается к магниту
Подносим магнит к яблоку: ищем железо внутри
Сила притяжения не такая, как в случае с углеродистой сталью, чтобы почувствовать притяжение потребуется неодимовый магнит. Два магнита будут притягиваться друг к другу, если соединить их разноименные полюса (Северный с Южным). Поэтому железо магнититься к магниту почти с такой же силой, как магнит к магниту. Узнайте, почему магнит притягивает железо. Краткое объяснение, почему магнит притягивает железо. Блог магазина Магнитов на Коломенской. Хотя два исследователя работали и параллельно, почему-то именно Сагава единолично считается изобретателем неодимового магнита. Магнит притягивает только железо.
ПОЧЕМУ МАГНИТ ПРИТЯГИВАЕТ ЖЕЛЕЗО
Благодаря возможности воздействовать на атомы, ориентируя их в одном направлении, и сложить магнитные поля, железные предметы могут намагничиваться. Почему не все материалы могут магнититься? Взаимодействие магнита происходит практически со всеми веществами, при этом вариантов этих самых взаимодействий намного больше, чем известные нам «притягивание» и «отталкивание». Специфическое строение некоторых металлов и сплавов позволяет им достаточно мощно притягиваться к магниту. Другие металлы и вещества тоже имеют это свойство, однако оно во много раз слабее. Рассмотреть притяжение в данный момент будет крайне сложно, для этого потребуется сильнейшее магнитное поле, которое невозможно создать в домашних условиях. Итак, если свойство притягивания к магниту есть у всех веществ, то почему именно металлические предметы сильно магнитятся, и этот процесс можно увидеть? Дело в том, что все зависит от внешнего строения атомов и их взаимосвязи именно в металле.
Вы не проснетесь. Предположим теперь, что магниты могут каким-то образом, вопреки научным доказательствам, действительно влиять на железо и усиливать поток крови в кровеносных сосудах. Вместо того, чтобы тянуть железо и, следовательно, кровь, прямо к магнитам, давайте притворимся, что магнитное поле толкает железо в сторону, скажем направо. Оно не притягивает железо как обычные магниты , но отклоняет его в определенном направлении. Этот дополнительный «нажим» ускоряет поток крови и увеличивает микроциркуляцию. К сожалению, даже эта идея не имеет смысла, по следующей причине. Артерии доставляют кровь от сердца к клеткам, а вены действуют как раз наоборот — из клеток обратно в сердце. Поскольку кровоток является сбалансированным и равным в обоих направлениях, как может статическое магнитное поле одновременно усиливать кровоток в двух противоположных направлениях? Как магниты могут увеличить кровоток в одном направлении в артерии и в противоположном направлении в соседней и параллельной вене? Любой положительный эффект в одном направлении будет отрицательным в другом.
Если бы кровоток ускорялся в артерии, он замедлялся бы в соседней вене. Помните, что магниты будут влиять на все железо во всей вашей крови точно так же. Магниты не могут отличить артерии от вен. Если они «толкают» железо в вашей крови, скажем, направо, это будет происходить в каждом кровеносном сосуде, даже если сердце пытается протолкнуть кровь в противоположном направлении. В результате возникнет дисбаланс, когда сердце попытается прокачать больше крови, чем получает. И помните, что вся ваша кровь имеет железо, поэтому магниты не только влияют на кровоток в проблемных областях, но и во всем теле. Сердце постоянно пытается прокачать кровь до мозга и вниз до ваших ног одновременно. Если бы магниты могли каким-то образом увеличить этот поток крови, увеличение было бы в одном направлении, вверх или вниз, но не в обоих. Если бы мозг «перекровился», пострадали бы ноги и наоборот. Магнитное поле, создаваемое постоянными магнитами, является статическим.
Оно не меняется; магнитик увеличил бы кровоток только в одном направлении. Конечно, некоторые магнитные аппараты чередуют северный и южный полюса, но это приведет к тому, что чередующиеся магниты будут «толкать» кровь одинаково в противоположных направлениях. Другими словами, их эффекты компенсируются друг другом. Чистое влияние на кровоток будет равным нулю.
Ведь если подносить железки под магнит, они будут им притягиваться - на их поднятие будет тратится энергия - вес на высоту подъема. Так как этот процесс может происходить годами и десятилетиями то получается что магнит выдает практически неограниченое количество энергии но откуда магнит ее черпает не понятно.
Количество этой энергии очевидно выше той что затрачена на его намагничиывание, да и магнит не теряет своей намагничености в этом процессе. Кто разъяснит? Примагниченые железки можно убирать - это очевидно не передаст энергии магниту, для тех кто сомневается можно предложить магнит в ванне с растором растворяющем железо, а магнит в защитной оболочке - тогда железки убирать не надо он буду сами расвторяться. Я не говорю про энергию затрачиваемую экспериментатором на различные действия, а только о той энергии которая затрачивается на притяжение магнитом железки без посторонней помощи. Последний раз редактировалось avr123. Re: Откуда берется почти бесконечная энергия в магнте?
Как и с гравитацией всё так же с законами сохранения - просто потенциальная энергия меньше после притяжения магнитом железки и всё. Как и при падении железяки на пол. Откуда берется энергия на совершение этой работы? А при падении того же шарика миллион раз? Откуда берется энергия? А если убрать предыдущие - считай вернули энергию avr123.
Причины и механизм возниконовения гравитации не известен.
В этом районе были открыты залежи магнетита. Применение Магниты нашли широкое применение в разных областях деятельности человека. В строительстве используются магнитные фиксаторы или намагниченная вода. В нефтепереработке магнитные элементы препятствуют образованию отложений на трубопроводах, в медицине используются для производства приборов МРТ. В транспорте нашли применение в качестве запорных устройств, преобразователей и датчиков.
Магнетизм, как научное явление, вызывается перемещением электронов. Вещества и предметы состоят из мельчайших атомов, эта физическая единица представляет собой ядро и движущиеся вокруг него электроны. Поскольку электроны имеют отрицательные заряды, то создают магнитные поля. Вращение электрона по часовой стрелке направляет магнитное поле наверх, а вращение против часовой стрелки — вниз. Если количество разнонаправленных полей совпадает, то магнитные поля отсутствуют.
Почему магнит притягивает? Описание, фото и видео
Почему иногда магнит притягивает монеты? — современные монеты чаще всего делаются из ферромагнетиков с покрытием. В этой статье мы разберемся, что такое магнит, как он работает и почему притягивает именно железо. Почему магнит притягивает? притягивать, «любить» железо.
Глава 34. Магнетизм. Опыт и теория
Поля двух магнитов вблизи могут взаимодействовать между собой, и это взаимодействие проявляется как притяжение или отталкивание магнитов. Какое железо притягивает магнит. Почему магнит притягивает железо.
Какие металлы, кроме железа, притягиваются магнитом?
Это предметы, у которых есть магнитные свойства. Магнит не притягивает бумагу, резину, дерево или пластик. Неверно, что магнит притягивает какой-либо металл. Например, алюминиевые банки являются металлическими, но не содержат железа, поэтому не обладают магнитными свойствами. Сталь — это металл, изготовленный из железа, поэтому стальные предметы, такие как инструменты и столовое серебро, обычно обладают магнитными свойствами. Магнитные полюса Два конца магнита известны как северный полюс N и южный полюс S. Отталкиваются одни и те же полюса - притягиваются противоположные полюса. Если вы попытаетесь соединить два магнита с одинаковыми полюсами, направленными друг к другу, магниты будут отталкиваться друг от друга. Что такое магнитная сила?
Магнитная сила — это сила, создаваемая электронами и возникающая между электрически заряженными частицами. Применяемая магнитами к магнитным объектам, эта сила создает и контролирует магнетизм и электричество.
Но если нам удастся сориентировать домены в одну сторону, чтобы силы магнитных полей сложились, вот тогда берегитесь! Стальная полоса станет мощным магнитом и притянет любой железный предмет от гвоздя до холодильника. Интересный факт: минерал магнитный железняк — естественный магнит.
Но все же большинство магнитов изготовляют искусственно. Как делают магниты Какая сила может заставить атомы построиться в стройную линию, чтобы получился один большой домен? Поместите стальную полосу в сильное магнитное поле. Постепенно один за другим все домены повернутся в направление приложенного магнитного поля. По мере поворота домены будут втягивать в это движение другие атомы, увеличиваясь в размерах, буквально разбухая.
Потом одинаково ориентированные домены соединятся, и вот, пожалуйста, стальная полоса превратилась в магнит. Вы можете продемонстрировать это своим товарищам с помощью обыкновенного стального гвоздя. Положите гвоздь в магнитное поле большого подковообразного магнита. Подержите его там несколько минут, пока домены гвоздя не выстроятся в нужном направлении.
Так, в Китае кусочки магнитных материалов использовались для создания компаса. В 1269 году была написана «Книга о магните» Петра Перегрина, а в 1600 году Уильям Гильберт написал трактат «О магните», описывающий основные свойства магнитов и анализирующий магнетизм Земли.
Сегодня железо, включая его магнитные свойства, находит множество самых разных технологических применений. Железо — не единственное магнитное вещество, можно отметить никель и кобальт, заинтересовавшие человечество много позже и также широко использующиеся в настоящее время. Несмотря на столь долгий срок изучения магнетизма, это явление по-прежнему порождает новые вопросы. В быту мы ощущаем магнетизм как притяжение или отталкивание между телами. В физике же под магнетизмом понимается способность тела сохранять остаточную намагниченность то есть свое собственное магнитное поле в отсутствие магнитного поля внешнего. А уже это собственное поле может воздействовать на другие магнитные тела.
Две концепции магнетизма Общим свойством большинства магнитных веществ является то, что их магнетизм обусловлен атомами так называемых переходных металлов, содержащих d -электроны индекс d относится к определенному виду симметрии электронных состояний атома. Переходные металлы — это не только железо, кобальт и никель, их несколько десятков. Локализованная вверху внизу картины ферромагнетизма С появлением понятия спина электрона и соответствующего ему магнитного момента были предложены две различные квантово-механические картины магнетизма — локализованная и зонная. Локализованная картина, сформулированная Гейзенбергом, предполагала, что электроны в кристалле не перескакивают с одного атома на соседний, однако между электронами с соседних атомов есть обменное взаимодействие. Это сугубо квантовый эффект, обусловленный разницей энергий параллельного и антипараллельного упорядочения спинов. Зонная картина Стонера, напротив, подразумевала возможность движения электронов, а их взаимодействие в основном осуществлялось в пределах одного атома.
Продолжать многократные эксперименты с магнитом стал физик из Франции Доминик Франсуа Араго, взяв за основу трубку из стекла, перемотанную металлической нитью, посередине этого предмета он установил железный стержень. С помощью электричества, находившееся внутри железо начинало резко намагничиваться, из-за этого стали прилипать различные ключи, но стоило отключить разряд, и ключи сразу падали на пол. Исходя из происходящего физик из Франции Андре Ампер, разработал точное описание всего происходящего в этом эксперименте. Первые шаги к объединенной теории Ситуация изменилась лишь в конце 1990-х — начале 2000-х годов с появлением и развитием так называемой динамической теории среднего поля. Эта теория приближенно сводит сложную проблему движения электронов в кристалле к рассмотрению изменения их состояния со временем на одном выбранном атоме.
Теория позволила описать переходы металл — изолятор в ряде веществ, что, естественно, привело к вопросу о ее способности объяснить магнетизм переходных металлов. Читайте также: Самостоятельная утилизация строительного мусора — куда выбросить В частности, железо и никель были исследованы в рамках этой теории Михаилом Кацнельсоном, Александром Лихтенштейном совместно с американским физиком Габриэлем Котляром в 2001 году. Ими впервые из полностью микроскопического то есть исходящего из первопринципных уравнений расчета в рамках зонной картины было получено линейное поведение обратной восприимчивости с температурой закон Кюри — Вейсса , которое обычно интерпретируется как указание на присутствие локальных моментов. Также ими была найдена слабая зависимость локальной восприимчивости от времени на оси мнимого времени, которое проще изучать с теоретической точки зрения , свидетельствующая о наличии локальных моментов. В какой-то момент казалось, что проблема железа и других переходных металлов почти решена.
Энергетические зоны В атоме уровни энергии электрона дискретны. В кристаллическом твердом теле же образуются целые диапазоны разрешенных энергий разрешенные зоны и запрещенных энергий запрещенные зоны. Несколько упрощая, можно сказать, что разрешенные зоны формируются из атомных уровней при объединении атомов в кристалл, а оставшееся место занято запрещенными зонами. Как магниты притягиваются друг к другу Каждый магнит, который попадается нам в жизни, обладает рядом характерных черт. Главной особенностью является способность притягиваться к предметам из металла или стали.
Второе качество заключается в наличии полюсов.
Расплавленное железо против магнита: увлекательный эксперимент
Мы можем назвать объект постоянным магнитом, когда он намагничивается, а затем создает собственное постоянное магнитное поле. Очень распространенным повседневным магнитом, который мы все видели, является дверной магнит холодильника, который обычно изготавливается из порошкового феррита ржавчина железа. Иногда их изготавливают из алюминия. Еще один распространенный использование магнитов вокруг нас электродвигатели. Материалы, которые могут намагничиваться, называются ферромагнитными материалами. Эти металлы являются магнитными и включают никель, железо, кобальт, медь и сплав железа. Вы можете включить большинство других металлов в эту категорию.
Некоторые сплавы редкоземельных элементов и оксида железа могут быть природными постоянными магнитами. Все металлы магнитны по своей природе. Мы знаем, что ферромагнитные материалы притягиваются к другим магнитам. Возле мягких магнитов или диамагнитных материалов может быть внешнее магнитное поле. Ферромагнетики — это мягкие магниты, такие как отожженное железо. Их легко намагнитить, но они не могут оставаться намагниченными в течение длительного времени.
Твердые магниты — это материалы, которые могут намагничиваться и оставаться намагниченными в течение длительного времени. Постоянные магниты — это жесткие магниты. Когда эти металлы подвергаются особому процессу под воздействием сильного магнитного поля, они выравнивают свою внутреннюю структуру в одном направлении. Электрические токи образуют постоянный магнит, который трудно размагнитить. Когда металлы пересекают температуру Кюри, они становятся постоянными магнитами. Если есть необходимость размагнитить насыщенный магнит, мы должны приложить определенные магнитные поля.
Сила этого магнитного поля зависит от коэрцитивной силы материала. Твердые постоянные магниты, как и кобальт, обладают высокой коэрцитивной силой. Для мягкого магнита коэрцитивная сила мала. Силу магнита можно измерить по его магнитному моменту. Другой метод заключается в измерении полного магнитного потока, создаваемого им. Электромагниты созданы руками человека.
Когда Эрстед ставил провод вертикально, то магнитная стрелка совсем не указывала на него, а располагалась как бы по касательной к окружности, центром которой является проводник. При этом стрелки, которые находились в диаметрально противоположных точках окружности, были ориентированы противоположно друг другу рис. Магнитное поле проводника с током Это натолкнуло Эрстеда на идею о том, что действие проводника с током на магнитные стрелки носит вихревой характер, так как именно вихрям свойственно действовать в противоположных направлениях на двух концах одного диаметра. Из опытов Эрстеда вытекают следующие выводы: Электричество и магнетизм тесно связаны друг с другом. Электрический ток оказывает магнитное действие. Вокруг проводника с током возникают магнитные силы, или, говоря современным языком, возникает магнитное поле.
Магнитное поле вокруг проводника с током носит вихревой характер. Опыт Эрстеда доказывал не только связь между электричеством и магнетизмом. Электрические и магнитные силы больше не рассматривались по отдельности, а были объединены так называемыми электромагнитными явлениями. Список литературы Соколович Ю. Физика: справочник с примерами решения задач. Мякишев Г.
Физика 11 кл. Кудрявцев П. Курс истории физики.
Другая неподтвержденная гипотеза: минерал назван так в честь региона Магнесия, находившегося в Малой Азии. В этом районе были открыты залежи магнетита. Почему магниты имеют свойство притягиваться и отталкиваться Магнетизм, как научное явление, вызывается перемещением электронов. Вещества и предметы состоят из мельчайших атомов, эта физическая единица представляет собой ядро и движущиеся вокруг него электроны. Поскольку электроны имеют отрицательные заряды, то создают магнитные поля.
Вращение электрона по часовой стрелке направляет магнитное поле наверх, а вращение против часовой стрелки — вниз. Если количество разнонаправленных полей совпадает, то магнитные поля отсутствуют. Если баланс нарушается, и электроны начинают вращение в одном направлении, возникает магнитное поле большой силы. Именно этот процесс и происходит в минерале под названием магнетит. У магнита два полюса: северный и южный. Если два магнита расположить вблизи, они начинают направлять магнитные поля строго в одном направлении, другими словами, усиливать друг друга. Южный полюс первого магнита стремится к северному полюсу второго. Если вблизи оказываются пара северных или пара южных полюсов магнитов, их магнитные поля направляются в разные стороны, и магниты отталкиваются. В структуре железа происходят приблизительно такие же процессы, электроны производят вращение в одну сторону.
Если рядом появляется магнит, железо воспринимает его как близкий по структуре материал и стремится соединить свои магнитные поля с полями минерала. Железо само становится магнитом, находясь рядом с минералом. Пока железо и магнит притянуты друг к другу, их магнитные поля остаются в параллельном направлении. Как только они разъединяются, магнитные свойства железа исчезают. Например, если у вас есть частица, движущаяся вперед в направлении x со скоростьюv, то это значение должно быть положительным. Если он движется в другом направлении, то значение v должно быть отрицательным. Эти две частицы отталкиваются друг от друга, если магнитные силы, определяемые их соответствующими магнитными полями между ними, нейтрализуют друг друга, указывая в разных направлениях друг от друга. Если две силы направлены в разные стороны друг к другу, магнитная сила притягивает. Магнитная сила вызвана этими движениями частиц.
Вы можете использовать эти идеи, чтобы показать, как магнетизм работает с повседневными предметами. Например, если вы поместите неодимовый магнит рядом со стальной отверткой и переместите его вверх, вниз по валу, а затем удалите магнит, отвертка может сохранить в нем некоторый магнетизм. Это происходит из-за взаимодействующих магнитных полей между двумя объектами, которые создают силу притяжения, когда они нейтрализуют друг друга. Это определение «отталкивать и притягивать» справедливо во всех случаях использования магнитов и магнитных полей.
Длинные, тонкие алнико магниты, также называемые «коровьими магнитами», притягивают все металлы и не позволяют им причинить вред желудку коровы. Такие магниты действительно помогают вылечить больное животное, но все же лучше следить за тем, чтобы в коровью еду не попадало вредных элементов.
Что касается людей, то им противопоказано глотать магниты, поскольку те, попав в разные части организма, все равно будут притягиваться, что может привести к блокированию кровяного потока и разрушению мягких тканей. Поэтому, когда человек глотает магнит, ему необходима операция. Некоторые люди считают, что магнитная терапия — это будущее медицины, поскольку это один из наиболее простых, но эффективных методов лечения многих болезней. Многие люди уже на практике убедились в действии магнитного поля. Магнитные браслеты, ожерелья, подушки и многие другие подобные изделия лучше таблеток лечат самые разнообразные заболевания — от артрита и до рака. Некоторые врачи также считают, что стакан намагниченной воды в качестве профилактики может избавить от появления большинства неприятных недугов.
В Америке ежегодно на магнитную терапию расходуется около 500 миллионов долларов, а люди во всем мире на такое лечение в среднем тратят 5 миллиардов долларов. Сторонники магнитной терапии по-разному трактуют полезность этого метода лечения. Одни говорят, что магнит способен притягивать железо, содержащееся в гемоглобине в крови, тем самым улучшая кровообращение. Другие уверяют, что магнитное поле каким-то образом меняет структуру соседних клеток. Но в то же время проведенные научные исследования не подтвердили, что использование статических магнитов может избавить человека от боли или вылечить болезнь. Некоторые сторонники также предлагают всем людям использовать магниты для очищения воды в домах.
Как говорят сами производители, большие магниты могут очистить жесткую воду за счет того, что удалят из нее все вредные ферромагнитные сплавы. Однако, ученые говорят, что жесткой воду делают не ферромагниты. Более того два года использования магнитов на практике не показали никаких изменений в составе воды. Но, даже не смотря на то, что магниты вряд ли обладают лечебным действием, они все равно стоят изучения. Кто знает, возможно, в будущем мы все же раскроем полезные свойства магнитов. В электромагните магнитное поле порождается изменением электрического поля, либо за счёт движения проводника с постоянным током, либо за счёт протекания по проводнику переменного тока.
В любом случае, при отключении тока магнитный эффект пропадает. Совсем другое дело - постоянный магнит. Никакого тока здесь и в помине нет. А магнитное поле есть. Строгое объяснение принципа действия постоянного магнита невозможно без привлечения аппарата квантовой физики. Если же объяснять «на пальцах», то наиболее адекватное объяснение звучит следующим образом.
Каждый электрон сам по себе является магнитом, обладает магнитным моментом - это его неотъемлемое физическое свойство. Если атомы, которым «принадлежат» электроны, в веществе ориентированы хаотично, то магнитные моменты электронов друг друга компенсируют и вещество магнитных свойств не проявляет. Если по какой-то причине атомы хотя бы какая-то их часть ориентируются в каком-то одном направлении, то магнитные свойства электронов складываются и вещество становится магнитом. Получается, что сильный магнит - это такой магнит, в котором много атомов ориентированы в одном направлении, и чем меньше атомов имеют одинаковую ориентацию, тем слабее получается магнит. Понятно также, что жидкости и газы магнитами в принципе быть не могут - ведь сохранять ориентацию атомы могут только в твёрдых телах. Со временем магниты теряют свои свойства, но это происходит под действием внешних причин: внешнего магнитного поля, высокой температуры , механических повреждений.
Притягивая какое-то тело, магнит затрачивает часть своей энергии на это притяжение и становится чуть-чуть менее сильным. Но когда вы отрываете это тело от магнита, он полностью возвращает себе потраченную энергию. Таким образом, суммарная механическая работа постоянного магнита остаётся нулевой, и теоретически магнит может сохранять свои свойства сколь угодно долгое время. Производство и использование постоянных магнитов Не смотря на то, что магниты были известны людям тысячи лет назад, их промышленное производство стало возможным только в двадцатом веке. Причём самые сильные постоянные магниты на основе неодимовых сплавов были изобретены только в 80-х годах прошлого века. А наиболее дешёвые и популярные из производимых сегодня магнитов - полимерные магнитные материалы, к числу которых относится, например, магнитный винил , так и вовсе были разработаны на рубеже второго и третьего тысячелетий.
Первое практическое использование постоянных магнитов относится к 12 веку и не потеряло актуальности до сих пор. Это использование магнитной стрелки в компасе. До начала массового производства магнитных материалов ни для чего другого магниты и не использовались применение их в качестве игрушек или «лечебных» амулетов - не в счёт. В современной же технике постоянные магниты используются повсеместно. Достаточно перечислить магнитные носители информации от дисковых накопителей в вашем компьютере, до магнитной полосы в вашей пластиковой карте , микрофоны и динамики постоянные магнитики есть и в звуковых колонках на вашем столе, и в вашем мобильном телефоне , в электродвигателях и генераторах не во всех типах электродвигателей используются постоянные магниты, но, например, в вентиляторах в вашем компьютере они точно есть , в многочисленных электронных датчиках задумывались ли вы, что именно такого типа датчик, например, не позволяет лифту начать движение при незакрытых дверях и во множестве других устройств. Но в целом производство и применение постоянных магнитов растёт с каждым годом.
Где в древности были открыты залежи магнетита. Простейшим и самым маленьким магнитом можно считать электрон. Магнитные свойства всех остальных магнитов обусловлены магнитными моментами электронов внутри них. С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозоном - фотоном частицей, которую можно представить как квантовое возбуждение электромагнитного поля. Вебер - магнитный поток, при убывании которого до нуля в сцепленном с ним контуре сопротивлением 1 ом проходит количество электричества 1 кулон. Генри - международная единица индуктивности и взаимной индукции.
Если проводник обладает индуктивностью в 1 Гн и ток в нём равномерно изменяется на 1 А в секунду, то на его концах индуктируется ЭДС в 1 вольт. Тесла - единица измерения индукции магнитного поля в СИ, численно равная индукции такого однородного магнитного поля, в котором на 1 метр длины прямого проводника, перпендикулярного вектору магнитной индукции, с током силой 1 ампер действует сила 1 ньютон. Использование магнитов Магнитные носители информации: VHS кассеты содержат катушки из магнитной ленты. Видео и звуковая информация кодируется на магнитном покрытии на ленте. Также в компьютерных дискетах и жёстких дисках запись данных происходит на тонком магнитном покрытии. Однако носители информации не являются магнитами в строгом смысле, так как они не притягивают предметы.
Магниты в жёстких дисках используются в ходовом и позиционирующем электродвигателях. Кредитные , дебетовые , и ATM карты - все эти карточки имеют магнитную полосу на одной стороне. Эта полоса кодирует информацию, необходимую для соединения с финансовым учреждением и связи с их счетами. Обычные телевизоры и компьютерные мониторы : телевизоры и компьютерные мониторы , содержащие электронно-лучевую трубку используют электромагнит для управления пучком электронов и формирования изображения на экране. Плазменные панели и ЖК-дисплеи используют другие технологии. Громкоговорители и микрофоны : большинство громкоговорителей используют постоянный магнит и токовую катушку для преобразования электрической энергии сигнала в механическую энергию движение, которое создает звук.
Обмотка намотана на катушку , прикрепляется к диффузору и по ней протекает переменный ток , который взаимодействует с полем постоянного магнита. Другой пример использования магнитов в звукотехнике - в головке звукоснимателя электрофона и в кассетных диктофонах в качестве экономичной стирающей головки. Магнитный сепаратор тяжёлых минералов Электродвигатели и генераторы : некоторые электрические двигатели так же, как громкоговорители основываются на комбинации электромагнита и постоянного магнита. Они преобразовывают электрическую энергию в механическую энергию. Генератор, наоборот, преобразует механическую энергию в электрическую энергию путем перемещения проводника через магнитное поле.
Какой цветной металл магнитится
как Поле действует на объект? например магнит притягивает железо почему это происходит | – Серебро, золото, медь магнит не притягивает. Только сталь, железо, чугун. |
Почему магнит притягивает железо? Магнит. | Расплавленное железо против магнита: увлекательный эксперимент. Как ведет себя расплавленное железо и обладает ли оно магнитными свойствами? |
3 разных типа магнитов и их применение
После эксперимента с лягушкой стало ясно, что магнит способен притягивать все, но почему сильнее всего он притягивает железо? Лучше всего к магнитам притягиваются. Пока железо и магнит притянуты друг к другу, их магнитные поля остаются в параллельном направлении.
Магнит железо почему притягивает металл
почему магнит притягивает хлопья? их и вправду обогащают металлической пылью, что ли? хлопья в воде после блендера выделили МЕТАЛЛИЧЕСКУЮ КРОШКУ: почему банан и киви не реагируют на магнит, если в них связанного железа в разы выше, чем. Почему постоянный магнит притягивает железо? У железа и похожих на него металлов есть особенная черта — связь между соседними атомами такова, что они чувствуют магнитное поле скоординированно. Особенность железа в том, что в магнитном поле внешние электроны его атомов ориентируются определенным образом.