Лента новостей Друзья Фотографии Видео Музыка Группы Подарки на МИНУС даёт ПЛЮС. Новости. Американские психологи обнаружили, что добиться согласия легче, если люди, ищущие решение, имеют похожий настрой или черты характера. 1) Почему минус один умножить на минус один равно плюс один? Минус на мину даёт плюс.
Минус на минус не даёт плюс
Получаем: Чтобы найти решение, нам нужно одно отрицательное число разделить на другое. Однако верный ответ мы уже получили в предыдущем решении — это х, равное двум. Что доказывают нам эти два способа решения одного уравнения? Первое, что становится ясно — это то, каким образом выводилась адекватность оперирования отрицательными числами — полученный ответ должен быть таким же, что и при решении с использованием только натуральных чисел. Второй момент — это тот факт, что не нужно больше задумываться над величинами, чтобы получать непременно неотрицательное число. Можно выбирать наиболее удобный способ решения, особенно это касается сложных уравнений.
Действия, которые позволили не задумываться над некоторыми операциями что нужно сделать, чтоб были только натуральные числа; какое число больше, чтоб вычитать именно от него и т. Естественно, не все правила действий с отрицательными числами сформировались единовременно. Копились решения, обобщались примеры, на основе чего и стали понемногу «вырисовывать» основные аксиомы. С развитием математики, с выделением новых правил, появлялись новые уровни абстракции. Например, в девятнадцатом веке стало доказано, что целые числа и многочлены имеют много общего, хотя внешне отличаются.
Все их можно складывать, вычитать и перемножать. Правила, которым они подчиняются, влияют на них одним образом. Что же касается деления одних целых чисел на другие, то здесь «поджидает» занимательный факт — ответом не всегда будет целое число. Этот же закон распространяется и на многочлены. Затем было выявлено множество других совокупностей математических объектов, над которыми возможно было производить такие операции: формальные степенные ряды, непрерывные функции.
Со временем математики установили, что после исследования свойств операций результаты станет возможно применять ко всем этим совокупностям объектов. Точно так же работают и в современной математике. Больше интересных материалов: Сугубо математический подход С течением времени математики выявили новый термин — кольцо. Под кольцом подразумевают множество элементов и операции, которые можно над ними производить. Основополагающими становятся правила те самые аксиомы , которым подчиняются действия, а не природа элементов множества.
Для того, чтоб выделить первостепенность структуры, возникающую после введения аксиом, как раз обычно и употребляют термин «кольцо»: кольцо целых чисел, кольцо многочленов и т. Используя аксиомы и исходя из них, можно выявлять новые свойства колец. Сформулируем правила кольца, похожие на аксиомы операций с целыми числами, и докажем, что в любом кольце при умножении минуса на минус выходит плюс. Уточним, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости операция деления не всегда возможна , ни существования единицы — нейтрального элемента по умножению. Если ввести данные аксиомы, получим другие алгебраические структуры, однако со всеми действующими теоремами, доказанными для колец.
Рабочая тетрадь содержит различные виды заданий на усвоение и закрепление нового материала, задания развивающего характера, дополнительные задания, которые позволяют проводить дифференцированное обучение. Тетрадь используется в комплекте с учебником «Математика. Мерзляк, В. Полонский, М. Якир , который входит в систему учебно-методических комплектов «Алгоритм успеха».
Из этого получим утверждения про единицы: Далее следует доказать некоторые моменты. Во-первых, нужно установить существование лишь одной противоположности для каждого элемента. Допустим, наличие у элемента А два противоположных элемента: B и С. Отметим, что и A, и - -A противоположны к элементу -A. Отсюда заключаем, что элементы A и - -A должны быть равны.
Получается, это произведение равно нулю. Следующая пословица В книге Владимира Левшина «Магистр рассеянных наук» есть математическая притча, в которой к богатому человеку пришел бедняк и предложил умножить имущество миллионщика. Правда, бедняк сразу же оговорился, что умножая состояние богача, он на то же число умножит и собственные средства. Движимый алчностью богач согласился на это условие, действие по умножению было совершено. Миллионщик бросился к своим сундукам, но вместо золота обнаружил только долговые расписки, согласно которым он обязался вернуть различным людям крупные суммы денег.
На вопрос, где моё золото? Бедняк ответил: "Теперь у меня.
Если оба слагаемых положительные или оба отрицательные, то результат будет положительным. Если одно слагаемое положительное, а другое отрицательное, то результат будет зависеть от их абсолютных значений. В этом случае, «плюс» на «минус» дает «минус», потому что одно слагаемое положительное, а другое отрицательное. Понимание этих правил поможет лучше понять, почему «плюс» на «минус» дает «минус».
Китайцы первыми использовали их для записи долгов или в промежуточных решениях уравнений. Но использование это было всё равно лишь для того, чтоб прийти к положительному числу впрочем, как и наше погашение кредитки. Долгому отвержению отрицательных чисел способствовало то, что они не выражали конкретных предметов. Десять монет — это десять монет, вот они, их можно потрогать, на них можно купить товар. А что значит «минус десять монет»? Они предполагаются, даже если это долг. Неизвестно, вернётся ли этот долг, и превратятся ли «записанные» монеты в реальные. Если при решении какой-нибудь задачи получалось отрицательное число, считалось, что вышел неверный ответ или ответа вообще не существует. Такое недоверчивое отношение сохранялось у людей достаточно долго, даже Декарт XVII век , совершивший прорыв в математике, считал отрицательные числа «ложными». Дружим с математикой. Рабочая тетрадь Задания пособия позволяют предупредить возможные трудности в усвоении основных тем четвёртого года обучения математике, помогают развить пространственные представления, геометрическую наблюдательность учащихся, сформировать навыки самоконтроля. Для решения уравнения нужно перенести члены с неизвестным в одну сторону, а известные числа — в другую. Это можно выполнить двумя способами.
Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений - это был лишь инструмент для получения положительного ответа. Это недоверие сохранялось очень долго, и даже Декарт - один из «основателей» современной математики - называл их «ложными» в XVII веке! Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин - а это уже шаг в направлении превращения математики в абстрактную науку. Эти операции подчиняются одним и тем же законам - как в случае с числами, так и в случае с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции... Заметим, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости т. Заметим теперь, что и A , и — —A являются противоположными к одному и тому же элементу —A , поэтому они должны быть равны. Но для уровня старшекласника-первокурсника. Допустим мы идем вдоль дороги, нас обгоняет машина и начинает удаляться. Время растет - и расстояние до нее растет. Скорость такой машины будем считать положительной, она может быть например 10 метров в секунду. Кстати, а сколько это километров в час? Наверное дорога плохая... А вот машина идущая нам навстречу не удаляется, а приближается. Поэтому и скорость ее удобно считать отрицательной. Расстояние уменьшается: 30, 20, 10 метров до встречной машины. Каждая секунда - минус 10 метров. Теперь понятно почему скорость с минусом? Вот она пролетела мимо. Какое до нее расстояние через секунду? Правильно, -10 метров, то есть "в 10 метрах позади". Вот мы получили первое утверждение. Минус отрицательная скорость на плюс положительное время дал минус отрицательное расстояние, машина у меня за спиной. А теперь внимание - минус на минус. Где встречная машина была за секунду ДО того как проехала мимо? Так понятно, или кто-то знает пример еще проще? Ответить Да можно доказать проще! То что мы отложили в положительную часть стало отрицательным и наоборот. Ответить Думаю вы правы. Я лишь попытаюсь показать вашу точку зрения подробнее, так как вижу, что не все это поняли. Минус означает отобрать. Ведь надо же как то обозначить действие. При этом отобранные яблоки не стали мнимыми, так как закон сохранения материи никто не отменял. Положительные яблоки просто перешли к тому, кто их отобрал. Здесь минус не компенсирует плюс, а отрицает его и становится на его место. Сначала яблоки отобрали у вас, а затем вы их отобрали у вашего обидчика. В результате все яблоки остались положительными, только отбор не состоялся, так как произошла социальная революция. Вообще говоря, то что отрицание отрицания ликвидирует отрицание и всё к чему отрицание относится детям понятно и без объяснений, так как это очевидно. Объяснить детям нужно только то, что взрослые искусственно запутали, да так, что и сами теперь не могут разобраться. А путаница состоит в том, что вместо отрицания действия ввели отрицательные числа, то есть отрицательную материю. Ведь с отрицательной материей должно происходить всё тоже самое, что и с положительной, только с другим знаком. Поэтому детям кажется логичнее, что при умножении отрицательной материи должно происходить приумножение именно отрицательной материи. Но и здесь не всё гладко, ведь для приумножения отрицательной материи достаточно чтобы только одно число было с минусом. При этом один из сомножителей, который обозначает не вещественное наполнение, а разы повторения отобранной материи всегда положительный, так как разы не могут быть отрицательными даже если повторяется отрицательная отобранная материя. А для того, чтобы знак минус воспринимался не как признак мнимого числа, то есть отрицательной материи, а как действие, взрослым нужно договориться сначала между собой, что если знак минус стоит пред числом, то он обозначает отрицательное действие с числом, которое всегда положительное, а не мнимое. Если же знак минус стоит перед другим знаком, то он обозначает отрицательное действие с первым знаком, то есть меняет его на противоположный. Тогда всё станет на свои места естественным образом. Затем надо объяснить это детям и они прекрасно поймут и усвоят такое понятное правило взрослых. Ведь сейчас все взрослые участники обсуждения фактически пытаются объяснить необъяснимое, так как физического объяснения этому вопросу нет, это просто условность, правило. А объяснять абстракцию абстракцией же - это тавтология. Если знак минус отрицает число, то это физическое действие , но если он отрицает само действие, то это просто условное правило. То есть взрослые просто договорились, что если отбор отрицается, как в рассматриваемом вопросе, то отбора нет, неважно сколько раз! При этом всё, что у вас было остаётся с вами, будь то просто число, будь то произведение чисел, то есть много попыток отбора. Вот и всё. Если кто-то не согласен, то подумайте спокойно ещё раз. Ведь и пример с машинами, в котором есть отрицательная скорость и отрицательное время за секунду до встречи это всего лишь условное правило связанное с системой отсчёта.
Минус на минус даёт плюс
Кроме того, для каждого C есть противоположный элемент, который можно обозначить, как -C. Выведение аксиом для отрицательных чисел Приняв приведенные выше утверждения, можно ответить на вопрос: «"Плюс" на "минус" дает какой знак? Для этого придется вначале доказать, что у каждого из элементов существует лишь один ему противоположный «собрат». Рассмотрим следующий пример доказательства. Давайте попробуем представить, что для C противоположными являются два числа - V и D. Вспоминая о переместительных законах и о свойствах числа 0, можно рассмотреть сумму всех трех чисел: C, V и D. Попробуем выяснить значение V. Для того чтобы понять, почему все же «плюс» на «минус» дает «минус», необходимо разобраться со следующим. Так, для элемента -C противоположными являются C и - -C , то есть между собой они равны. А это значит, что прибавление произведения 0 х V никак не меняет установленную сумму.
Ведь это произведение равняется нулю. Зная все эти аксиомы, можно вывести не только, сколько «плюс» на «минус» дает, но и что получается при умножении отрицательных чисел.
Главное в этом — одинаковый настрой. Качества из «большой пятерки» способствовали договоренности, если присутствовали у обоих переговорщиков.
В интернете можно прочесть объяснения , что это всего лишь обобщение действий над целыми числами и математики вот так договорились. Нам предлагают смириться и просто это принять. Для начала зайдём издалека и разберемся с простым случаем, который иногда в школе всё же объясняют. Представим, что есть некий человек и он должен трем своим друзьям по 100 рублей. Очевидно, что всем им вместе он должен 300 рублей. Мы просто умножили долг 100 рублей на 3 человека. Даже в младших классах большинство уже понимает, что долг — это отрицательные числа, и в целом понимает, что такое отрицательный баланс на телефоне. Но такая схема не работает, если мы хотим перемножить -100 и -3. Мы же не можем быть должны отрицательному количеству людей. Давайте попробуем другую. Пусть у нас есть поезд, который едет из Москвы в Санкт-Петербург. Для нас это будут точки А и В соответственно. Где-то посередине он проезжает мимо станции Бологое точка О , это для нас и будет точка отсчёта. Если поезд будет слева на расстоянии 50 км, то будем говорить, что он находится в точке -50 км. Теперь рассмотрим скорость поезда. Пусть у поезда скорость сто километров в час. Но теперь у нас появилось ещё и направление. Это пока объяснимо. Мы получили такой же результат, как в модели с должником. Но теперь давайте чуть подправим задачу и рассмотрим относительное время. Допустим сейчас полдень и поезд находится в точке О. Где он будет через 3 часа, то есть в 3 часа после полудня то есть в 15:00? А где он был за три часа до полудня то есть в 9:00? В точке -300. А теперь самое главное - как через эту модель показать перемножение отрицательных чисел. Пусть поезд едет из Санкт-Петербурга в Москву, то есть имеет отрицательную скорость. Где он был за три часа до полудня? Вы можете сказать, что отрицательное время — это выдумка и никто им не пользуется. Действительно в числовом виде в быту мы их не так часто используем, а вот на уроках истории вы точно про них слышали. Как объяснить ребенку? У меня есть несколько примеров, хотя бы один из которых удовлетворит любого. Прием 1 В шестом классе школьники уже знакомы со способами решения линейных уравнений. Можно показать ребенку, например вот это : В первом случае мы решаем уравнения, избегая отрицательных чисел. Во втором мы такой целью не задаемся. Иными словами, ответы, полученные с использованием отрицательных чисел не должны отличать от полученных других путем. Таким образом, мы лишаем себя необходимости искать смысл отрицательных чисел и принимаем их как необходимую и полезную математическую абстракцию. Так вот в этом примере и видно, как, с одной стороны умножение положительных чисел, так и с другой - отрицательных чисел друг на друга дает число положительное! Ведь болт же переместился физически, ощущаемо! Так, например, отрицательные числа из абстракции превращаются в реальность. Я не стал приводить пример с градусником, движущимися навстречу автомобилями, геометрические обоснования их и дают по большей части в школе , совсем сложные для детей примеры с дистрибутивностью умножения, а также некоторые объяснения, построенные на мнемонике, вида: "Враг моего врага - мой друг". Последний вариант, скорее, направлен на запоминание, чем на понимание. Кстати, если Вы хотите прочесть более 80. Совершенно естественно, что в самом начале люди пользовались только натуральными числами — один, два, три и так далее.
Объемное восьмистраничное постановление вносит целый ряд изменений в Положение об оплате труда школьных работников — главный документ по НСОТ, утвержденный в мае прошлого года. Мы очень надеемся, что благодаря принятым в канун новогодних праздников! По поручению Главного управления образования Воронежской области научная лаборатория экономики и инноваций в образовании ВОИПКиПРО подготовила электронные модели расчетов фонда оплаты труда и методические указания по их проведению. Описаны и алгоритмы подбора оптимального соотношения ФОТаз, ФОТнз, ФОТс, где ФОТаз — это фонд оплаты труда, связанный с аудиторной работой оплата за деятельность, связанную с подготовкой и проведением уроков ; ФОТнз — фонд оплаты труда, связанный с неаудиторной работой все доплаты ; ФОТс — специальный фонд оплаты труда компенсация расходов, связанных с делением классов на группы, объединением параллелей. Мы попросили Владимира Борисовича Попова, заведующего лабораторией, прокомментировать внесенные изменения в Положение об оплате труда учителей и новые расчетные величины. Второй принцип — перенос доплат за неаудиторную деятельность в базовую часть зарплаты. Третий — обеспечение стимулирующей части ФОТ премиальные выплаты за качество труда не менее 30 процентов. То есть если раньше из этой части только половина предназначалась для выплаты премий, то теперь всё. Важно понять, за счет чего реализуется принцип уменьшения гиперзависимости зарплаты педагога от количества учеников. Во-первых, не все деньги в фонде зарплаты даются теперь на оплату труда учителя на уроке. Вводится понятие «фонд аудиторной деятельности» ФОТаз. Его рекомендуемая величина — не менее 60 процентов.
.МИНУС на МИНУС даёт ПЛЮС
4 февраля фондом «Петербургская политика» были опубликованы данные за январь 2013года, определяющие уровень социально-политической устойчивости российских регионов. This media is not supported in your browser. VIEW IN TELEGRAM. Почему минус на минус даёт плюс. «--» — при умножении минус на минус ответ будет положительным или минус на минус дает плюс. Плюс на минус даёт правило.
Действия с минусом. Почему минус на минус дает плюс
При таком решении нам даже не встретились отрицательные числа. Но можно было случайно сделать и по-другому: перенести слагаемые с неизвестным в правую часть и получить ,. Чтобы найти неизвестное, нужно разделить одно отрицательное число на другое:. Но правильный ответ известен, и остается заключить, что. Что демонстрирует этот нехитрый пример? Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел.
Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами. Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку. Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать.
Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда.
Вот почему "минус на минус" даёт "плюс". И изходя из числовой прямой все эти знаки нормально понимаются. Минус пять это число обратное пяти.
Новости автомира: в Госдуме предложили отменить...
Новости автомира: в Госдуме предложили отменить самый популярный штраф Дeпутaты oт фpaкции ЛДПР пpeдлaгaют oтмeнить штpaфы зa aвтoмoбильную тoниpoвку. Зaкoнoпpoeкт был пoдaн в Гocдуму ужe дaвнo, oднaкo нa oбcуждeниe вoпpoc дo cиx пop нe вынecли. Автopы пpoeктa нaмepeны дoбитьcя пepecмoтpa дeйcтвующeгo ГОСТa либo пoлнoй oтмeны штpaфoв зa тoниpoвку ужe этoй oceнью.
Объявив обычные проблемы при регистрации оппозиционного мероприятия непреодолимыми, Олег Родин отказался от проведения митинга протеста против пенсионной реформы, посчитав, видимо, что весь возможный пиар с этого мероприятия он получил, а заниматься действительной организацией митинга у нижегородского «Яблока» не хватит организационных ресурсов.
Нижегородцы хотят высказаться! Не чиновникам решать, позволять ли им».
Почему результат вычитания минуса из минуса может быть положительным
Новости компании. Почему говорят, что два плюса дают минус? Мы сформулируем аксиомы кольца (которые, естественно, похожи на правила действий с целыми числами), а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Иначе говоря, чтобы умножение было осмысленным, "минус на плюс" должен давать "минус".
«Минус на минус» дает плюс
Примеры положительных чисел: 11, 500, 1387. Противоположные числа — это числа, которые отличаются друг от друга знаками. Модули противоположных чисел равны: у положительного числа он равен самому числу, а у отрицательного — противоположному, то есть положительному. Умножение чисел с одинаковыми знаками Чтобы перемножить два отрицательных числа, надо перемножить их модули. Пример 1.
Умножение чисел с разными знаками Чтобы перемножить два числа с разными знаками, надо: 1 перемножить модули этих чисел; 2 перед полученным числом поставить знак минус.
Решение о запрете массовых политических мероприятий на Большой Покровской было принято депутатами Законодательного собрания Нижегородской области, и администрация Нижнего Новгорода не праве разрешать проведение этого шествия. Поэтому Родин может не сомневаться в том, что и в этот раз станет «жертвой произвола властей» и не сможет провести акцию против пенсионного возраста. Вопрос в том, увеличит ли такая несгибаемость его электоральные шансы, или недовольные пенсионной реформой избиратели не оценят ни к чему реальному не приведшие старания кандидата.
И получается, что минус на минус, дал плюс.
Это не совсем то, но лучшее, что я мог придумать. Отправить 4 года назад 1 0 В математике это так. И если у меня забрали -2 яблока, то это значит, что на самом деле мне их дали! Отправить 4 года назад 1 0 Минус на минус дает плюс - имеется в виду не при сложении, а при умножении. Это сложно представить, потому что умножение подразумевает количество раз ,а человеку тяжело осознать, как это 5 раз со знаком минус.
А вот представим, если дали -5 раз по -5 рублей, то есть - 5 раз отобрали по 5 рублей. Вот и получается, что -5 раз отобрали это то же самое, что 5 раз дали. Отправить 4 года назад 1 0 По моему, ответ совсем простой и не стоит себе и людям лишний раз пудрить мозги. А ответ заключается в том, что таковы правила математики. А эти правила придумали люди для того, чтобы ими было удобно пользоваться.
Есть и упрощенное, шутливое объяснение этого правила: минус это одна черта, два минуса две черты, плюс как раз состоит из 2-х черточек. Поэтому то минус на минус и дает знак плюса. Отправить 4 года назад 1 0 Минус на минус дает плюс потому ,что это школьное правило. На данный момент точного ответа почему по моему нет. Это правило и оно существует уже много лет.
С чем, очевидно, можно поздравить жителей Омска. Самую нижнюю строку рейтинга занял Дагестан, его уровень устойчивости составляет 2,4 балла. Тому причиной стали множественные негативные явления и отставка Магомедали Магомедова, возглавлявшего регион. Экспертами была указана тенденция на снижение уровня политической устойчивости всех областей РФ по сравнению с данными сентября 2012 года. Это связано с ростом конфликтов по линии федеральный центр — главы регионов, а так же главы регионов — правоохранительные органы.
Общественная активность регионов остается на прежнем уровне.
.МИНУС на МИНУС даёт ПЛЮС
минус на минус даёт плюс — gvozd' beats prod. — Когда все узнали об успехе программы «Минус 100» в 2007 году, приходилось слышать мнение, что тот результат достигнут административным ресурсом. Плюс в том, что повзрослев такие дети право на имущественный вычет не теряют.
Минус на плюс что дает?
Так, мы с ученической скамьи усваиваем, что на ноль делить нельзя, или что минус на минус даёт плюс. Бережливое производство 6sigma Топ-Менеджмент Консалт Новости Lean. В 1904 году на Всемирной ярмарке в Сент-Луисе с торговцем вафлями Эрнестом Хамви случилась настоящая беда! Если к минус движению прибавить минус пищевое воздержание, то в результате получим плюс килограммы.
Правило минус на минус дает
Минус означает отобрать. Ведь надо же как то обозначить действие. При этом отобранные яблоки не стали мнимыми, так как закон сохранения материи никто не отменял. Положительные яблоки просто перешли к тому, кто их отобрал. Здесь минус не компенсирует плюс, а отрицает его и становится на его место. Сначала яблоки отобрали у вас, а затем вы их отобрали у вашего обидчика. В результате все яблоки остались положительными, только отбор не состоялся, так как произошла социальная революция. Вообще говоря, то что отрицание отрицания ликвидирует отрицание и всё к чему отрицание относится детям понятно и без объяснений, так как это очевидно. Объяснить детям нужно только то, что взрослые искусственно запутали, да так, что и сами теперь не могут разобраться. А путаница состоит в том, что вместо отрицания действия ввели отрицательные числа, то есть отрицательную материю.
Если мы делим «минус» на «плюс», то получаем всегда также «минус». Если мы делим «плюс» на «плюс», то получаем «плюс». Если же мы делим «минус» на «минус», то получим, как ни странно, также «плюс». Если мы умножаем «минус» на «плюс», то получаем всегда «минус». Если мы умножаем «плюс» на «минус», то получаем всегда также «минус». Если мы умножаем «плюс» на «плюс», то получаем положительно число, то есть «плюс». Тоже самое касается и двух отрицательных чисел. Если мы умножаем «минус» на «минус», то получим «плюс». Вычитание и сложение. Они базируются уже на других принципах. Если отрицательное число будет больше по модулю, чем наше положительное, то результат, конечно же, будет отрицательный. Наверняка, вам интересно, что же такое модуль и зачем он тут вообще. Все очень просто. Модуль — это значение числа, но без знака. Например -7 и 3. По модулю -7 будет просто 7 , а 3 так и останется 3. В итоге мы видим, что 7 больше, то есть выходит, что наше отрицательное число больше. Можно сделать еще проще. Вычитание действуют полностью по такому же принципу. Минус на минус даёт плюс — это правило, которые мы выучили в школе и применяем всю жизнь. А кто из нас интересовался почему? Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. Сейчас и без того достаточно информации, которую необходимо «переварить». Но для тех, кого всё же заинтересует этот вопрос, постараемся дать объяснение этому математическому явлению. С древних времён люди пользуются положительными натуральными числами : 1, 2, 3, 4, 5,… С помощью чисел считали скот, урожай, врагов и т. При сложении и умножении двух положительных чисел получали всегда положительное число, при делении одних величин на другие не всегда получали натуральные числа — так появились дробные числа. Что же с вычитанием? С детских лет мы знаем, что лучше к большему прибавить меньшее и из большего вычесть меньшее, при этом мы опять же не используем отрицательные числа. Получается, если у меня есть 10 яблок, я могу отдать кому-то только меньше 10 или 10. Я никак не смогу отдать 13 яблок, потому что у меня их нет. Нужды в отрицательных числах не было долгое время. Только с VII века н. При решении этого уравнения нам даже не встретились отрицательные числа. Что мы видим? Действия с использованием отрицательных чисел должны привести нас к такому же ответу, что и действия только с положительными числами. Мы можем больше не думать о практической непригодности и осмысленности действий — они помогают нам решить задачу гораздо быстрее, не приводя уравнение к виду только с положительными числами. В нашем примере мы не использовали сложных вычислений , но при большом количестве слагаемых вычисления с отрицательными числами могут облегчить нам работу. Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними в математике они называются аксиомами. Отсюда и появилась аксиома, которая утверждает, что при умножении двух отрицательных чисел получаем положительное. Слушая учителя математики, большинство учеников воспринимают материал как аксиому. При этом мало кто пытается добраться до сути и разобраться, почему «минус» на «плюс» дает знак «минус», а при умножении двух отрицательных чисел выходит положительное. Законы математики Большинство взрослых не в силах объяснить ни себе, ни своим детям, почему так получается. Они твердо усвоили этот материал в школе, но при этом даже не попытались выяснить, откуда взялись такие правила. А зря. Зачастую современные дети не столь доверчивы, им необходимо докопаться до самой сути и понять, скажем, почему «плюс» на «минус» дает «минус». А иногда сорванцы специально задают каверзные вопросы, дабы насладиться моментом, когда взрослые не могут дать вразумительного ответа. И совсем уж беда, если впросак попадает молодой учитель... Кстати, следует отметить, что упомянутое выше правило действенно как для умножения, так и для деления. Произведение отрицательного и положительного числа даст лишь «минус. Если речь идет о двух цифрах со знаком «-», то в результате получится положительное число. То же касается и деления. Если одно из чисел будет отрицательным, то частное тоже будет со знаком «-». Для объяснения правильности этого закона математики, необходимо сформулировать аксиомы кольца. Но для начала следует понять, что это такое. В математике кольцом принято называть множество, в котором задействованы две операции с двумя элементами. Но разбираться с этим лучше на примере.
Мы можем больше не думать о практической непригодности и осмысленности действий — они помогают нам решить задачу гораздо быстрее, не приводя уравнение к виду только с положительными числами. В нашем примере мы не использовали сложных вычислений, но при большом количестве слагаемых вычисления с отрицательными числами могут облегчить нам работу. Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними в математике они называются аксиомами. Отсюда и появилась аксиома, которая утверждает, что при умножении двух отрицательных чисел получаем положительное. Поделиться статьей с помощью:.
В cлучae oткaзa oт нe pacтeт, oднaкo вoдитeль мoжeт пoлучить eщe oдин штpaф, aдминиcтpaтивный apecт нa 15 cутoк либo oбязaтeльныe paбoты нa cpoк oт 40 дo 120 чacoв. Штраф за тонировку окон один из самых популярных. С начала 2022 года в Москве за незаконную тонировку оштрафовали более 92,9 тыс.
Почему минус на минус всегда даёт плюс?
Требуется доказать, что (-a)(-b)=ab. Чтобы ответить на этот вопрос, мы будем действовать в рамках аксиоматики действительных чисел. Для начала докажем, чт. Минус на минус даёт плюс. Из трека Каспийский Груз – Была Не Была на RapGeek. В итоге, зная правильный ответ, мы сами понимаем, что минус на минус ДОЛЖЕН давать плюс. Разговор о введении НСОТ в Воронежской области мы начали 13 ноября прошлого года в «УГ» №46: в рубрике «Журналистское расследование» вышла статья «Повышение со знаком минус». Новости. Агрегатор всех онлайн курсов Как и ожидалось, “плюс на минус” дал “минус”. И наконец “минус на минус”, когда $X = (Im \ast R_k)$, а.