От чего зависит ее состояние, о каких болезнях может сигналить «густая» или «жидкая» кровь, рассказали эксперты. В результате повышенная вязкость крови может быть причиной ряда заболеваний — ишемического инсульта, инфаркта миокарда, тромбоэмболии легочной артерии, тромбоза вен и артерий нижних конечностей, ряда внутренних органов. Итак, сердце может быть идеальным, добрым, ласковым — все зависит от того, какая кровь к нему подойдет.
Измерение вязкости цельной крови
Кровь влияет на работу всех органов, а ее повышенная вязкость может привести к таким осложнениям. От их же концентрации и зависит так называемая «вязкость» крови. Повышенная вязкость крови приводит к тому, что сердечной мышце приходится прикладывать больше усилий, продвигая кровь по сосудам.
Эксперт рассказала о важности контроля густоты крови и ее свертываемости
От показателей вязкости крови зависят все процессы, протекающие в клетках нашего организма. никотин увеличивает вязкость крови, и это не считая массы других негативных последствий. Кровь – одна из основных биологических жидкостей в организме человека, от ее состава, вязкости и консистенции зависит здоровье человека.
Почему кровь становится густой?
- Густая кровь – в чём причина?
- Что происходит с организмом, когда кровь густеет: Три главных симптома
- Что происходит с организмом, когда кровь густеет: Три главных симптома - Российская газета
- Вязкость крови: что это такое, как ее снизить и уменьшить, способы понизить
КАКАЯ вязкость КРОВИ, такая и ЖИЗНЬ
Тромб может оторваться в любой момент и при любых обстоятельствах. Он может оторваться во сне, например, когда достиг узкого участка кровеносного сосуда или когда повысилось артериальное давление. Физические упражнения или посещение сауны также могут вызвать изменение кровотока, повышение артериального давления, что увеличивает риск отрыва тромба. Чаще всего это может происходить с людьми, у которых имеется высокий риск тромбообразования, поэтому перед началом физических упражнений не будет лишним проконсультироваться с врачом. Можно ли «прогнать» тромбы, если пить по 2 литра воды в день? Это маловероятно.
Количество воды не может «прогнать» уже существующие тромбы, для этого нужно принимать препараты для растворения тромбов антикоагулянты. Однако употребление достаточного количества воды, особенно летом, может улучшить кровообращение и, как следствие, минимизировать образование новых тромбов. При этом важно помнить, что бывают состояния, при которых употребление большого количества воды может негативно сказаться на организме, поэтому лучше узнать у врача свои индивидуальные рекомендации.
Насколько разные причины густой крови, настолько разное лечение этого явления, поэтому при повышении вязкости основные лечебные мероприятия направляются на основное заболевания и нарушения в организме, которые повлекло сгущение крови.
В связи с этим проводится: Коррекция метаболических процессов; Борьба с тромбообразованием с целью предотвращения тромбозов и вытекающих отсюда последствий; Лечение опухолей кроветворной ткани. Одним словом, какой-то определенной схемы лечения густой крови не существует. Например, при гиперкоагуляции , которая, в общем-то, в большинстве случаев является следствием процесса сгущения и повышения свертывания, назначают препараты с антикоагулянтными свойствами. К ним относятся такие лекарства, как гепарин, фрагмин, варфарин и др.
Разумеется, при гипервискозном синдроме с гипокоагуляцией, а, стало быть, с предрасположенностью к кровотечениям миеломная болезнь, макроглобулинемия Вальденстрема подобное лечение, предполагающее антикоагулянтную терапию, полностью исключают. А для предотвращения геморрагического синдрома назначают плазмаферез, трансфузии тромбомассы и другое симптоматическое лечение. Как разжижить кровь без лекарств? Разжижать кровь без лекарств, предлагаемых фармацевтической промышленностью, действительно можно, если ее сгущение вызвано не очень серьезной причиной.
Людям старшего возраста, когда количество эритроцитов и уровень гемоглобина становятся выше в силу возрастных изменений, потому и назначаются препараты, содержащие аспирин. При этом некоторые пробуют корригировать эти показатели питанием, применением трав, разжижающих кровь , или других народных средств. А многие просто говорят, что «польза красного вина, очевидна и видна». Этот факт часто берут на вооружение люди, которым подобное лекарство всегда «грело душу».
Впрочем, хочется несколько разочаровать любителей. Не сомневаясь в пользе красного вина в очень небольших дозах до 50 граммов в день , нужно предостеречь от чрезмерного употребления, поскольку это все-таки алкогольный напиток.
Это позволяет предположить, что определенные гомеостатические регуляторные циклы адаптируют жесткость эритроцитов к физиологическим условиям с целью оптимизации доставки кислорода в ткани в соответствии с их потребностью. Эритроциты отличаются высокой устойчивостью и обладают способностью к восстановлению, если изменяются условия окружения или прекращается действие стрессорных факторов, однако как в любых физиологических или молекулярных сигнальных путях, наступает точка невозврата, после которой восстановление становится невозможным.
Результатом воздействий, которые необратимо повреждают красные клетки крови, становится полная их деструкция и удаление из кровотока. Клиренс ригидных эритроцитов в селезенке — это основной регулятор деформационных свойств эритроцитов [ 34 ]. В основе процесса транспорта кислорода эритроцитами, движущимися в системе микроциркуляции, лежат два базовых механизма — конвекция транспортирующих кислород эритроцитов и диффузия кислорода из красных клеток крови к митохондриям клеток тканей [ 61 ]. Первый компонент кислородного транспорта в ткани определяется потоковыми свойствами эритроцитов в крови флакс , а диффузионная составляющая может быть охарактеризована плотностью функционирующих капилляров [ 27 ].
Уровень активности метаболизма ткани и, соответственно, потребления ею кислорода является основным фактором, определяющим диффузию кислорода из крови в ткань. Действие кислорода как регуляторного фактора может быть как прямым, так и непрямым. Прямое воздействие осуществляется на сосудистую стенку, которая содержит сенсор кислорода, реагирующий на парциальное напряжение кислорода в периартериолярном пространстве. Непрямое действие реализуется через вторичные метаболиты и пусковым сигналом служит тканевой или конечный капиллярный уровень напряжения кислорода.
Сенсоры локализуются в тканевых митохондриях, эндотелии капилляров или стенке венул. В качестве уникального мобильного сенсора кислорода, как показано исследованиями последних лет, способны выступать и эритроциты [ 48 , 74 ]. Поскольку в системе микроциркуляции прямой механизм требует значительного падения периартериолярного напряжения кислорода, в физиологических условиях, по всей видимости, преобладает непрямой механизм регуляции. Кроме основной функции эритрона транспорта кислорода от легких к тканям , в настоящее время доказано его активное участие в регуляции сосудистого тонуса вазорегуляция , что лежит в основе оптимизации регионарного кровотока с целью обеспечения доступности кислорода в легких и его потребления на периферии.
В случае недостаточного поступления кислорода регуляция его доставки обеспечивается варьированием кровотока, а не содержанием кислорода, поскольку содержание кислорода относительно фиксированная величина, в то время как показатели кровотока могут изменяться в диапазоне нескольких порядков. Таким образом, объемный кровоток и его распределение — это физиологические параметры, которые наиболее активно регулируются для поддержания соответствия между доставкой кислорода и потребности в нем. Система обратной связи, ответственная за регуляцию доставки кислорода в тканевые регионы, должна быть способна контролировать и при необходимости регулировать поступление кислорода в ткани на уровне микроциркуляции. Еще три десятилетия назад впервые было продемонстрировано, что в условиях гипоксии и гиперкапнии эритроциты высвобождают АТФ, которая потенциально может выполнять функцию вазодилататора [ 30 ].
Было высказано предположение, что эритроциты, проходя через регионы с низким напряжением кислорода, стимулируют локальную вазодилатацию, увеличивая приток крови к этому региону. АТФ, связываясь с P2y1 и P2y2 пуринорецепторами эндотелия, вызывает расширение сосудов за счет релаксации гладких миоцитов сосудистой стенки вследствие выработки эндотелиоцитами оксида азота, простациклина или эндотелиального гиперполяризующего фактора [ 156 ]. Роль эритроцитов в этом процессе подтверждена экспериментами Dietrich и соавт. Количественная оценка высвобождения АТФ эритроцитами подтвердила, что этот процесс осуществляется достаточно быстро, чтобы быть физиологически значимым [ 57 ].
Впоследствии было доказано, что эритроцит выступает не только в качестве регулятора локального кровотока в соответствии с метаболическими потребностями тканей, но и выполняет роль сенсора гипоксии, поскольку количество высвобождаемого АТФ прямо пропорционально степени деоксигенации гемоглобина и регуляция гликолиза дезоксигемоглобином в эритроцитах выступает в качестве начального этапа сигнального пути высвобождения АТФ [ 72 , 58 , 48 ]. Эритроциты выполняют функцию сенсора кислорода в тканях, контролируя сосудистое сопротивление благодаря кислород-зависимому высвобождению АТФ [ 48 , 73 ]. Еще один из механизмов локальной регуляции регионарного кровотока основан на способности эритроцитов захватывать, депонировать и высвобождать оксид азота в том числе и синтезированный самими эритроцитами в зависимости от степени оксигенации гемоглобина, которая напрямую взаимосвязана с метаболической активностью ткани и потреблением ею кислорода [ 129 ]. Jia L.
Кроме того, дезоксигемоглобин может восстанавливать нитриты с образованием NO [ 74 ]. Эритроциты человека сами синтезируют NO ферментативным путем, показано наличие у них активной NO-синтазы эндотелиального типа NOS , которая активируется под действием напряжения сдвига [ 148 ], синтезированный эритроцитами NO высвобождается в интравазальное пространство и оказывает влияние на сосудистый тонус [ 43 ]. Экспериментально продемонстрировано, что высвобождение оксида азота эритроцитами под действием напряжения сдвига, по величине соответствующего реальным условиям кровотока в системе микроциркуляции, способно вызвать дилатацию изолированных мелких брыжеечных артерий крысы [ 21 , 149 ]. Известно, что Hb эритроцитов способен депонировать NO [ 17 ], это было основанием для контраргументов в дискуссии о возможности высвобождения оксида азота эритроцитами.
Сродство гемоглобина к NO уменьшается в деоксигенированном состоянии, поэтому высвобождение NO из эритроцитов облегчается при деоксигенации, способствуя регуляции вазомоторной функции сосудов [ 135 ]. Кроме того, было продемонстрировано, что анионный обменник белок полосы III на мембране эритроцитов может способствовать экспорту NO синтезированного эритроцитами или высвобождаемого из S-нитрозогемоглобина [ 107 ]. Стоит отметить, что от степени оксигенации гемоглобина в эритроцитах зависит внутриклеточная передача сигналов [ 20 ], действие гормонов и вазоактивных агентов [ 145 ], ионный транспорт [ 31 ] и деформируемость [ 150 ] эритроцитов. Однако бывают ситуации, когда умеренное повышение этих показателей способствует перфузии тканей и снижению сосудистого периферического сопротивления за счет механостимуляции синтеза NO эндотелием, то есть реологические свойства плазмы и крови влияют на величину просвета сосуда, обеспечивая эффективную микроциркуляцию в тканях [ 91 ].
В работе Salazar Vazquez и соавт. Следует заметить, что таким свойством обладает прирост вязкости, который не выходит за пределы физиологической нормы этого показателя. Это позволило S. Forconi предложить новую гемореологическую парадигму, согласно которой небольшое повышение вязкости крови обладает вазодилататорным эффектом и потенциально улучшает перфузию тканей, вопреки традиционной точке зрения о том, что любое увеличение вязкости крови негативно сказывается на перфузии тканей и может рассматриваться как фактор риска хотя и не самостоятельная патология [ 52 ].
Также большое значение имеет тот факт, что артериолы, резистивные микрососуды, регулирующие кровоток, снабжены сенсорными механизмами, которые контролируют напряжение сдвига на границе сосудистой стенки и регулируют его колебания через изменение активности сократительных элементов стенки сосуда, поддерживая его на постоянном уровне. Хронические нарушения такой регуляции например, в случае патологии приводят к адаптивным изменениям сосудистой стенки и микроангиоархитектоники ангиогенез и ремоделирование сосудов [ 101 , 122 ]. Поскольку воздействие напряжения сдвига на сосудистую стенку передается движущейся по этому сосуду кровью, очевидно, что механика этого взаимодействия будет в значительной степени определяться реологическими свойствами крови. Микрореологические свойства эритроцитов Наряду с вязкостью цельной крови микрореологические свойства эритроцитов вносят определенный вклад в реализацию эффективного микрокровотока [ 33 ].
Эритроциты обладают уникальными механическими свойствами, которые определяют их функционирование в условиях потока. Деформируемость отражает способность к изменению формы под действием внешних сил [ 40 ], это изменение полностью обратимо и при снятии деформирующего воздействия восстановление формы клетки происходит за достаточно короткое время порядка 0. Деформируемость эритроцитов обеспечивает снижение вязкости крови при высоких скоростях сдвига и играет важную роль при пассаже эритроцитов через терминальные сосуды микроциркуляторного русла, диаметр которых сопоставим с размерами клеток крови [ 128 ]. Уникальная форма эритроцитов двояковогнутый диск , отсутствие ядра и органоидов делает возможным вытягивание клетки с более, чем двукратным увеличением линейных размеров без существенного увеличения площади поверхности мембраны [ 99 ].
Считается, что деформируемость определяется вязкостью внутреннего содержимого клетки и вязкоэластическими свойствами мембраны, которые зависят от свойств сети протеинов на внутренней цитоплазматической стороне мембраны [ 100 ]. Модификация функциональных свойств эритроцитов возможна и под воздействием вазоактивных соединений, поскольку на мембране эритроцита имеются рецепторы к целому ряду таких соединений [ 131 , 34 ] и комплекс внутриклеточных сигнальных путей [ 21 , 108 ]. Кроме влияния вазоактивных агентов, участие эритроцитов в модуляции микрокровотока и сосудистого тонуса реализуется посредством жидкостно-механического взаимодействия с сосудистой стенкой [ 25 , 26 , 159 ] и высвобождением ими вазоактивных агентов АТФ [ 48 ] и оксида азота NO [ 73 , 148 ]. Было замечено, что деформируемость эритроцитов оказывает влияние на индуцированное гипоксией высвобождение АТФ: снижение деформируемости способствует уменьшению высвобождения АТФ, а рост деформируемости синхронизирован со стимуляцией этого процесса [ 111 ].
Посредством продукции оксида азота самими эритроцитами или клетками эндотелия под влиянием пристеночного напряжения сдвига, деформация эритроцитов может оказывать влияние на такие жизненно важные функции, как распределение крови, ангиогенез, митохондриальное дыхание и биогенез, потребление глюкозы, кальциевый гомеостаз и контрактильные свойства мышц. Таким образом, все эти функции находятся под регуляторным влиянием реологии крови [ 33 ]. Все попадающие в кровь биологически активные соединения контактируют с эритроцитами и могут оказывать влияние на их функциональные свойства. На сегодняшний день описано влияние более 30-ти различных факторов на микрореологические свойства и функции эритроцитов, есть все основания полагать, что в реальности это количество значительно больше [ 34 ].
В последнее время получены сведения о влиянии на реологические свойства эритроцитов таких соединений, влияние которых ранее не рассматривалось, но регуляторная роль которых в системе кровообращения становится все более очевидной, например, молекул газомедиаторов и циркулирующих в крови липидов. Известно, что циркулирующие в крови липиды связаны с неблагоприятными изменениями реологических свойств эритроцитов. Повышенный уровень липопротеинов низкой плотности или триглицеридов ассоциирован с ухудшением деформируемости эритроцитов, а липопротеины высокой плотности находятся в прямой взаимосвязи с деформируемостью [ 113 ]. Важнейший регулятор энергетического обмена гормон лептин, синтезируемый адипоцитами жировой ткани, улучшает деформируемость эритроцитов через NO-цГМФ-зависимый механизм [ 143 ], но в то же время повышает агрегацию эритроцитов [ 62 ].
Представлены данные о том, что лептин способен вызывать дилатацию сосудов как посредством NO-зависимых, так и NO-независимых механизмов [ 87 ]. В физиологических условиях лептин вызывает эндотелий-зависимую вазорелакцсацию стимулируя NO и эндотелиальный гиперполяризующий фактор. В то время как у практически здоровых лиц эффект лептина ведет преимущественно к вазодилатации, у пациентов с метаболическим синдромом гиперлептинемия постепенно дисрегулирует контроль кровяного давления посредством ухудшения эндотелиальной функции. По мере развития метаболического синдрома вклад эндотелиального гиперполяризующего фактора в гемодинамический эффект лептина становится неэффективным.
Резистентность к вазодилатационному влиянию лептина может вносить вклад в развитие артериальной гипертонии [ 29 ]. Изучение влияния газомедиаторов на микрореологические свойства эритроцитов предпринято относительно недавно. Газомедиаторы — малые липидорастворимые молекулы газов NO, CO, H2S , которые не требуют сложного каскада передачи сигнала для реализации своего регуляторного влияния, они способны легко проникать через клеточную мембрану и непосредственно реализовывать свою биологическую функцию, взаимодействуя с клеточными компонентами [ 102 ]. Благоприятное влияние NO на микрореологические свойства эритроцитов показано Baskurt O.
Муравьев А. Эффект оксида азота и сероводорода на деформируемость и агрегатные свойства эритроцитов зависит от уровня обеспеченности кислородом и более выражен у лиц с высокими показателями максимального потребления кислорода [ 3 , 8 ]. Продемонстрировано положительное влияние оксида азота на микрореологические свойства эритроцитов и показатели свертывания крови [ 141 ]. Классическая триада Рудольфа Вирхова, обозначившая ключевые факторы тромбообразования, включает в себя нарушение целостности сосудистой стенки в первую очередь ее эндотелиального слоя , изменения состава и свойств самой крови и скорости кровотока.
Если первые два фактора интенсивно изучались и здесь достигнуты определенные успехи, то исследованию влияния условий течения крови на процесс тромбообразования уделялось недостаточно внимания. Первые исследования в этой области были предприняты в 70-гг. Начальным этапом свертывания крови является первичный тромбоцитарно-сосудистый гемостаз, который играет важную роль как в физиологических условиях, так и при патологии. Нестимулированные тромбоциты циркулируют в виде гладких дискоидных клеток с незначительной метаболической активностью.
Такие тромбоциты не вступают в физиологически значимое взаимодействие с другими форменными элементами периферической крови или монослоем эндотелиальных клеток, выстилающим эндоваскулярное пространство. Физиологическая активация тромбоцитов начинается тогда, когда поврежден сосудистый эндотелий и обнажен субэндотелиальный внеклеточный матрикс. При этом происходит быстрая адгезия тромбоцитов к обнаженному субэндотелиальному экстрацеллюлярному матриксу в целях остановки кровотечения и репарации поврежденных тканей. На следующих этапах первичного гемостаза происходят активация и агрегация тромбоцитов с формированием тромбоцитарной пробки [ 86 ].
В условиях in vivo и адгезия, и агрегация тромбоцитов включает переход от движения в потоке к фиксации на поверхности. В случае адгезии поверхность, к которой прикрепляются тромбоциты, это сосудистая стенка либо окружающие ткани, адгезивными субстратами выступает эндогенный матрикс или мембранные протеины и протеогликаны со связанными компонентами плазмы. В случае агрегации поверхностью является мембрана соседних тромбоцитов, которые уже иммобилизованы в месте формирования тромба и предоставляют мебраносвязанные субстраты, перемещенные из внутренних мест хранения в процессе активации или извлеченные из плазмы. Таким образом, и на процесс адгезии, и на процесс агрегации тромбоцитов оказывают влияние условия течения крови, то есть ее реология [ 49 , 69 ].
Однако использование агрегатометрии тромбоцитов in vitro не позволяет учитывать влияние кровотока, важной переменной, существенно повышающей сложность процесса агрегации тромбоцитов.
Наиболее часто применяемыми препаратами от гиперкоагуляции являются гепарин и аценокумарол. Гепарин — это разжижающий кровь препарат, который действует очень быстро и чаще всего используется в экстренных случаях, в исключительных ситуациях, таких как длительный перелет или операция. С другой стороны, аценокумарол можно использовать постоянно. Однако длительный прием этого препарата требует постоянного контроля МНО в крови. Навигация по записям.
Почему у человека густая кровь, как разжижать?
В итоге аминокислоты в большом количестве выделяются в организме. Результат будет тот же. Чрезмерное употребление углеводов, сахара, фруктозы ведет к такому же исходу. Если продукция загрязнена экологически, в ней имеются тяжелые металлы, пестициды, в жидкостях организма образуются соединения, которые достаточно устойчивы. И человек в конечном итоге задает вопрос, какой анализ говорит о густой крови.
Ведь он сталкивается с подобными симптомами. Нехватка некоторых витаминов, питательных веществ приводит к таким же негативным явлениям. Речь идет о витамине С, В, минералах. Иначе еда переваривается не до конца, ведь ферментов попросту не хватает.
Если почки не выполняют свои функции оптимальным образом, сильные кислоты остаются в теле. А это приводит к закислению жидкостей организма. Если оказываются поврежденными сосуды, пациенту необходимо сдать анализы на кровь. При нарушении деятельности печени важно также регулярно проверяться у врача.
Каждый день в этом внутреннем органе продуцируется около 20 г белков крови. Если процесс нарушен, химический состав ее меняется в значительной мере. Порой вопросом, как по анализам определить густую кровь, задаются люди, пострадавшие от гиперфункции селезенки. Паразиты, имеющиеся в теле, также способны провоцировать подобные патологии.
Что это такое В крови имеются две главные составные части — форменные элементы и плазма. Плазма является жидкостью, в то время как элементы представлены клетками, способствующими загустению. В случаях, если второй категории становится больше первой, вся кровь на анализах крови густая. Официальная медицина не содержит такого понятия.
На ее языке это называется повышенным гематокритичным числом. Диагностируют его по уровню протромбина, фибриногена. Однако вязкой такая жидкость способна стать из-за изменений в других показателях. Речь идет о гемоглобине, глюкозе и некоторых других элементах.
В чем опасность Понять, что значит густая кровь в анализах, очень важно, ведь такое состояние организма опасно для жизни. Именно по этой жидкости переносятся все необходимые для поддержания жизнедеятельности организма вещества. Если здесь есть нарушения, ткани не получают всех необходимых элементов. Некоторых продукты распада остаются в теле, хотя они для него уже вредны, и от них необходимо избавиться.
От застоев страдает непосредственно сердечная мышца, ее износ происходит гораздо быстрее. Кроме того, в значительной мере повышается вероятность образования тромбов. В случаях, когда человек употребляет в пищу животные жиры, не включая в рацион полезных антиоксидантов, состав крови становится более густым. Это всегда имеет негативные последствия.
Нередко явление сопровождается кровотечением из носа. Это случается, потому что тканям не хватает кислорода, и тогда давление в них поднимается. Еще один симптом — на конечностях появляются красные пятна. На ощупь они будут холодными.
Что оказывает влияние на вязкость Поврежденные сосуды, неправильное функционирование печени, изменения в эритроцитах, тромбоцитах способны спровоцировать слипание клеток. Жидкая часть должна содержаться в пределах нормы. Нередко имеет место подобный механизм возникновения патологии. Угнетенной оказывается щитовидная железа, тогда нарушается функционирование ЖКТ.
Почему у людей бывает густая кровь? Раздел программы, направленный на гигиеническое обучение и просвещение населения, посвящен вопросам профилактики некоторых заболеваний, пропаганде здорового образа жизни. Кровь состоит из плазмы жидкой части и форменных элементов клеток крови , которые и определяют ее густоту. Вязкость крови повышается при повышении уровня протромбина и фибриногена, но может провоцироваться и повышением уровня эритроцитов и других форменных элементов крови, гемоглобина, глюкозы и холестерина.
Такое изменение формулы крови называют синдромом повышенной вязкости крови, или гипервискозным синдромом.
Трудно изучать вязкость крови обособленно, она зависит от многих факторов: температуры, наличия тромбоцитов и белых кровяных телец но только при патологических условиях. При низких скоростях сдвига малых нагрузках вязкость высокая: эритроциты упакованы стопками и мешают течению, при высоких скоростях сдвига красные тельца вытягиваются вдоль потока, и вязкость минимальна. Для описания течения жидкостей используют разные математические модели: кровь — это неньютоновская жидкость, то есть ее вязкость зависит от скорости сдвига.
Кривые напряжения сдвига описываются разными уравнениями. Течение крови описывается моделью Кессона, она обладает пределом текучести то есть чтобы кровь потекла необходимо приложить определенное усилие.
Ещё одна особенность чеснока — он действует как антибиотик и способствует нормализации микрофлоры кишечника. Это позволяет получать больше питательных микроэлементов из употребляемой пищи. Свекла Свекла также полезна при густой крови. В отличии от других овощей, при её термической обработке клетчатка не разрушается. В небольшом количестве в ней также имеются витамин Е, фолиевая кислота, калий и натрий. Не рекомендуется употреблять свежий концентрированный свекольный сок. Диетологи рекомендуют его смешивать с яблочным или морковным в соотношении 1 к 1.
Не менее приемлемый вариант — это употребление свекольного кваса. Сельдерей Содержит клетчатку, витамины группы В и D, которые стимулируют течение большинства метаболических процессов в крови. А ещё сельдерей очишает сосуды , поскольку элементы в его составе помогают не образовываться бляшкам и тромбам в сосудах, улучшают эластичность их стенок. Капуста Богата на жидкость, фолиевую кислоту. Но самой полезной считается квашенная капуста — в ней имеются полезные бактерии, нормализующие работу желудочно-кишечного тракта. В небольшом количестве в ней присутствуют: йод; селен; витамины К и РР. Но стоит учитывать, что при язвенной болезни желудка или при гастрите частое употребление квашенной и свежей капусты может усугубить течение заболевания. Лучше этот нюанс дополнительно обсуждать с гастроэнтерологом или диетологом. Морковь Богата на клетчатку и витамин А который принимает участие в формировании костного мозга, где и вырабатывается кровь, форменные её элементы.
Морковный сок — одно из лучших средств для быстрого разжижения крови. Именно поэтому его и рекомендуют пить при хронических заболеваниях сердечно-сосудистой системы и при гипертонии.
Общие правила
- Что происходит с организмом, когда кровь густеет: Три главных симптома
- КАКАЯ вязкость КРОВИ, такая и ЖИЗНЬ
- Add to Collection
- Вязкость крови и здоровье
- Измерение вязкости цельной крови
- Причины густой крови, лечение
Важный показатель нормальной работы организма — реология крови
Вязкость крови зависит от соотношения плазмы и форменных элементов. Показатель вязкости крови говорит о том, сколько прослужат сердце и сосуды. Зависимость вязкости крови от способности эритроцитов к деформации обуславливается тем, что диаметр эритроцитарных клеток в два раза превышает диаметр капилляров. Вязкость крови измеряется прибором вискозиметром, сравнивающим скорость движения крови по отношению к дистиллированной воде при одинаковой температуре и объеме. На густоту крови могут влиять различные факторы, включая уровень гемоглобина, количество эритроцитов, вязкость плазмы, а также наличие или отсутствие воспалительных процессов или заболеваний. Густая кровь (синдром повышенной вязкости) возникает при увеличении значений гематокрита, нарушении соотношения между уровнем ферментов и плазмы.