Грибы используют для биологического метода борьбы с вредителями сельского хозяйства (свекловичным долгоносиком, щитовками). Вредители сельскохозяйственных растений, виды животных, способные причинить экономически значимый ущерб сельскохозяйственным растениям или. Преимущественно, такими почвенными микроорганизмами являются бактерии. Почва – это своего рода фабрика гниения, где растительные и животные остатки превращаются в питательные вещества. Вредители сельскохозяйственных растений, виды животных, способные причинить экономически значимый ущерб сельскохозяйственным растениям или. Вредители сельскохозяйственных растений, виды животных, способные причинить экономически значимый ущерб сельскохозяйственным растениям или.
Доклад почвенные бактерии 5 класс по биологии
Вирусы – вредители сельского хозяйства. Я познаю мир. Вирусы и болезни | Найди верный ответ на вопрос«Организмы: бактерии гниения, почвенные черви, гадюка, белка, сорока, плесневый гриб. |
Вредители сельскохозяйственных растений. Большая российская энциклопедия | Причиной появления устойчивости к ядохимикатам у микроорганизмов, вредителей сельского хозяйства и других подобных организмов является проводимый человеком непроизвольный отбор. |
Бактерии гниения живущие в почве | Бактерии гниения являются своеобразными санитарами нашей планеты. |
Вирусы – вредители сельского хозяйства
Грибы используют для биологического метода борьбы с вредителями сельского хозяйства (свекловичным долгоносиком, щитовками). Бактерии гниения и разложения почвенные бактерии. Почвенные бактерии гниения являются вредителями сельского хозяйства. Роль бактерий в процессах брожения. Сельскохозяйственных вредителей предложили уничтожать отходами от производства пива. Почвенные бактерии и бактерии гниения. Роль почвенных бактерий в природе. Органическое сельское хозяйство основано на принципах и логике живого организма, согласно которым все элементы (почва, растения, сельскохозяйственные животные, насекомые, фермер и местные условия) тесно связаны между собой.
Содержание
- Микроорганизмы в почве роль и значение
- Нет комментариев
- Микроорганизмы в почве роль и значение
- Лучший ответ:
- Бактерии для почвы
Интенсификация сельского хозяйства стала причиной массового исчезновения энтомофагов
Тип ответа Выбор ответа из предложенных вариантов. Верны ли следующие суждения о бактериях? Ядерное вещество бактериальной клетки не отделено от цитоплазмы. При производстве кисломолочных продуктов используются азотфиксирующие бактерии.
Бактерии также очень полезны для обеспечения растений азотом, который им необходим в больших количествах и которых так не хватает на ваших участках. Тем не менее, растения и животные сталкиваются с дилеммой, подобной той, что возникла у древнего моряка, который плыл по течению в море без пресной воды: «Вода, вода везде и ни капли, чтобы пить». К сожалению, ни животные, ни растения не могут использовать газообразный азот N 2 для их питания. Тем не менее, некоторые виды бактерий способны извлекать газообразный азот из атмосферы и преобразовывать его в форму, которую растения могут использовать для производства аминокислот и белков. Этот процесс преобразования известен как фиксация азота Роль бактерий обитающих в почве играет большую роль. Некоторые азотфиксирующие бактерии образуют взаимовыгодные ассоциации с растениями. Одно из таких симбиотических отношений, которое очень важно для сельского хозяйства.
Включает группу бактерий ризобии, фиксирующих азот, которые живут в клубеньках, образованных на корнях бобовых. Эти бактерии обеспечивают азот в форме, которую могут использовать бобовые растения. В то время как бобовые снабжают бактерии сахаром для получения энергии. Сидераты для почвы Клевер и волосатая вика выращиваются в качестве покровных культур для обогащения почвы органическими веществами, а также азотом, для следующей культуры. В поле люцерны бактерии могут фиксировать сотни килограммов азота. У гороха количество фиксированного азота значительно ниже, около 30-50. Подробнее для чего нужны сидераты читайте тут. Актиномицеты другая группа бактерий, расщепляют большие молекулы лигнина на меньшие размеры. Лигнин — это большая и сложная молекула, содержащаяся в растительной ткани, особенно в стеблях, которая расщепляется большинством организмов. Лигнин также часто защищает другие молекулы, такие как целлюлоза, от разложения.
Актиномицеты имеют некоторые характеристики, сходные с характеристиками грибов, но иногда они группируются сами по себе и получают равное распределение по бактериям и грибам. Микоризные грибы Микоризные грибы помогают растениям поглощать воду и питательные вещества, улучшают фиксацию азота. И помогают формировать и стабилизировать почвенную структуру. Выращивания культур выбирают для большего количества типов грибов с лучшими показателями, чем для монокультуры. Некоторые исследования показывают, что использование покровных культур, особенно бобовых, между основными культурами помогает поддерживать высокий уровень спор. Способствует хорошему развитию микоризы в следующей культуре. Корни с большим количеством микоризы лучше противостоят грибковым болезням, паразитическим нематодам, засухе, засолению и токсичности. Было показано, что микоризные ассоциации стимулируют свободноживущие азотфиксирующие бактерии азотобактер, которые, в свою очередь, также производят химические вещества, стимулирующие рост растений. Грибы — это другой тип почвенного микроорганизма Дрожжи — это гриб, используемый при выпечке и производстве алкоголя. Другие грибы производят ряд антибиотиков.
Мы все, наблюдали, на слишком долго лежащем хлебе появляется грибок плесень. Мы видели или ели грибы, растущие в лесу. Огородники знают, что грибы вызывают многие заболевания растений. Такие как ложная мучнистая роса, фитофтороз, серная гниль, различные виды корневых гнилей и парши яблони. Грибы также инициируют разложение свежих органических остатков. Они помогают добиться успеха, размягчая органический мусор. Облегчает присоединение других организмов к процессу разложения. Грибы также являются основными разлагающими лигнина и менее чувствительны к кислотным условиям почвы, чем бактерии. Никто не может функционировать без кислорода. Поверхностная обработка почвы способствует накоплению органических остатков на поверхности и вблизи нее.
Это способствует росту грибков, как это происходит во многих естественных нетронутых экосистемах. У многих растений развиваются полезные отношения с грибами, которые усиливают контакт корней с почвой. Другими словами гифы этих микоризных грибов поглощают воду и питательные вещества, которые затем могут питать растение. Способны использовать воду и питательные вещества в почве. Которые могут быть недоступны для корней. Это особенно важно для фосфорного питания растений в низкофосфорных почвах. Поэтому гифы помогают растению поглощать воду и питательные вещества. А грибы, в свою очередь, получают энергию в виде сахаров, которую растение вырабатывает в листьях и отсылает к корням. Эта симбиотическая взаимозависимость между грибами и корнями называется микоризными отношениями. Учитывая все обстоятельства, это довольно хорошо влияет как для растения, так и для гриба.
Гифы этих грибов помогают развивать и стабилизировать большие участки почвы. Выделяя липкий гель, который склеивает минеральные и органические частицы вместе. Подписывайтесь, чтоб не пропустить и быть уже опытным огородником. Ставьте, лайки кому понравилась статья, пишите отзывы, о чем хотели бы узнать. До новых встреч дорогие подписчики. Источник: edrol. Виноградского 1952 микрофлору почвы можно разделить на метаболически активные организмы R-стратеги , которые ассимилируют неорганические, низкомолекулярные органические вещества и быстро ферментируют высокомолекулярные органические соединения — белки, целлюлозу, пектин, хитин «зимогенная» микрофлора , и метаболически малоактивные организмы k-стратеги , способные к деструкции и синтезу гумусовых веществ «аутохтонная» микрофлора [2]. Костычевым подразумевалось, что растения служат источником питательных субстратов для микрофлоры, которая является биологически активным окружением растения, поставляющим генетические ресурсы для эволюции симбиотически специализированных форм[3]. Существуют две основные группы фиксирующих атмосферный азот микроорганизмов — вступающие в симбиоз с высшими растениями роды бактерий Rhizobium, Bradyrhizobium, Mezorhizobium, Sinorhizobium, Azorhizobium [4] и свободноживущие. Ко второй группе относятся ассоциативные азотфиксаторы роды бактерий Azospirillum, Pseudomonas, Agrobacterium, Klebsiella, Bacillus, Enterobacter, Flavobacterium Arthrobacter и др.
По выражению В. Вернадского: «Почва пропитана жизнью». Жизнеспособные микроорганизмы могут давать в сутки несколько поколений себе подобных. В 1г почвы численность бактерий достигает миллиарда[6]. На большое количество микроорганизмов в биосфере указывают исследования Д. Никитина, по их подсчетам микробная биомасса в почве превышает ежегодно синтезируемую высшими растениями фитомассу[7]. Исследования П. Им рассмотрены механизмы регуляции численности микроорганизмов и подходы к управлению желательной или нежелательной микрофлорой в почве[8]. Функции микрофлоры почвы[править править код] Почвенная микрофлора разлагает органические субстанции и разрабатывает ценные формы гумуса в глубинных слоях земли. Жизненные процессы в почве играют ключевую роль для ее строения, плодородия, роста и развития растений.
Изучение микрофлоры почвы показало, что концепция микробиома, изначально предложенная J. Lederberg с соавт. Основные функции эндофитных сообществ заключаются в контроле патогенов и вредителей, а также в освобождении растений от поступающих извне ксенобиотиков, а возможно, и от собственных токсичных метаболитов. Некоторые клубеньковые бактерии способны к фиксации азота. Такие бактерии вступают в симбиоз с бобовыми культурами, проникают в их корни и вызывают образование «клубеньков», в которых они размножаются. Эти микроорганизмы способны фиксировать азот, а образующийся при этом аммиак используется растением для собственного роста[10][11]. Некоторые виды микробного сообщества почвы могут выполнять такие функции как: ассимиляция почвенных источников азота, фосфора и железа, а также трансформация и перераспределение метаболитов между частями растения, что в определенной степени компенсирует отсутствие у него пищеварительных органов. Важной функцией эндофитов, особенно в условиях стрессов, может быть регуляция развития растений посредством активации синтеза гормонов, витаминов и других биологически активных веществ[12]. Обнаружено два пути диссимиляционной нитратредукции у различных представителей почвенной микрофлоры. При развитии в естественной среде обитания денитрифицирующие псевдомонады осуществляют оба процесса в равной мере, у спороносных бактерий доминирует восстановление нитрата до аммонийного азота.
В результате осуществления процессов денитрификации у этих микроорганизмов обнаружены значительные потери азота из среды[13]. Микроскопические грибы отличаются наиболее активным и совершенным энергетическим обменом по сравнению с другими почвенными микроорганизмами. У актиномицетов и бактерий этот показатель несколько ниже. Преобладание грибов в микробном сообществе, осуществляющем разложение растительных остатков, объясняется не только высокой проникающей способностью нитей грибного мицелия гифов , но и биохимическими особенностями. При распаде целлюлозы, крахмала и пектинов почвы образуется большое количество органических кислот, которые повышает кислотность почвы, а это неблагоприятно сказывается на ее заселении бактериями. Большинство микроорганизмов предпочитают нейтральную реакцию среды[14]. Биомасса грибов может активно развиваться как в верхних слоях почвы, так и при дефиците кислорода, например Fusarium F. По сравнению с остальными почвенными организмами грибы имеют экономный обмен веществ, так как они используют большое количество углерода и азота из разлагаемых ими соединений для построения собственного тела. Разработка препаратов на основе почвенной микрофлоры[править править код] Почвенные микроорганизмы значительно отличаются друг от друга по морфологии, размерам клеток, отношению к кислороду, потребностям к ростовым факторам, способности ассимилировать различные субстраты. В почве насчитывается свыше 100000 видов микроорганизмов, но в промышленности используется около 100 из них[16].
Одна из важнейших задач сельскохозяйственной микробиологии — выяснение роли микроорганизмов в агроландшафте, вычленение наиболее значимых видов, изучение их функций, селекции и интродукции в окружающую среду, что впоследствии позволит направленно регулировать почвенно- микробиологические процессы. Сельскохозяйственная микробиология превратилась в наиболее актуальное направление по причинам непредвиденных последствий применения минеральных удобрений, пестицидов и регуляторов роста растений. В большинстве случаев это привело к непредсказуемым изменениям климата и утрате как биологического разнообразия растений и животных, так и изменению микромира почвенного плодородного слоя. Необходимость использования биологических возможностей растений и микроорганизмов для частичной или полной замены агрохимикатов позволяет успешно решить проблему обеспечения питательными веществами и защиты растений от болезней и вредителей[17]. При определении продуктивности взаимодействия «растение-микроорганизм» необходима оценка совместимости метаболических систем, к примеру, путей транспортировки азота и углерода, а также отсутствие активных защитных реакций у растений в ответ на присутствие или проникновение микроорганизмов. Расположенные в ризосфере или «клубеньках» бактерии могут синтезировать вещества, как стимулирующие фитогормоны, витамины , так и угнетающие ризобиотоксины развитие растения[18]. В настоящее время производятся продукты следующих классов: Вещества, синтезированные теми или иными почвенными микроорганизмами, например фитогормоны. Например, сенной палочки Bacillus subtilis , или грибов-эндофитов. Препараты искусственно подобранных и искусственно воспроизводимых сообществ микроорганизмов, например «эффективные микроорганизмы». Препараты естественных сообществ микроорганизмов естественных и искусственных почв, например концентрированный почвенный раствор КПР.
Применение полезных для почв микроорганизмов способствует формированию структуры этих почв и естественного биологического равновесия. Такие микроорганизмы используются в сельском хозяйстве для уничтожения вредных насекомых и предотвращения болезней растений, повышения качества и количества урожая, повышения плодородия почв.
Оздоравливают почву, стимулируя ее самоочищение от патогенных организмов. Приводят в норму сбалансированное питание растительности. Защищают представителей флоры и стимулируют их рост на ранних стадиях. Способствуют образованию и развитию корневой системы. Укрепляют защитные реакции растительных организмов, а также их сопротивляемость различным инфекциям. Обзор видов Живущие в почве нашей планеты микроорганизмы делятся на несколько видов согласно способу питания, функциональным особенностям, среде обитания и другим особенностям. Организмы, обитающие в почве, представлены бактериями гниения, паразитами и симбионтами.
При этом взаимоотношения между различными видами сапрофитов могут быть самыми разными. Микроорганизмы, которые относятся к группе одноклеточных, образующих споры, бывают 12-ти типов. Они выделяются на основе предпочтений бактерий к среде обитания. Например, термофилы могут существовать только в теплой среде. Под влиянием данных одноклеточных многие элементы, в частности, мочевина превращается в вещества, типичные для роста и развития растительности. Патогенная микрофлора грунта является результатом ее загрязнения фекалиями. Такие микробы попадают в субстрат из кишечника животных или растений и тем самым способствуют процедуре гниения. Главными представителями патогенной микрофлоры считают колиформных прокариотов. После попадания в грунт эти одноклеточные существуют в ней длительное время при условии хорошего прогревания почвы и отсутствия доступа прямого солнечного света.
Колиформных бактерий относят к наиболее опасным, так как они попадают в почву из кишечника животного. Также опасными для людей и других живых организмов считаются бактерии, что вырабатывают ферменты высокотоксичной природы. По форме клеточных стенок Классификация почвенных бактерий по форме клеточных стенок была основана на методах геномных исследований. По данному принципу ученые выделяют 3 типа одноклеточных: бациллы, у которых клетка имеет стержневидную форму; кокки имеют клетку в форме сферы; спириллы — это спиралевидные организмы. Также были выявлены почвенные микроорганизмы сложного типа. К таковым относят разветвленных актиномицет. По отношению к кислороду Согласно использованию кислорода в процессе своей жизнедеятельности, почвенные одноклеточные бывают следующих видов: аэробные, для их существования необходим кислород; анаэробные бактерии погибают при наличии кислорода в определенном слое грунта. По способности окрашиваться методом Грама Суть метода Грама — в наличии внешней оболочки, которая выполняет защитную функцию, она может пропускать или препятствовать проникновению антибиотика и красителя внутрь бактерии. Грамположительными считаются крупные виды почвенных микроорганизмов, у которых толстая оболочка, выдерживающая водный стресс.
Грамотрицательными называются мелкие бактерии, которые не проявляют устойчивости к водному стрессу. Чаще всего в почвах встречаются следующие грамотрицательные бактерии: псевдомонады, имеющие вид одиночных мелких организмов, что не образуют спор; азотобактерии — большие подвижные свободноживущие палочки; клубеньковые одноклеточные; энтеробактерии могут быть подвижными и неподвижными, они представлены в виде кишечной флоры млекопитающих организмов, патогенных бактерий для растительности, а также жители грунта и воды; почкующиеся организмы — нитрифицирующие бактерии; цитофаги и миксобактерии — микроорганизмы, образующие слизь и плотные тяжи. Грамположительные организмы представлены в грунте следующими видами: спорообразующими; бациллами — это палочковидные бактерии, проживающие подвижными колониями; анаэробными крупными организмами, участвующими в гниении, сбраживании углеводов, крахмала, пектина; коринеподобными бактериями, обитающими в почве, подстилке, мертвом и живом растительном субстрате. По типу питания Согласно типу питания, бактерии, живущие в почве, делят на автотрофных и гетеротрофных. Первые получают органику для своей жизнедеятельности своими силами. Гетеротрофные организмы пользуются готовой органикой. По функциям Микроорганизмы, находящиеся в грунте, необходимы для деструкции органики. В процессе своей деятельности одноклеточные обогащают важными соединениями почвы. Функцию фиксации азота в прикорневой системе выполняют клубеньковые бактерии.
Нитрифицирующие виды микроорганизмов используют для того, чтобы повысить плодородие грунта. Помимо этого, согласно функциональным особенностям, выделяют следующие группы одноклеточных. Они потребляют углеводы и всевозможные органические соединения, которые представлены в виде свежей либо отмершей органики. Эти бактерии способны сожительствовать на взаимовыгодных друг для друга условиях. Примером таких микроорганизмов являются клубеньковые бактерии. Хемоавтотрофы способны получить энергию из неорганического вещества, в котором нет углерода. Патогены, паразиты растительности. Все вышеперечисленные группы почвенных бактерий играют основную роль в питании представителей флоры. Эти одноклеточные преобразуют почвенную органику, нейтрализуют пестициды, накапливают в грунте азот, предотвращают заболевание растений, а также образовывают почвенные микроагрегаты, увеличивающие влагоемкость субстрата.
Чем питаются? Существует несколько способов получения энергии почвенными бактериями. Среди них встречаются автотрофы — существа, которые вырабатывают вещества для своего питания собственными силами. Некоторые представители данной группы используют в пищу соединения органической природы. Последние называются гетеротрофами и делятся на 3 группы. Бактерии данного вида представляют собой микроорганизмы патогенной природы, живущие за счет иных организмов. Клубеньковыми азотфиксаторами называют бактерии, которые поселяются в прикорневой системе, образуя узлы шарообразной формы. У этих бактерий продолговатая овальная или палочкообразная форма. Зачастую эти организмы взаимодействуют с горохом, чечевицей, люцерной и другими бобовыми.
Сапрофиты — это бактерии гниения. Проживают они в верхних слоях почвы и находятся в ней в огромном количестве. Результат жизнедеятельности сапрофитов — это утилизация мертвых тканей и высокая скорость разложения веществ. Бактерии проявляют особую требовательность к органике грунта. Они не могут существовать без азотсодержащих соединений, нуклеотидов, витаминов, белков и углеводов. Бактерии проживают во всех уголках нашей планеты. В земле эти одноклеточные взаимодействуют с другими представителями микрофлоры и играют роль их хранителей, а также распространителей. Почвенные бактерии способны довольно быстро разложить неживую органику и превратить ее в качественный гумус в разных слоях почвы. Это очень важные одноклеточные, без которых круговорот веществ был бы практически невозможным.
Что такое почвенные бактерии, смотрите далее. Бактерии обитают везде: на земле и на воде, под землей и под водой, в воздушной среде, в телах других созданий природы. Так, к примеру, в организме здорового взрослого представителя рода людского обитает свыше 10 тысяч видов микроорганизмов, а общая их масса составляет от 1 до 3 процентов всего веса человека. Часть микроскопических созданий в качестве питания используют органику. Среди них значимое место занимают бактерии гниения. Они разрушают останки мертвых тел животных и растений, питаясь данной материей. Естественный процесс Разложение органики является естественным процессом и к тому же обязательным, словно бы четко запланированным самой природой. Без гниения невозможен был бы круговорот веществ на Земле. И в любом случае признаки разложения означают появление новой жизни, зарождающейся вначале.
Бактерии гниения здесь — важные персоны! Среди всего богатства органических форм жизни именно они отвечают за этот трудоемкий и незаменимый процесс. Что такое гниение Суть в том, что сложнейшая по своему составу материя распадается на более простые элементы. Современное представление ученых об этом процессе, превращающем органические соединения в неорганические, можно описать следующими действиями: Бактерии гниения обладают метаболизмом, что разрывает химическим путем связи молекул органики, содержащих азот. Процесс питания происходит в форме захвата молекул белка и аминокислот. Ферменты, что выработаны микроорганизмами, в процессе расщепления высвобождают аммиак, амины, сероводород из молекул белка. Продукты, поступающие в организм бактерии гниения, используются для получения энергии.
Бактерии гниения являются вредителями сельского хозяйства
Питаются: Симбиотический тип питания Значение: Играют важную роль в круговороте азота в природе Молочнокислые бактерии участвую в создании кисломолочных продуктов из цельного молока. Приведены примеры таких изделий, показаны этапы из создания. Кроме того, они помогают в закваске овощей.
Грибы, вызывающие инфекции почвы, могут распространяться разными способами, включая контакт с зараженными растениями, почвенными насосами или через воду. Они могут оставаться в почве в течение длительного времени и активироваться при благоприятных условиях. Одним из наиболее распространенных видов грибковых инфекций почвы является фитофтороз.
Он вызывается грибками рода Phytophthora и может поражать широкий спектр растений, включая огурцы, картофель, томаты и др. Фитофтороз приводит к увяданию растений и гибели корневой системы. Другой распространенной грибковой инфекцией является ризактиниоз, вызываемый грибком Rhizoctonia solani. Он может атаковать многие культурные растения, включая картофель, пшеницу, кукурузу и др. Ризактиниоз приводит к гниению корней и стеблей, а также к общему ухудшению состояния растений.
Также почву могут инфицировать грибы из рода Fusarium, которые вызывают различные заболевания, такие как фузариоз и фузариозный гниль. Эти грибки поражают многие культурные растения, включая пшеницу, ячмень, перец и др. Фузариоз приводит к повреждению корневой системы и стеблей, а также вызывает проявление различных симптомов на листьях и плодах. Для управления грибковыми инфекциями почвы необходимо принимать меры по профилактике и контролю. Важно соблюдать меры гигиены, использовать здоровые семена и саженцы, а также правильно обрабатывать почву перед посадкой.
Также возможно применение фунгицидов для борьбы с грибковыми инфекциями.
Небольшие размеры этих существ способствуют их возможности расти, функционировать и адаптироваться даже к тем условиям среды, которые быстро меняются. Зачастую такие микроорганизмы имеют шарообразную форму тела, иногда палочковидную или изогнутую. В грунтах также находится большое количество болезнетворных одноклеточных. Согласно исследованиям ученых, основные пути инфицирования патогенной группой простейших — это зараженные остатки живых существ. Такие микроорганизмы часто являются причиной инфицирования людей и животных такими опасными недугами, как сибирская язва, гангрена и всевозможные кишечные инфекции. Несмотря на то что в природе встречаются патогенные бактерии, способные нанести вред человеку, эти одноклеточные приносят огромную пользу. Участвуют в химических реакциях и процессах, повышают биологическую активность грунта. Принимают участие в гумусообразовании, то есть создании органических веществ.
Оздоравливают почву, стимулируя ее самоочищение от патогенных организмов. Приводят в норму сбалансированное питание растительности. Защищают представителей флоры и стимулируют их рост на ранних стадиях. Способствуют образованию и развитию корневой системы. Укрепляют защитные реакции растительных организмов, а также их сопротивляемость различным инфекциям. Обзор видов Живущие в почве нашей планеты микроорганизмы делятся на несколько видов согласно способу питания, функциональным особенностям, среде обитания и другим особенностям. Организмы, обитающие в почве, представлены бактериями гниения, паразитами и симбионтами. При этом взаимоотношения между различными видами сапрофитов могут быть самыми разными. Микроорганизмы, которые относятся к группе одноклеточных, образующих споры, бывают 12-ти типов.
Они выделяются на основе предпочтений бактерий к среде обитания. Например, термофилы могут существовать только в теплой среде. Под влиянием данных одноклеточных многие элементы, в частности, мочевина превращается в вещества, типичные для роста и развития растительности. Патогенная микрофлора грунта является результатом ее загрязнения фекалиями. Такие микробы попадают в субстрат из кишечника животных или растений и тем самым способствуют процедуре гниения. Главными представителями патогенной микрофлоры считают колиформных прокариотов. После попадания в грунт эти одноклеточные существуют в ней длительное время при условии хорошего прогревания почвы и отсутствия доступа прямого солнечного света. Колиформных бактерий относят к наиболее опасным, так как они попадают в почву из кишечника животного. Также опасными для людей и других живых организмов считаются бактерии, что вырабатывают ферменты высокотоксичной природы.
По форме клеточных стенок Классификация почвенных бактерий по форме клеточных стенок была основана на методах геномных исследований. По данному принципу ученые выделяют 3 типа одноклеточных: бациллы, у которых клетка имеет стержневидную форму; кокки имеют клетку в форме сферы; спириллы — это спиралевидные организмы. Также были выявлены почвенные микроорганизмы сложного типа. К таковым относят разветвленных актиномицет. По отношению к кислороду Согласно использованию кислорода в процессе своей жизнедеятельности, почвенные одноклеточные бывают следующих видов: аэробные, для их существования необходим кислород; анаэробные бактерии погибают при наличии кислорода в определенном слое грунта. По способности окрашиваться методом Грама Суть метода Грама — в наличии внешней оболочки, которая выполняет защитную функцию, она может пропускать или препятствовать проникновению антибиотика и красителя внутрь бактерии. Грамположительными считаются крупные виды почвенных микроорганизмов, у которых толстая оболочка, выдерживающая водный стресс. Грамотрицательными называются мелкие бактерии, которые не проявляют устойчивости к водному стрессу. Чаще всего в почвах встречаются следующие грамотрицательные бактерии: псевдомонады, имеющие вид одиночных мелких организмов, что не образуют спор; азотобактерии — большие подвижные свободноживущие палочки; клубеньковые одноклеточные; энтеробактерии могут быть подвижными и неподвижными, они представлены в виде кишечной флоры млекопитающих организмов, патогенных бактерий для растительности, а также жители грунта и воды; почкующиеся организмы — нитрифицирующие бактерии; цитофаги и миксобактерии — микроорганизмы, образующие слизь и плотные тяжи.
Грамположительные организмы представлены в грунте следующими видами: спорообразующими; бациллами — это палочковидные бактерии, проживающие подвижными колониями; анаэробными крупными организмами, участвующими в гниении, сбраживании углеводов, крахмала, пектина; коринеподобными бактериями, обитающими в почве, подстилке, мертвом и живом растительном субстрате. По типу питания Согласно типу питания, бактерии, живущие в почве, делят на автотрофных и гетеротрофных. Первые получают органику для своей жизнедеятельности своими силами. Гетеротрофные организмы пользуются готовой органикой. По функциям Микроорганизмы, находящиеся в грунте, необходимы для деструкции органики. В процессе своей деятельности одноклеточные обогащают важными соединениями почвы. Функцию фиксации азота в прикорневой системе выполняют клубеньковые бактерии. Нитрифицирующие виды микроорганизмов используют для того, чтобы повысить плодородие грунта. Помимо этого, согласно функциональным особенностям, выделяют следующие группы одноклеточных.
Они потребляют углеводы и всевозможные органические соединения, которые представлены в виде свежей либо отмершей органики. Эти бактерии способны сожительствовать на взаимовыгодных друг для друга условиях. Примером таких микроорганизмов являются клубеньковые бактерии. Хемоавтотрофы способны получить энергию из неорганического вещества, в котором нет углерода. Патогены, паразиты растительности. Все вышеперечисленные группы почвенных бактерий играют основную роль в питании представителей флоры. Эти одноклеточные преобразуют почвенную органику, нейтрализуют пестициды, накапливают в грунте азот, предотвращают заболевание растений, а также образовывают почвенные микроагрегаты, увеличивающие влагоемкость субстрата. Чем питаются? Существует несколько способов получения энергии почвенными бактериями.
Среди них встречаются автотрофы — существа, которые вырабатывают вещества для своего питания собственными силами. Некоторые представители данной группы используют в пищу соединения органической природы. Последние называются гетеротрофами и делятся на 3 группы. Бактерии данного вида представляют собой микроорганизмы патогенной природы, живущие за счет иных организмов. Клубеньковыми азотфиксаторами называют бактерии, которые поселяются в прикорневой системе, образуя узлы шарообразной формы. У этих бактерий продолговатая овальная или палочкообразная форма. Зачастую эти организмы взаимодействуют с горохом, чечевицей, люцерной и другими бобовыми. Сапрофиты — это бактерии гниения. Проживают они в верхних слоях почвы и находятся в ней в огромном количестве.
Результат жизнедеятельности сапрофитов — это утилизация мертвых тканей и высокая скорость разложения веществ. Бактерии проявляют особую требовательность к органике грунта. Они не могут существовать без азотсодержащих соединений, нуклеотидов, витаминов, белков и углеводов. Бактерии проживают во всех уголках нашей планеты. В земле эти одноклеточные взаимодействуют с другими представителями микрофлоры и играют роль их хранителей, а также распространителей. Почвенные бактерии способны довольно быстро разложить неживую органику и превратить ее в качественный гумус в разных слоях почвы. Это очень важные одноклеточные, без которых круговорот веществ был бы практически невозможным. Что такое почвенные бактерии, смотрите далее. Бактерии обитают везде: на земле и на воде, под землей и под водой, в воздушной среде, в телах других созданий природы.
Так, к примеру, в организме здорового взрослого представителя рода людского обитает свыше 10 тысяч видов микроорганизмов, а общая их масса составляет от 1 до 3 процентов всего веса человека. Часть микроскопических созданий в качестве питания используют органику. Среди них значимое место занимают бактерии гниения. Они разрушают останки мертвых тел животных и растений, питаясь данной материей. Естественный процесс Разложение органики является естественным процессом и к тому же обязательным, словно бы четко запланированным самой природой. Без гниения невозможен был бы круговорот веществ на Земле.
Установлено, что микробиологическое разложение пестицидов является главным путем детоксикации почв, а всякая активизация микробиологической деятельности содействует исчезновению ядохимикатов из почв. Скорость микробиологического разложения пестицидов в почве определяется содержанием гумуса, температурой и влажностью почвы, наличием подстилки, содержанием питательных веществ и другими факторами. Хорошие условия для развития почвенных микроорганизмов интенсифицируют биологическую детоксикацию пестицидов. На скорость разложения пестицидов в почве оказывают влияние гранулометрический состав почвы, реакция ее среды, гидротермические условия.
На суглинистых почвах пестициды разлагаются быстрее, чем в почвах легкого состава; хлорорганические пестициды в кислой почве сохраняются дольше, чем в щелочной. Органическое вещество почвы связывает многие пестициды в водонерастворимые и труднодоступные для почвенных организмов формы, вследствие чего токсиканты не подвергаются гидролизу и, несмотря на высокую биологическую активность гумусированных почв, сохраняются в них длительное время. Повышенная температура почвы способствует десорбции пестицидов, связанных коллоидами. На эти процессы также влияют окислительно-восстановительные условия почвы: одни пестициды быстрее метаболируются в анаэробных условиях, другие - в аэробных. В настоящее время для детоксикации почв, загрязненных остаточными пестицидами и патогенными организмами, а также снижения их фитотоксичности для растений используют адсорбционные приемы, составной частью которых являются природные цеолиты. Ниже приводятся примеры эффективности технологий применения природных цеолитов для детоксикации почв от биоцидов. Во ВНИИ сахарной свеклы разработана технология нанесения гербицидов на цеолиты с дальнейшей заделкой в почву. Совместное их применение обеспечивало получение дополнительных урожаев сахарной свеклы и кукурузы за счет улучшения режима минерального питания, снижения фитотоксичности гербицидов и усиления их действия на сорные растения. В первом случае применяли почвенные гербициды ленацил, эптам, раундап , во втором - послевсходовые бетанал AM, бетанал прогресс AM. Цеолиты уменьшали миграцию гербицидов вглубь почвы и удерживали их в поверхностном слое.
При проведении химических обработок во влажных условиях значение цеолитов возрастало. Так, например, на черноземе выщелоченном среднесуглинистом на фоне N90P120K95 испытывали различные дозы цеолита Закарпатского месторождения и гербициды — эптам 6Е, ленацил, бетанол AM. Отмечено снижение фитотоксичности гербицидов для сахарной свеклы при комбинировании их с цеолитами. В присутствии цеолита эптам и бетанал слабее мигрировали в почве. He отмечено негативного влияния цеолита на качество корнеплодов. Под влиянием инсоляции и повышенной влажности почвы он легко испаряется и разрушается, поэтому его эффективность в почвах южных районов значительно снижена. Все это положительно сказывается на урожайности зеленой массы и зерна кукурузы. Для борьбы с обитающими в почве вредителями: проволочниками, ложнопроволочниками, закавказским мраморным хрущом, медведкой и подгрызающими совками — более целесообразно использование фосфорорганических инсектицидов в гранулированном виде, чем соответствующих растворов, т. Изученные процессы позволяют косвенно увеличивать селективную сорбцию ядохимикатов почвы цеолитами, пролонгировать действие пестицидов, снижать количество мигрирующих токсических веществ из почвы в растения, уменьшая нагрузку на окружающую среду и организм человека через продукты питания. В полевых условиях цеолит Пегасского месторождения был применен в качестве пролонгатора пестицида триаллата авадекс В при выращивании ячменя сорта Одесский, пшеницы Скам и гороха Heосыпающийся.
Выявлено уменьшение миграции ядохимикатов в почве в 1,5-2 раза и расхода пестицидов. Пестициды в зерне не обнаружены, уменьшилось также содержание в зерне тяжелых и токсических элементов. Зараженность посадок картофеля фитофторой снизилась в 1,8 раза. Проведены лабораторные, полевые и производственные испытания цеолитов как носителей гербицидов путем их гранулирования. Установлено, что примененные цеолиты не уступают импортным аналогам, обладают рядом преимуществ над жидкими препаративными формами и рекомендуются для борьбы с овсюгом в посевах пшеницы и ячменя. Гербициды применяли в максимально допустимых дозах, обеспечивающих высокий технологический эффект. Внесение цеолитов способствовало снижению остаточных количеств гербицидов табл. Так, содержание семерона в кочанах капусты снизилось под действием цеолитов в 4 раза, но все-таки не достигло норм ПДК. Остаточные количества прометрина не обнаружены в корнеплодах моркови, а в почве - ниже ПДК, хотя прослеживается тенденция к их снижению под влиянием внесенных цеолитов.
Микроорганизмы в почве
Среди овощных культур открытого грунта сильнее всего поражается стручковый перец. Снижение урожая и качества перца происходит из—за деформации и отмирания мякоти плодов, обусловленными вирусом огуречной мозаики, вирусом табачной мозаики и вирусом X картофеля. Кроме того, вирус огуречной мозаики вызывает у перца стерильность пыльцы. Многие переносимые тлями вирусы вызывают у своих хозяев пожелтение листьев. Эти растенйд становятся более привлекательными для летающей в поисках хозяина тли. Например, здоровым растениям сахарной свеклы тля предпочитает растения, зараженные вирусом желтухи, на пожелтевших листьях которых она живет в полтора раза дольше и дает в три раза более многочисленное потомство, чем на здоровых листьях. Это связано с тем, что желтый и красноватый цвета привлекают тлю, а синий отталкивает.
Поэтому редко стоящие растения, сквозь которые проглядывает желтоватая почва, менее защищены от тли, чем сомкнутый зеленый покров. В период массового лёта для отпугивания насекомых от растений тыквы и дыни расстилают по почве белую полимерную пленку. Насекомые вынуждены искать другое место для посадки, и урожай на защищенных таким образом растениях возрастает в несколько раз! Вирусные болезни плодовых культур распространяются главным образом при прививках. От вирусных болезней страдают семечковые и косточковые культуры, болеет виноград, сильно поражены вирусами все ягодники. Старые сорта заражены значительно сильнее новых, и зачастую заражены полностью — найти здоровый экземпляр бывает трудно или просто невозможно.
Еще в первой трети XX века, когда о вирусной природе многих заболеваний яблони и груши, сливы и персика, цитрусовых и винограда можно было только догадываться, потери были очень значительны. Например, количество персиковых деревьев в различных штатах США, раскорчеванных из—за вирусных заболеваний, исчислялось миллионами. Потери от вируса оспы сливы в Европе также оказались громадными, потому что урожайность сливовых садов могла упасть, скажем, в десять раз безо всякой надежды на ее восстановление. Особенно распространен этот вирус в странах средиземноморского бассейна и Юго—Восточной Европе. В России вирус оспы сливы является карантинным объектом, но, невзирая на это, быстро распространяется на север и уже прочно обосновался в Нечерноземье. Одним из самых распространенных и наиболее вредоносных для винограда считается вирус короткоузлия его еще называют вирусом вееролистности из—за характерной формы листа, наблюдаемой при заражении этим вирусом.
У некоторых сортов винограда все растения поражены этим вирусом. Помимо прививки, он переносится нематодами, а нематоды на виноградниках могут уходить в почву на глубину в два—три метра, где их не достать. Кроме того, даже через несколько лет после выкорчевки кустов, пораженных короткоузлием, в почве еще могут находиться живые корни. В основном этой проблемой озабочены, конечно, виноделы. Как известно, вино получается при сбраживании дрожжами растворимых сахаров виноградного сока. При этом образуется этиловый спирт и углекислый газ.
В ягодах, которые все же вызревают, повышается кислотность и понижается содержание сахара, из них трудно сделать хорошее вино.
Ученые из Новосибирского государственного аграрного университета Новосибирск вместе с коллегами исследовали развитие инфекции, вызванной B. Гусеницы этих насекомых поедают воск, мед и повреждают соты, нанося этим ущерб пчеловодству. Вощинную огневку, как и муху дрозофилу, широко используют по всему миру как объект лабораторных исследований.
Механизмы сопротивляемости этих насекомых были изучены ранее, а в этом исследовании ученые выясняли, какую стратегию выберут бактерии, которые преодолели защитные барьеры устойчивых насекомых и привели к гибели организм хозяина. Специалисты заражали восприимчивых неустойчивых и резистентных устойчивых насекомых бактериями B. Затем исследователи сравнивали иммунный ответ. В течение 48 часов большая часть особей, устойчивых к B.
Это подтвердило предположение о том, что уровень таких пептидов повышается у насекомых в ответ на воздействие B.
Они участвуют в образовании болотных железных руд и водных источников, богатых солями железа. Около 2,5 млрд. После появления многоклеточных организмов между ними и бактериями образовались многочисленные связи, включая преобразование органических веществ органотрофами, и разного рода симбиотические отношения, паразитизм, иногда внутриклеточный риккетсии , и патогенез. Наличие бактерий и др.
В экстремальных условиях, непригодных для существования других организмов, бактерии могут представлять единственную форму жизни. Бактерии являются одними из наиболее просто устроенных живых организмов кроме вирусов. Полагают, что они — первые организмы, появившиеся на Земле. Отмирающие корни — основной источник поступления в почву органического вещества, из которого образуется перегной, окрашивающий почву в темный цвет до глубины массового распространения в ней корневых систем. Извлекая элементы питания с глубины несколько метров и отмирая, растения вместе с органическим веществом накапливают элементы азотного и минерального питания в верхних горизонтах почвы.
При этом травянистые растения извлекают минеральных веществ из почвы больше, чем древесные. Каждой растительной формации соответствует комплекс микроорганизмов разного видового состава, меняющегося с изменением почвообразования. Между почвообразовательным процессом и организмами почвы существует теснейшая связь. Корни растений, как муфтой, одеты живым слоем микробных клеток — бактерий и грибов, полезных и вредных. При подборе соответствующих растений в севообороте можно вести борьбу с нежелательными микроорганизмами почвы.
Отмирающая зеленая растительность разлагается бактериями и грибами. Микроорганизмы энергично изменяют не только органическую, но и минеральную часть почвы. Жизнедеятельность их зависит от комплекса почвенных условий, которые могут или способствовать, или задерживать развитие микробов. Количество микроорганизмов в почве достигает огромных величин. В 1 г целинных почв насчитывается 0,5 — 2, в окультуренных — 2 — 3 и более миллиардов микробов.
Больше всего микроорганизмов в поверхностных горизонтах почвы 10 см. Книзу количество их убывает; на глубине нескольких метров почва относительно стерильна. Наиболее благоприятна для микробиологических процессов температура от 20 до 40о. В хорошо обработанной окультуренной почве микроорганизмов больше, чем в необработанной; их больше в пресных нейтральных и известковых почвах и меньше в засоленных. Черви и личинки перемешивают почву, вынося землю наверх из глубоких слоев и обогащают ее органическим веществом.
Почвенная масса, прошедшая через кишечник дождевых червей, обогащается азотом и кальцием, приобретает большую емкость поглощения. Следовательно, дождевые черви улучшают химические и физические свойства почвы, увеличивая пористость, аэрацию и влагоемкость ее. В сильно кислых и щелочных, заболоченных или очень сухих почвах дождевых червей нет. Наконец, почву населяют позвоночные животные, главным образом грызуны суслики, байбаки, сурки, хомяки, хорьки, мыши, слепыши, кроты , образующие местами многочисленные норы. Заполненные норы землероев, имеющие на почвенном разрезе вид овальных пятен разного диаметра, известны под названием котловин.
Перерытость почвы чаще отрицательно влияет на ее свойства, увеличивая карбонатность и водопроницаемость до очень большой потери воды на фильтрацию. Глубокая обработка почвы и выравнивание поверхности уменьшают вредное действие землероев. Бактерии Бактерии низшие растения Бактерии - наиболее широко распространенная в природе группа микроорганизмов. Бактериальная клетка невелика. Клетки наиболее мелких шаровидных бактерий имеют в диаметре менее 0,1 мкм.
Подавляющее большинство бактерий имеют форму палочек, прямых или изогнутых, толщина которых не превышает 0,5-1 мкм, а длина 2-3 мкм. Очень редко встречаются бактерии-"гиганты", клетки которых имеют в диаметре-5-10 мкм, а в длину достигают 30-100 мкм. Палочки, имеющие форму спирали, называются спириллы, изогнутые - вибрионы. Бактерии, имеющие форму шара,- кокки. Некоторые бактерии имеют булавовидную форму, ветвятся.
Все бактерии представлены особым типом клеток, лишенных истинного ядра, окруженного ядерной мембраной, т. В клетках бактерий отсутствуют митохондрии, хлоропласты. По способу окраски, впервые предложенного в 1884 г. Кристианом Грамом, бактерии делят на две группы: грамположительные и грамотрицательные. Строение Внутренняя организация бактериальной клетки сложна и имеет свои специфические особенности.
Клетка бактерий одета плотной оболочкой - клеточной стенкой. Она выполняет защитную и опорную функции и придает клетке постоянную, характерную для нее форму. Толщина клеточной стенки - 0,01 - 0,04 мкм. Основным структурным компонентом стенок является муреин. У грамположительных бактерий в состав клеточных стенок входят полисахариды, тейхоевые кислоты, связанные с каркасом стенок - муреином.
В стенках грамотрицательных бактерий содержатся липопротеиды и липополисахариды, муреина меньше. Клеточная стенка многих бактерий сверху окружена слоем слизистого вещества - капсулой, толщина которой может во много раз превосходить диаметр клетки, иногда она очень тонкая. Капсула - не обязательная часть клетки, она образуется в зависимости от условий, в которые попадают бактерии. В цитоплазме различают основное вещество, или матрикс, рибосомы обычно свободные, некоторые связаны с мембранами и большое количество мембранных структур, выполняющих у бактерий самые различные функции аналоги митохондрий, эндоплазматической сети, аппарата Гольджи. Однако их нельзя рассматривать как постоянный признак.
Гранулы могут состоять из соединений, которые служат источником энергии и углерода крахмала, гликогена, гранулезы, волютина, полиметафосфатов. В бактериальной, клетке встречаются и капельки жира. В центральной части клетки локализовано ядерное вещество - дезоксирибонуклеиновая кислота ДНК , не отграниченная от цитоплазмы мембраной. Это аналог ядра - нуклеоид. Бактериальная ДНК не связана с основными белками - гистонами - и в нуклеоиде расположена в виде пучка фибрилл.
Многие бактерии неподвижны. У бактерий, отличающихся подвижностью, последняя обеспечивается жгутиками. У бактерий может быть один, два или много жгутиков, расположенных на одном-двух концах клетки, по всей поверхности. Диаметр их 0,01-0,03 мкм, длина может во много раз превосходить длину клетки. Бактериальные жгутики имеют сложное строение и состоят из белка флагеллина.
Внутри бактериальной клетки образуются споры. Спорообразование свойственно только небольшой группе бактерий бациллам, клостридиуму. Споры - не обязательная стадия жизненного цикла бактерий. Колонии многих бактерий имеют яркую окраску, которая обусловливается выделением окрашенного вещества в среду или пигментированием клеток. Некоторые пигменты бактериальных клеток имеют антибиотические свойства, поэтому значительное количество пигментированных микроорганизмов являются продуцентами антибиотиков.
Питание Бактерии в совокупности с другими группами микроорганизмов выполняют огромную химическую работу. Одни бактерии нуждаются в готовых органических веществах - аминокислотах, углеводах, витаминах, - которые должны присутствовать в среде, так как сами они не могут их синтезировать. В зависимости от субстрата, на котором развиваются бактерии, различают: сапрофитные формы - питаются мертвым органическим веществом молочнокислые бактерии, бактерии гниения и др. Многие формы обладают способностью и к паразитическому, и к сапрофитному образу жизни палочки сыпного тифа, сибирской язвы, бруцеллеза и др. Другие бактерии все потребности в углероде, необходимом для синтеза органических веществ тела, удовлетворяют за счет неорганических соединений.
Среди них различают: фотосинтезирующие бактерии синтезируют органические вещества за счет солнечной энергии - цианобактерии, пурпурные бактерии и зеленые бактерии ; хемосинтетики синтезируют органические вещества за счет химической энергии окисления серы - серобактерии, аммония и нитрита - нитрифицирующие бактерии, железа - железобактерии, водорода - водородные бактерии ; метилотрофы синтезируют органическое вещество за счет химической энергии метаболизма углеродных соединений, содержащих метильную группу, простейшими из которых является метан. Размножение Бактерии размножаются двойным бинарным делением. После удлинения клетки постепенно образуется поперечная перегородка, затем дочерние клетки расходятся; у многих бактерий в определенных условиях клетки после деления остаются связанными в характерные группы. При этом в зависимости от направления плоскости деления и числа делений возникают разные формы: у шарообразных бактерий пары клеток - диплококки, цепочки - стрептококки, пластинки, пакеты - сарцины. Палочкообразные бактерии также могут образовывать пары и цепочки.
Ни низкие температуры Антарктики, ни кипящие струи гейзеров, ни насыщенные растворы солей в соляных бассейнах, ни сильная инсоляция горных вершин, ни жесткое облучение атомных реакторов не мешают существованию и развитию микрофлоры. Все живые существа - растения, животные и люди - постоянно взаимодействуют с микроорганизмами, являясь часто не только их хранилищами, но и распространителями. Микроорганизмы - аборигены нашей планеты, первопоселенцы, активно осваивающие самые невероятные природные субстраты. Микрофлора почвы. Количество бактерий в почве чрезвычайно велико - сотни миллионов и миллиардов особей в 1 г табл.
Таблица 1. Мишустину Почва Количество микроорганизмов, млн. Виноградскому, бедные микрофлорой почвы содержат 200-500 млн. Количество бактерий зависит от типа почв, их состояния, глубины расположения слоев табл. Часто они развиваются в толще сгустков органического вещества, на живых и отмирающих корнях растений, в тонких капиллярах и внутри комочков.
Среди них есть аэробы и анаэробы, споровые и неспоровые формы. Микрофлора - один из факторов образования почв. Областью активного развития микроорганизмов в почве является зона, примыкающая к корням живых растений. Ее называют ризосферой, а совокупность микроорганизмов, содержащихся в ней,- ризосферной микрофлорой. Микрофлора водоемов.
Вода - природная среда, где в большом количестве развиваются микроорганизмы. Фактор, определяющий количество бактерий в воде,- наличие в ней питательных веществ. Очень богаты бактериями открытые водоемы, реки. Очень загрязнена вода в пригородной полосе за счет стоков. Со сточными водами в водоемы попадают патогенные микроорганизмы: бруцеллезная палочка, палочка туляремии, вирус полиомиелита, ящура, возбудители кишечных инфекций палочки брюшного тифа, паратифа, дизентерийная палочка, холерный вибрион и др.
Бактерии долго сохраняются в воде, поэтому она может быть источником инфекционных заболеваний. Чистая вода содержит 100-200 бактерий в 1 мл, а загрязненная - 100-300 тыс. Много бактерий в донном иле, особенно в поверхностном его слое, где бактерии образуют пленку. В этой пленке много серо- и железобактерий, которые окисляют сероводород до серной кислоты и тем самым предотвращают замор рыбы. Есть нитрифицирующие и азотфиксирующие бактерии.
По видовому составу микрофлора воды сходна с микрофлорой почвы, но в воде встречаются и специфические бактерии Вас. Микрофлора воздуха. Микрофлора воздуха менее многочисленна, чем микрофлора почвы и воды. Количество микроорганизмов в воздухе зависит от географической зоны, местности, времени года, загрязненности пылью и др. Каждая пылинка является носителем микроорганизмов, поэтому их очень много в закрытых помещениях от 5 до 300 тыс.
Больше всего бактерий в воздухе над промышленными городами. Воздух сельских местностей чище. Микробиологическому исследованию воздуха уделяется очень большое внимание, поскольку воздушно-капельным путем могут распространяться инфекционные болезни грипп, скарлатина, дифтерия, туберкулез, ангина и др. Микрофлора организма человека. Тело человека, даже полностью здорового, всегда является носителем микрофлоры.
Количество микробов на коже одного человека составляет 85 млн. На руках обнаруживают кишечные палочки, стафиллококки. Рот с его температурой, влажностью, питательными остатками - прекрасная среда для развития микроорганизмов. Желудок имеет кислую реакцию, поэтому основная масса микроорганизмов в нем гибнет. Начиная с тонкого кишечника реакция становится щелочной, т.
Внутренние органы, не соединяющиеся с внешней средой мозг, сердце, кровь, печень, мочевой пузырь и др. У микроорганизмы, вызывающие инфекционные заболевания, называются болезнетворными, или патогенными табл. Они способны проникать в ткани и выделять вещества, которые разрушают защитный барьер организма. Факторы проницаемости высокоактивны, действуют в малых дозах, обладают ферментными свойствами. Они усиливают местное действие болезнетворных микроорганизмов, поражают соединительную ткань, способствуют развитию общей инфекции.
Это инвазионные свойства микроорганизмов. Вещества, угнетающие защитнце силы организма и усиливающие патогенное действие возбудителей, называются агрессинами. Болезнетворные микроорганизмы выделяют также токсины - ядовитые продукты жизнедеятельности. Наиболее сильные яды, выделяемые бактериями в окружающую среду, называются экзотоксинами. Их образуют дифтерийная и столбнячная палочки, стафиллококк, стрептококк и др.
У большинства бактерий токсины выделяются из клеток только после их смерти и разрушения. Такие токсины называются эндотоксинами. Их образует туберкулезная палочка, холерный вибрион, пневмококки, возбудитель сибирской язвы и др. Есть бактерии, которые называются условнопатогенными, потому что в обычных условиях они живут как сапрофиты, но при ослаблении сопротивляемости организма человека или животного могут вызвать серьезные заболевания. Пастер Луи 1822-1895 - французский микробиолог и химик.
Основоположник микробиологии и иммунологии. Предложил метод предохранительных прививок вакцинами, которые спасли и спасают миллионы людей от инфекционных заболеваний. Например, кишечная палочка - обычный сапрофит кишечника - при неблагоприятных условиях может вызывать воспалительные процессы в почках, мочевом пузыре, кишечнике и других органах. Большой вклад в борьбу с инфекционными болезнями животных и человека внес Луи Пастер. Симбиоз клубеньковых бактерий и бобовых растений Из 13 000 видов 550 родов бобовых растений клубеньки выявлены пока только у 1300 видов 243 рода.
Из этих растений более 200 видов - сельскохозяйственные растения. Благодаря клубенькам бобовые растения приобретают способность усваивать атмосферный азот. Бактерии, вызывающие образование клубеньков у бобовых клубеньковые бактерии , принадлежат к роду ризобиум. Эти бактерии свободно живут в почве, но фиксацию молекулярного азота способны осуществлять лишь в симбиозе с растением. Комплекс растение - ризобиум является примером настоящего симбиоза.
Растение обеспечивает бактерии питательными веществами и создает для них оптимальные условия существования, а бактерии снабжают растение азотом. Растение реагирует на бактерии уродливым разрастанием ткани, а в случае недостатка некоторых элементов питания например, бора бактерия может стать настоящим паразитом растения. В условиях обильного снабжения углеводами клубеньковая бактерия интенсивно фиксирует азот атмосферы. Для клубеньковых бактерий характерно поразительное разнообразие форм - полиморфность. Они могут быть палочковидными, овальными, в форме кокков подвижных и неподвижных.
Клубеньковые бактерии - микроаэрофилы развиваются при незначительном количестве кислорода в среде , однако предпочитают аэробные условия. В качестве источников углерода в питательных средах используют углеводы и органические кислоты, источников азота - разнообразные минеральные и органические азотосодержащие соединения. Клубеньковые бактерии обладают строгой специфичностью. Процесс внедрения клубеньковых бактерий в ткань корня состоит из двух фаз: 1 инфицирование корневых волосков; 2 процесс образования клубеньков. В большинстве случаев внедрившаяся клетка, активно размножаясь, образует так называемые инфекционные нити и уже в виде таких нитей перемещается в ткани растения.
Реакция почвы - нейтральные значения pH. Степень обеспеченности бобовых растений доступными формами минеральных соединений азота, фосфрра, калия, кальция, магния, серы, железа, микроэлементов. Биологические факторы - ризосферная микрофлора, насекомые. Корневые клубеньки распространены не только у бобовых растений. Имеется около 200 видов различных растений, связывающих азот в симбиозе с микроорганизмами, образующими клубеньки на их корнях или листьях.
Изучены клубеньки на корнях ольхи, якорцев из семейства парнолистниковых , вейника лесного. Обнаружены клубеньки на корнях капусты, редьки семейство крестоцветных. Клубеньки на листьях образуют бактерии филлосферы, которые также участвуют в азотном питании растений. Нитрагин - бактериальное удобрение, состоящее из нескольких штаммов клубеньковых бактерий. Роль бактерий в природе Микроорганизмы вообще и бактерии в частности играют большую роль в биологически важных круговоротах веществ на Земле, осуществляя химические превращения, совершенно недоступные ни растениям, ни животным.
Круговорот азота. Циклическое превращение азотистых соединений играет первостепенную роль в снабжении необходимыми формами азота различных по пищевым потребностям организмов биосферы. Подсчитано, что количество азота, участвующего в круговороте, составляет 108-109 т в год. Биологическая фиксация азота осуществляется свободноживущими бактериями несимбиотическая фиксация азота и бактериями, существующими в сообществе с растениями симбиотическая фиксация азота. К первой группе относятся цианобактерии, азотобактер, фотосинтезирующие бактерии, некоторые виды клостридиум.
Важнейшими микроорганизмами второй группы являются бактерии рода ризобиум, развивающиеся в клубеньках на корнях преимущественно бобовых растений. Проблема фиксированного азота имеет большое, значение для сельского хозяйства. Превращение органического азота и образование аммиака. Значительное количество азота, запасенного в органических соединениях живых организмов, сохраняется в растительных и животных тканях и освобождается лишь после смерти этих организмов. Разложение органического азота с образованием аммиака бсуществляется микроорганизмами.
Аммонификация - гидролиз сложных органических соединений белков, нуклеиновых кислот до более простых аминокислот, органических азотистых оснований , которые затем расщепляются в результате дыхания и брожения. Осуществляется микроорганизмами рода бациллюс картофельная, сенная, чудесная палочки. Разложение белка в анаэробных условиях - гниение - обычно не приводит к освобождению всего аминного азота в виде аммиака. Гнилостное разложение характерно для деятельности анаэробных бактерий рода клостридиум. Нитрификация - превращение аммиака в нитрат, осуществляется в природе двумя высокоспециализированными группами аэробных бактерий.
Происходит в два этапа: на первом аммиак окисляется до нитрита с помощью бактерий нитрозомонас и нитрозоцистис; на втором нитрит окисляется до нитрата с участием нитробактера. В результате совместной деятельности этих бактерий образуется нитрат - основное азотистое вещество почвы, используемое растениями в процессе роста. Денитрификация - процесс восстановления нитрата до нитрита и газообразного азота. В ходе этого процесса связанный азот удаляется из почвы и воды с освобождением газообразного азота в атмосферу. В этом процессе участвуют бактерии родов псевдомонас и бациллюс, а также кишечная палочка, способная восстанавливать нитраты до нитритов.
Круговорот углерода. Биологическое превращение органического углерода в углекислый газ, сопровождающееся восстановлением молекулярного кислорода, требует совместной метаболической активности разнообразных микроорганизмов. Многие аэробные бактерии псевдомонады, бациллы, актиномицеты осуществляют полное окисление органических веществ. В анаэробных условиях органические соединения первоначально расщепляются путем сбраживания, а органические конечные продукты брожения окисляются далее в результате анаэробного дыхания, если имеются неорганические акцепторы водорода нитрат, сульфат или С02. Брожение молочнокислое аэробный процесс - разложение углеводов лактозы, мальтозы, сахарозы, глюкозы до молочной кислоты.
Осуществляется бактериями семейства лактобактерий болгарская палочка, молочный стрептококк. Используется в пищевой получение молочнокислых продуктов, квашение овощей , хлебопекарной промышленности, при силосовании кормов. Брожение пропионовокислое анаэробный процесс - разложение углеводов и солей молочной кислоты до пропионовой, уксусной кислот, углекислого газа, воды. Осуществляется бактериями рода пропионибактериум, некоторыми видами клостридиум Clos. Используется в молочно-сыроварных производствах.
Брожение маслянокислое анаэробный процесс - разложение углеводов, белков с образованием масляной кислоты, углекислого газа, водорода. Осуществляется бактериями рода клостридиум Clos, pasteurianum; Clos. Брожение пектиновых веществ анаэробный процесс - разложение пектиновых веществ до масляной, уксусной кислот, углекислого газа, воды. Осуществляется бактериями рода клостридиум Clos. Используется при первичной обработке волокнистых растений.
Окисление целлюлозы - гидролиз целлюлозы до глюкозы или целлобиозы, а затем окисление продуктов гидролиза.
Приведены примеры таких изделий, показаны этапы из создания. Кроме того, они помогают в закваске овощей. Болезнетворные бактерии — те самые, из-за которых человек подхватывает многие тяжёлые заболевания вроде тифа, холеры, чумы, столбняка, сибирской язвы и других.
Бактерии гниения : 1) Среда обитания 2) Значение в природе 3) Значение в жизни человека
Сельское хозяйство может разрушить ризиобиом почвы (микробную экосистему), используя почвенные поправки, такие как удобрения и пестициды, без компенсации их воздействия. Наличие бактерий: Бактерии гниения являются основными виновниками разложения органического материала. В чем заключается причина появления у микроорганизмов, вредителей сельского хозяйства и других организмов устойчивости к ядохимикатам? Наличие бактерий: Бактерии гниения являются основными виновниками разложения органического материала. Это увеличивает урожайность сельскохозяйственных культур и продуктивность сельского хозяйства, но также отрицательно влияет на грунтовые и поверхностные воды, загрязняет атмосферу и ухудшает здоровье почвы. Постоянное мутирование микроорганизмов делает их устойчивыми к пестицидам.
Роль и значение бактерий-сапротрофов в природе
Пестициды, использующиеся в сельском хозяйстве для уничтожения вредителей или подавления роста нежелательных растений. Пожалуй, главные враги сельского хозяйства – болезнетворные микроорганизмы (бактерии, вирусы, грибы). В сельском хозяйстве к группе нематод, наносящих наибольший экономический ущерб, относятся малоподвижные эндопаразиты, в том числе роды Heterodera и Globodera (оба рода – цистообразующие нематоды), а также род Meloidogyne (галловые нематоды).
В Россельхозцентре Татарстана рассказали о том, как эффективно избавляться от проволочников
все это рассматривается в рамках данной статьи. Грибы используют для биологического метода борьбы с вредителями сельского хозяйства (свекловичным долгоносиком, щитовками). Бактерии являются обязательным звеном круговорота веществ в природе.
Как сельское хозяйство загрязняет природу?
Отвечу на вопрос мгновенно! Нейросеть ChatGPT. Ответы на вопрос Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом. Отвечает Сидорова Валерия. Среда обитания: обитают в почве.
Широко обсуждается влияние пестицидов на качество воздуха и воды, воздействующие на сообщества в сельскохозяйственных районах, но меньше внимания уделяется пагубному воздействию пестицидов на здоровье почвы. Данное всестороннее исследование проясняет эту связь. Предпосылки Метаанализ, являющийся совместным проектом организаций «Друзья Земли», «Центр биологического разнообразия» и ученых из Мэрилендского университета, включал в себя систематический обзор почти 400 исследований, в которых изучалось воздействие пестицидов на нецелевых беспозвоночных, то есть не на вредителей, которых пестицид стремится уничтожить. Эти исследования охватывали 284 видов пестицидов или их комбинаций, используемых в полевых и лабораторных условиях, а также 275 уникальных видов почвенных беспозвоночных. Пестициды могут проникать в почву несколькими способами: просачиваясь в нее, когда они применяются в виде гранул, покрытых семян, или через ирригационные системы процесс, называемый фертигацией , или когда растительные остатки растений, обработанных пестицидами, разлагаются на полях. Одна горстка почвы содержит огромное разнообразие организмов — от 10 до 100 миллионов, и все они играют важную роль в обеспечении здоровья почвы. Для целей этого исследования почвенные беспозвоночные были идентифицированы как любой организм, «который имеет яйцо, личинку или незрелое развитие в почве», включая бактерии, грибы и беспозвоночные, такие как черви, клещи, жуки, муравьи, многоножки, термиты, слизни, улитки и многие другие.
Вредят личинки, похожие на кусочки ржавой проволоки. Личинки повреждают семена, проростки, корневую систему, клубни, корнеплоды и т.
Наилучшим местом для размножения проволочников являются запыренные участки, а также поля из-под многолетних трав после трех-четырехлетнего их использования. На участках, имеющих сильную степень заселенности почвенным вредителем, то есть более 20 личинок на квадратный метр, специалисты учреждения не рекомендуют сеять кукурузу, картофель. На участках, имеющих среднюю степень заселенности — от 6 до 20 проволочников на квадратный метр — посев возможен при проведении защитных мероприятий.
Они осуществляют процесс гниения и превращают остатки растений и животных в неорганические вещества. Бактерии гниения разлагают сложные органические соединения, такие как полисахариды, липиды и белки, на более простые соединения, такие как углеродные диоксид, вода и минеральные соли. Этот процесс высвобождает питательные вещества, которые могут быть использованы другими организмами в экосистеме. Бактерии гниения также содействуют улучшению почвенной структуры. Они выделяют плексус полимерных веществ, которые создают агрегаты почвы, облегчая проход воды и воздуха, а также повышая устойчивость почвы к эрозии. Кроме того, бактерии гниения играют важную роль в цикле питательных веществ в экосистеме. Они участвуют в циркуляции углерода, азота, серы и других элементов, необходимых для роста и развития растений. Без участия этих бактерий, питательные вещества оставались бы недоступными для других организмов в экосистеме и не были бы переработаны вновь в органический материал. Таким образом, бактерии гниения почвы играют важную роль в поддержании биологического равновесия в экосистеме, обеспечивая разложение органического материала и циркуляцию питательных веществ. Функции и значение Бактерии гниения почвы выполняют ряд важных функций, которые влияют на здоровье и плодородие почвы. Первая и наиболее известная функция — разложение органического материала. Благодаря активности этих бактерий, остатки растений, животных и других органик возникающих в почве могут быть разложены и превращены в доступные растениям питательные вещества. Это особенно важно для круговорота питательных веществ в почве. Вторая функция заключается в синтезе некоторых витаминов, таких как рибофлавин, пиридоксин и никотинамид. Эти витамины являются важными микроэлементами для растений и оказывают положительное влияние на их рост и развитие. Третья функция связана с защитой почвы от инфекционных заболеваний.
Вредные насекомые-фитофаги
- Читайте так же
- Опасности в почве: вредители и заболевания
- ОГЭ / Биология / 12 задание / 01
- Роль бактерий гниения в разложении органического материала
- Бактерии гниения почвы: важные функции и влияние
- Загрязнение почвы
Бактерии гниения почвы: роль, влияние и важные функции
- Почвенные микроорганизмы: враги, друзья и помощники
- чем заключается причина появления у микроорганизмов, вредителей сельского хозяйства и... -
- Микроорганизмы, как альтернатива пестицидам
- Оставляйте реакции
Бактерии гниения : 1) Среда обитания 2) Значение в природе 3) Значение в жизни человека
Почему у микроорганизмов-вредителей сельского хозяйства и других организмов появляется устойчивость к ядохимикатам? благодаря специальному механизму, который они приобретают в процессе эволюции. Выделяют следующие группы бактерий: бактерии гниения, почвенные бактерии, молочнокислые и болезнетворные бактерии. Важнейшими микроорганизмами второй группы являются бактерии рода ризобиум, развивающиеся в клубеньках на корнях преимущественно бобовых растений. Бактерии гниения являются важными компонентами почвенной экосистемы, играющими ключевую роль в разложении органических веществ.