Применявшиеся для этого водородные бомбы считались сравнительно "чистыми" от радиации и были намного удобнее обычной, химической взрывчатки. Атомная, водородная, термоядерная и нейтронная бомбы — в чем фактическая разница между этими видами ядерного оружия? это два различных типа ядерных боеприпасов, которые имеют разные принципы работы и поразительные характеристики. Водородные и атомные бомбы относятся к атомной энергетике.
Водородная (термоядерная) бомба: испытания оружия массового поражения
Разница между атомной и водородной бомбой | Как сообщают ученые, водородная бомба в несколько тысяч раз мощнее атомной,и отличается от нее своим строением. |
Чем водородная бомба отличается от атомной? | Чем отличается ядерная бомба от атомной и водородной бомбы. |
Водородная и атомная бомбы: сравнительные характеристики | В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. |
Термоядерный заряд. Отличие водородной бомбы от атомной: список различий, история создания
термоядерное оружие колоссальной разрушительной силы, использующее в качестве источника энергии синтез тяжёлых ядер дейтерия и трития. Конечно, обывателям не обязательно знать, чем отличается атомная бомба от водородной, потому что они несут огромную опасность в любом случае. Какие ядерные испытания проводились в России и СССР Советским атомным проектом, будут ли они проводиться еще в 2023 году и чем известны бомбы РДС-1, РДС-6с, Кузькина мать и Царь-бомба, разбирается ФедералПресс. Водородная бомба, также называемая термоядерной бомбой, использует термоядерный синтез, или объединение атомных ядер, для производства взрывной энергии. В свою очередь, в водородной бомбе энергия высвобождается в результате реакции термоядерного синтеза тяжёлого водорода — дейтерия и трития — и получения более тяжёлых элементов.
Современное термоядерное оружие
- В чем разница между атомной, водородной и нейтронной бомбой?
- Свет и удар
- Чем отличается атомная бомба от водородной: что сильнее и какой взрыв мощнее
- Термобарические боеприпасы и как их применяют
- Ядерные испытания в России и СССР: где они проходили и будут ли новые
- Взрывная молва: как выглядели первые атомные бомбы
«Ничего подобного у США не было»: какую роль в истории СССР сыграло появление водородного оружия
Атомная бомба приводит к тому, что происходит цепная реакция, которая совершенно не поддается контролю, а огромное количество освобожденной энергии наносит чудовищные разрушения. Уран и плутоний - не такие уж и безобидные элементы таблицы Менделеева, они приводят к глобальным катастрофам. Атомная бомба Чтобы понять, какая самая мощная атомная бомба на планете, узнаем обо всем подробнее. Водородные и атомные бомбы относятся к атомной энергетике. Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу.
Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада. Нейтронная сила совершенно не поддается контролю человека. Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое.
Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм взрывчатого вещества стал причиной гибели 200 тысяч человек. Принцип работы и преимущества вакуумной бомбы Считается, что вакуумная бомба, созданная по новейшим технологиям, может конкурировать с ядерной. Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию.
Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет. Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако.
При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища. Выгорание кислорода образует везде вакуум. При сбрасывании этой бомбы получается сверхзвуковая волна и образуется очень высокая температура. Отличие вакуумной бомбы американской от российской Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки.
Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров.
Чем водородная бомба отличается от атомной Термоядерный синтез — процесс, который происходит во время детонации водородной бомбы — самый мощный тип доступной человечеству энергии. В мирных целях его использовать мы еще не научились, зато приспособили к военным. Эта термоядерная реакция , подобная той, что можно наблюдать на звездах, высвобождает невероятный поток энергии. В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее.
Обычно топливо представляет собой дейтерий и тритий. У взрывоопасных бомб внутри есть бомба деления - это первичная, которая создает чрезвычайно высокую температуру и давление, необходимые для ядерного синтеза. Вторичным является то, где происходят реакции слияния. Возможно иметь многоступенчатое оружие, в котором третичная ступень производит еще больше энергии. Пластиковые бомбы часто закрываются демпфером из обедненного урана.
С огромным потоком нейтронов, созданным в реакциях слияния бомб, обедненный уран фактически подвергается самому делению, что приводит к конфигурации, иногда известной как устройства деления-слияния-деления: существует первичное деление, которое воспламеняет вторичное слияние, что, в свою очередь, вызывает деление в заслонке. Странность заключается в том, что вторая реакция деления обычно дает большую часть выхода бомбы. Первое испытание Первую водородную бомбу, изготовленную под руководством Сахарова, испытали на секретном полигоне Семипалатинска — и они, мягко говоря, впечатлили не только ученых, но и западных лазутчиков. Ударная волна Прямое разрушительное воздействие водородной бомбы — сильнейшая, обладающая высокой интенсивностью ударная волна. Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда.
Самое большое в мире оружие слияния было советским «Цара Бомба» с урожаем около 50 мегатонн. Цара Бомба никогда не была предназначена для производства оружия. Он был предназначен для производства более 100 мегатонн, но они заменили обедненный урановый затвор свинцом. Бомба была переброшена по испытательному полигону « Новая Земля », и было много сомнений в том, что бомбардировщик мог ускользнуть от взрыва в 100 мегатонн. Для 50-мегатонного взрыва практически весь энергетический выход был вызван реакциями синтеза.
Это было самое чистое оружие, когда-либо взорванное. В разгар холодной войны развернутые термоядерные бомбы достигли урона в 25 мегатонн и 15 мегатонн. С тех пор эти очень большие бомбы урожая были сняты с эксплуатации и демонтированы. Максимальный выход современного ядерного оружия с переменным выходом, как правило, находится в диапазоне от 250 до 300 килотонн. Тем не менее, есть еще несколько крупных бомб слияния.
Тепловой эффект Водородная бомба всего в 20 мегатонн размеры самой большой испытанной на данный момент бомбы — 58 мегатонн создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда. В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки. Диаметр воронки, образованной взрывом, превысит два километра, а глубина ее будет колебаться около пятидесяти метров. Что такое атомная бомба? Как Китай, так и Россия по-прежнему развертывают 5 мегатонн боеголовок.
Изменить: Правильная ссылка на самую мощную ядерную бомбу. Грязная бомба или радиологическое рассеивающее устройство - это бомба, которая объединяет обычные взрывчатые вещества, такие как динамит, с радиоактивными материалами в твердой, жидкой или газообразной форме. Грязная бомба предназначена для рассеивания радиоактивного материала в небольшой локализованной области вокруг взрыва. Основная цель грязной бомбы - пугать людей и загрязнять здания или землю. Огненный шар Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала.
Радиационное заражение Но самым опасным последствием взрыва станет, конечно же, радиационное заражение. Распад тяжелых элементов в бушующем огненном вихре наполнит атмосферу мельчайшими частицами радиоактивной пыли — она настолько легка, что попадая в атмосферу, может обогнуть земной шар два-три раза и только потом выпадет в виде осадков. Таким образом, один взрыв бомбы в 100 мегатонн может иметь последствия для всей планеты. В чем разница между грязной бомбой и атомными бомбами, используемыми в Хиросиме и Нагасаки? Атомные взрывы, произошедшие в Хиросиме и Нагасаки, были вызваны ядерным оружием.
Грязная бомба - это обычное взрывное устройство, приспособленное для распространения радиоактивного материала и загрязнение только небольшой площади. Поскольку материал будет рассеиваться в результате взрыва, участки вблизи взрыва будут загрязнены.
Есть мнение, что, сбросив ее у побережья в море, можно было вызвать разрушительное цунами. Это, например, 40-килотонная бомба с зарядом РДС-2 «изделие 501-М».
Водородные бомбы принимали на борт туполевские средние бомбардировщики Ту-16 и тяжелые Ту-95, а также мясищевские М-4 и 3М. Речь идет о разнообразной литературе по этой теме. Степень информированности автора, конечно, впечатляет. Хотя чертежей там нет, да и автор признается, что и ему не все ведомо.
Так, разместив в своей книге фото термоядерной авиабомбы B-83 мегатонного класса ранее опубликованное для всеобщего обозрения Пентагоном , где она представлена целиком и в разобранном состоянии, мистер Гибсон сопроводил иллюстрацию следующей сентенцией: «Понятия не имею, что это за детали тут разложены, и не желаю знать». Вполне патриотичное нежелание Гибсона знать, что там изображено, наверное, может быть одобрено ФБР, но более или менее погруженный в тему читатель может, изучив представленные в книге «потроха» B-83, кое-что идентифицировать с известной долей вероятности.
Принцип действия атомной бомбы основан на использовании энергии, возникающей в результате нарастающей цепной реакции, вызванной делением расщеплением тяжелых ядер плутония или урана-235 с последующим образованием более легких ядер. Сам процесс называют однофазным, и протекает он следующим образом: После детонации заряда вещество, находящееся внутри бомбы изотопы урана или плутония , переходит в стадию распада и начинает захват нейтронов. Процесс распада нарастает, как снежная лавина. Расщепление одного атома приводит к распаду нескольких. Возникает цепная реакция, ведущая к разрушению всех атомов, находящихся в бомбе. Начинается ядерная реакция.
Весь заряд бомбы превращается в единое целое, и его масса переходит свою критическую отметку. Причем вся эта вакханалия длится очень недолго и сопровождается мгновенным выделением огромного количества энергии, что в конечном итоге и приводит к грандиозному взрыву. Кстати, эта особенность атомного однофазного заряда — быстро набирать критическую массу — не позволяет бесконечно увеличивать мощность данного вида боеприпаса. Заряд может быть мощностью сотни килотонн, но чем ближе он к мегатонному уровню, тем меньше его эффективность. Он просто не успеет полностью расщепиться: произойдет взрыв и часть заряда так и останется неиспользованной — ее разметает взрывом. Эта проблема была решена в следующем виде атомного боеприпаса — в водородной бомбе, которая также называется термоядерной. В водородной бомбе происходит несколько другой процесс высвобождения энергии. Он основан на работе с изотопами водорода — дейтерия тяжелый водород и трития.
Атомная, водородная и нейтронная бомбы
Однако они обладают различным механизмом действия. Так, чем конкретно отличается атомная бомба от водородной? В атомном устройстве выделение энергии при взрыве является результатом деления тяжелых ядер. Для этого используется плутоний или уран-235. После этого образуются более легкие ядра. В водородном типе энергия высвобождается благодаря термоядерному синтезу ядер водорода. Что такое атомная бомба Это ядерное оружие, взрыв которого связан с выработкой огромного объема энергии. Это происходит при делении ядер.
Потому данный тип устройства часто называют бомбой деления. Само название считается не слишком точным, поскольку в делении принимает участие только ядро атома. Это касается его нейтронов и протонов. Электроны тут не задействуются. Вещество начинает делиться после достижения критической массы. Это может происходить двумя способами — за счет сжатия некритической массы веществ с применением взрывчатки или при помощи выстрела одной составляющей некритической массы в другую.
Водородная бомба действует сильнее, чем атомная. Радиус ее поражения в разы превышает масштабы ядерного оружия. Одна такая бомба может унести миллионы жизней, и разрушить мегаполисы за считанные секунды.
Общество с ограниченной ответственностью «Три «Ч», Транс, Некоммерческая организация «Фонд защиты прав граждан «Штаб», Межрегиональная общественная организация «Центр содействия коренным малочисленным народам Севера» признаны в РФ иностранными агентами.
Вначале происходит реакция расщепления тяжелых ядер дейтерида лития на гелий и тритий. Затем запускается термоядерный синтез на основе гелия и трития, что приводит к мгновенному нагреву внутри боевого заряда и мощному взрыву. Какая бомба мощнее? Мощность термоядерной бомбы может в сотни тысяч раз превышать мощность атомной бомбы.
Единица измерения мощности термоядерной бомбы — мегатонна, или 1 000 000 т в тротиловом эквиваленте.
Кульминацией этих изобретений стало оружие массового поражения ОМП. Несмотря на то, что исторически первым ОМП являлось химическое оружие, наибольший интерес всё же представляют собой ядерные боезапасы, так как они способны причинить чудовищный ущерб неприятелю. Их работа основана на гигантской энергии, которая разом высвобождается в результате мгновенно протекающих цепных ядерных или термоядерных реакций. Атомная бомба Еще в конце 19 века было обнаружено, что радиоактивные элементы типа урана хранят в своих атомах гигантскую энергию. Как только учёные в своих лабораториях смогли расщепить ядра таких атомов — вопрос о создании атомной бомбы был предрешен. Работы начались в США в самый разгар Второй мировой войны — в 1943 году. Уже через два года всё было готово.
Как всем известно из учебников истории, урановая бомба под прозвищем «Little Boy» была сброшена американцами в 1945 году на японский город Хиросиму, а спустя три дня плутониевый «Fat Man» полетел на Нагасаки. Советский Союз начал разработку атомного оружия практически одновременно с США, но из-за войны работы были окончены позже: первое испытание состоялось в 1949 году. Как же работает атомная бомба? Все мы из школы помним, что атом — мельчайшая частица вещества — состоит из ядра и вращающихся вокруг него отрицательно заряженных электронов. При этом само ядро состоит из положительных протонов и нейтральных нейтронов: Чаще всего число положительных протонов и отрицательных электронов совпадает, и атом остается электрически нейтральным. Но нас интересуют прежде всего нейтроны. Дело в том, что число нейтронов в атоме одного и того же вещества может быть разным. Атомный номер вещества в таблице Менделеева будет один и тот же, а вот массовые числа — разные.
Чем больше нейтронов будет иметь ядро, тем, масса будет больше. Такие вещества с «нестандартным» количеством нейтронов называются изотопами. Изотопы встречаются в природе. Некоторые из них весьма стабильны.
Самая мощная бомба в мире. Какая бомба сильнее: вакуумная или термоядерная?
При распаде ядра урана-235 высвобождается несколько нейтронов, которые расщепляют последующие ядра, выделяя некоторое количество энергии. Но для начала реакции требуется перевести уран в сверхкритическое состояние, для чего ранее использовались различные системы подрыва. Почти также "работают" и плутониевые бомбы, только плутония на одну бомбу требуется значительно меньше, чем урана. Мощность таких бомб ограничена критической массой делящегося в-ва.
В 1952 году США были первой страной, успешно испытавшей водородную бомбу мощностью 10 Мт. И хотя последствия взрыва термоядерной бомбы более разрушительны, создать их намного сложнее. Взрыв компактной водородной бомбы приведет к масштабному заражению радиацией. Малогабаритное термоядерное оружие называют нейтронной бомбой или усиленными радиационными боеголовками. Это оружие можно эффективно использовать против танковых и пехотных формирований на традиционном поле боя, не затрагивая ближайшие населенные пункты в радиусе нескольких километров. Главная опасность этого вида вооружений заключается в выбросе большого количества радиоактивных осадков. Почему даже небольшая ядерная война приведет к массовому голоду на планете? Ответ здесь! Этот тип вооружений также называют радиологическим оружием. По мнению большинства аналитиков использование «грязной бомбы» носит скорее психологический, чем физический характер и может спровоцировать массовую панику.
Эксперты отмечают , что большая часть радиоактивного материала от взрыва грязной бомбы будет рассеяна на несколько городских кварталов или несколько квадратных километров. А вы знаете как работают АЭС? И что будет, если их отключить? Ответ здесь, не пропустите! Несмотря на то, что создать грязную бомбу несложно — главное добыть радиоактивный материал труднее всего добыть плутоний и уран, а также утилизированное ядерное топливо , это оружие ни разу не применялось. Ограниченная ядерная война Как видите, существует масса способов самоуничтожения с помощью ядерного оружия.
Устройство, испытанное США в 1952 году, фактически не являлось бомбой, а представляло собой лабораторный образец, «3-этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же учёные разработали именно бомбу — законченное устройство, пригодное к практическому военному применению [7]. Самая крупная когда-либо взорванная водородная бомба — советская 58-мегатонная « царь-бомба », взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве».
Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый [8]. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила [9] ; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала. Основная статья: История создания схемы Теллера — Улама Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом, была предложена Энрико Ферми его коллеге Эдварду Теллеру осенью 1941 года [10] , в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь. Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость.
Исходя из этого, Теллер предположил, что рентгеновское и гамма-излучение, порождённые первичным взрывом, могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию обжатие и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма. Взрыв «Джордж» В 1951 году была проведена серия испытаний под общим наименованием Операция «Парник» англ. Operation Greenhouse , в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности.
В 1945 году военно-политическое руководство стран Запада начало разработку планов атомной бомбардировки СССР. К концу года было определено 20 крупнейших городов Советского Союза, которые должны были повторить судьбу Хиросимы и Нагасаки.
В 1947—1948 годах был разработан целый ряд новых военных планов. Согласно документу под названием «Чариотир», принятому летом 1948-го, 133 ядерные бомбы должны были упасть сразу на 70 городов Советского Союза. За атомным ударом могли последовать массированные бомбардировки обычными боеприпасами. План «Дропшот», разработанный в 1949 году, был ещё более масштабным: предполагалось уничтожить сразу 100 млн советских граждан 300 атомными бомбами. Советский ответ Внести кардинальные коррективы в своё военное планирование властям США и Великобритании пришлось осенью 1949 года. Речь шла о термоядерной...
Однако полностью проблему обеспечения безопасности СССР это не решило — американцы всё ещё располагали более внушительным ядерным арсеналом и более совершенными средствами доставки. Теперь многое зависело от того, кто окажется лидером гонки в области разработки значительно более мощного термоядерного или водородного оружия. В обычной атомной бомбе происходит детонация находящегося внутри заряда, состоящего из изотопов урана или плутония, которые, распадаясь, выделяют огромное количество энергии. В свою очередь, в водородной бомбе энергия высвобождается в результате реакции термоядерного синтеза тяжёлого водорода — дейтерия и трития — и получения более тяжёлых элементов. Основное преимущество термоядерного оружия в том, что в отличие от атомного у него теоретически нет ограничений по мощности. Первый в мире термоядерный заряд испытали американцы.
Это произошло 1 ноября 1952 года на атолле Эниветок. Однако заокеанские учёные, не сумев создать достаточно компактную бомбу, взорвали лабораторное устройство размером с трёхэтажный дом. Также по теме Ядерный пацифизм: насколько оправданны призывы запретить атомное оружие 16 июля 1945 года Соединённые Штаты впервые в истории человечества провели испытание атомной бомбы. В 1949 году обладателем самого...
Атомная и водородная бомба относятся к ядерному оружию, но принцип действия у них разный.
Какие ядерные испытания проводились в России и СССР Советским атомным проектом, будут ли они проводиться еще в 2023 году и чем известны бомбы РДС-1, РДС-6с, Кузькина мать и Царь-бомба, разбирается ФедералПресс. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Термоядерное оружие (водородная бомба) — вид ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия). Сущностное отличие ядерной и термоядерной бомб. Ядерной (атомной) бомбой принято называть такое устройство взрывного типа, где основная доля высвобождаемой энергии при взрыве выделяется за счёт ядерной реакции деления, а водородной (термоядерной).
Как сильно по мощности отличаются атомная и термоядерная бомбы
Ключевое отличие «грязной бомбы» от атомной в том, что она не создает новой радиоактивности (например, из почвы в эпицентре взрыва). Водородная бомба, она же термоядерная бомба является наиболее продвинутой и технологичной бомбой. Различие между термоядерной и атомной бомбами заключается в том, что у первой при термоядерном синтезе происходит слияние ядер атомов с выделением колоссального количества энергии, а при атомной реакции – происходит радиоактивный распад. Какие ядерные испытания проводились в России и СССР Советским атомным проектом, будут ли они проводиться еще в 2023 году и чем известны бомбы РДС-1, РДС-6с, Кузькина мать и Царь-бомба, разбирается ФедералПресс. Водородные и атомные бомбы относятся к атомной энергетике.
В чем разница между атомной, водородной и нейтронной бомбой?
В водородной бомбе используется энергия не только от деления ядра, но и от последующего термоядерного синтеза, что значительно усиливает мощность взрыва. В ядерной (атомной) бомбе во время взрыва энергия выделяется в результате деления тяжелых ядер плутония или урана-235 с последующим образованием более легких ядер, а в водородной процесс высвобождения энергии происходит за счет термоядерного синтеза. От обычной атомной бомбы нейтронная отличается дополнительным блоком, начиненным изотопом бериллия. Если сравнивать мощность двух типов ядерного оружия, то термоядерная (водородная) бомба даёт намного большую выходную энергию, чем ядерная (атомная). Водородная или термоядерная бомба работает на синтезе слиянии ядер дейтерия Н3 выделяется огромное количество м термоядерной бомбы является плутониевая бомба.
Атомная бомба и водородная бомба
Находятся они в хвостовой части бочки. При соединении они достигают критической массы и начинается цепная реакция. Это и есть атомный взрыв. За счет него выделяется тепло, которое начинает термоядерный синтез гелия из дейтерия.
Подробнее о самых мощных атомных бомбах. Испытания термоядерной бомбы После взрыва в Хиросиме и Нагасаки , окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Разрушительная сила атомного оружия начала привлекать каждую из сторон.
США первыми сделали и испытали ядерную бомбу. Но вскоре стало понятно, что она не может иметь больших размеров. Поэтому было решено попробовать сделать термоядерную боеголовку.
Тут снова же преуспела Америка. Советы решили не проигрывать в гонке и испытали компактную, но мощную ракету, которую можно перевозить даже на обычном самолете Ту-16. Тогда все поняли, чем отличается ядерная бомба от водородной.
Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом. Ее нельзя было доставить небольшим транспортом. Но потом по разработкам СССР размеры были уменьшены.
Если проанализировать взрывы в Японии , можно сделать вывод, что эти ужасные разрушения были не такими уж и большими. В тротиловом эквиваленте сила удара была всего несколько десятком килотонн. Поэтому здания были уничтожены только в двух городах, а в остальной части страны услышали звук ядерной бомбы.
Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой. Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно. Начнется цепная реакция и произойдет взрыв.
Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва. Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки.
Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон.
До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете. Взрыв произошел в 1961 году. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах.
А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров.
Только представьте себе, что бы было, если бы взрыв произошел в городской черте. Современные опасности использования водородной бомбы Отличие атомной бомбы от термоядерной мы уже рассмотрели.
Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели. Вначале взрыв атомной бомбы А образует огненный шар 1 с температурой и миллионы градусов по Цельсию и испускает радиационное излучение? Через несколько минут В шар увеличивается в обьеме и создав! Огненный шар поднимается С , всасывая пыль и обломки, и образует грибовидное облако D , По мере увеличения в обьеме огненный шар создает мощное конвекционное течение 4 , выделяя горячее излучение 5 и образуя облако 6 , При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным 7 в радиусе 8 км, серьезными 8 в радиусе 15км и заметными Я в радиусе 30 км Даже на расстоянии 20 км 10 взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров.
Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию. Современные атомные бомбы и снаряды Радиус действия В зависимости от мощности атомного заряда атомные бомбы,снаряды делят на калибры:малый,средний и крупный. Чтобы получить энергию, равную энергии взрыва атомной бомбы малого калибра, нужно взорвать несколько тысяч тонн тротила. Тротиловый эквивалент атомной бомбы среднего калибра составляет десятки тысяч, а бомбы крупного калибра — сотни тысяч тонн тротила. Еще большей мощностью может обладать термоядерное водородное оружие, его тротиловый эквивалент может достигать миллионов и даже десятков миллионов тонн. Атомные бомбы, тротиловый эквивалент которых равен 1- 50 тыс.
К тактическому оружию относят также: артиллерийские снаряды с атомным зарядом мощность 10 — 15 тыс. Атомные и водородные бомбы мощностью свыше 50 тыс. Нужно отметить,что подобная классификация атомного оружия является лишь условной, поскольку в действительности последствие применения тактического атомного оружия могут быть не меньшими, чем те, которые испытало на себе население Хиросимы и Нагасаки, а даже большими. Сейчас очевидно, что взрыв только одной водородной бомбы способен вызвать такие тяжелые последствия на огромных территориях, каких не несли с собой десятки тысяч снарядов и бомб, применявшихся в прошлых мировых войнах. А нескольких водородных бомб вполне достаточно, чтобы превратить в зону пустыни огромные территории. Ядерное оружие подразделяется на 2 основных типа: атомное и водородное термоядерное.
В атомном оружии выделение энергии происходит за счет реакции деления ядер атомов тяжелых элементов урана или плутония.
Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес более 60 т. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение. В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.
Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно- урановая бомба, а также некоторые ее разновидности — сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы. Водородная бомба Первые разработки этой модификации термоядерной бомбы появились еще в 1957 году, на волне пропагандистских заявлений США о создании некоего «гуманного» термоядерного оружия, которое не несет столько вреда для будущих поколений, сколько обычная термоядерная бомба. В претензиях на «гуманность» была доля истины. Хотя разрушительная сила бомбы не была меньшей, в то же время она могла быть взорвана так, чтобы не распространялся стронций-90, который при обычном водородном взрыве в течение длительного времени отравляем земную атмосферу. Все, что находится в радиусе действия подобной бомбы, будет уничтожено, однако опасность для живых организмов, которые удалены от взрыва, а также для будущих поколений, уменьшится. Однако данные утверждения были опровергнуты учеными, которые напомнили, что при взрывах атомных или водородных бомб образуется большое количество радиоактивной пыли, которая поднимается мощным потоком воздуха на высоту до 30 км, а потом постепенно оседает на землю на большой площади, заражая её. Исследования, проведенные учеными, показывают, что понадобится от 4 до 7 лет, чтобы половина этой пыли выпала на землю.
Слева — грибовидное облако водородной бомбы, а справа — грибовидное облако атомной бомбы Почему же если потенциальная энергия ядерного деления урана-235 и ядерного синтеза дейтерид лития-6 отличается всего в 3 раза на деле разница при взрыве оказывается колоссальной? Все дело в различной критической массе ядерного топлива , а также в различии процессов высвобождения энергии. В ядерной бомбе процесс начинается после детонации заряда, расположенного внутри атомной бомбы, в которой находится уран или плутоний.
После мини-взрыва, который приводит к детонации, изотопы начинают распадаться, захватывая нейтроны. Начинается цепной процесс деления атомных ядер. После разрушения структуры атомов происходит ядерное возбуждение энергии с момента, когда ядерный заряд достигнет критической отметки.
Это и приводит к ядерному взрыву. Водородная бомба основана на совершенно ином процессе высвобождения энергии. Для начала в водородной бомбе начинается процесс расщепления тяжелых ядер дейтерида лития-6, который распадается на тритий и гелий.
И только потом происходит процесс термоядерного синтеза, что приводит к резкому нагреву боевого заряда с последующим мощнейшим взрывом. Теоретически максимальный верхний предел мощности атомной бомбы, которую люди в настоящий момент могут изготовить, составляет около 800 000 тонн в тротиловом эквиваленте. Но такую бомбу никто не делает, так как мощность в 500 000 тонн — уже вершина безумия.
Кстати, ядерное топливо уран-235, который используется в атомной бомбе, делится не полностью. Например, атомная бомба, сброшенная американцами на Хиросиму, Япония, содержала 60 килограммов урана-235.
Ядерный взрыв — есть ли защита от атомной бомбы?
ЯДЕРНОЕ ОРУЖИЕ | термоядерное оружие колоссальной разрушительной силы, использующее в качестве источника энергии синтез тяжёлых ядер дейтерия и трития. |
Водородная бомба и ядерная бомба отличия | Отдельным вариантом ядерного оружия, который предлагался в разгар ядерной войны, были так называемые «кобальтовые» бомбы, в которых дополнительная «грязь» получалась бы в результате вторичного облучения нейтронами ядерного и термоядерного взрыва внешней. |
Разница между атомной и водородной бомбой | Различие между термоядерной и атомной бомбами заключается в том, что у первой при термоядерном синтезе происходит слияние ядер атомов с выделением колоссального количества энергии, а при атомной реакции – происходит радиоактивный распад. |
Водородная и атомная бомбы: сравнительные характеристики | В отличие от атомной бомбы, при взрыве которой энергия выделяется в результате деления атомного ядра, в водородной бомбе идет термоядерная реакция, подобная той, которая происходит на Солнце. |
Немного о терминологии и принципах работы в картинках
- Современное термоядерное оружие
- Ядерный взрыв — есть ли защита от атомной бомбы?
- Взрывная молва: как выглядели первые атомные бомбы
- «В чем отличие атомной, ядерной и водородной бомб друг от друга?» — Яндекс Кью
Атомная, водородная, нейтронная… Чем отличаются и как работают
Конечно, обывателям не обязательно знать, чем отличается атомная бомба от водородной, потому что они несут огромную опасность в любом случае. Так и работает атомная бомба, выделяя в процессе расщепления ядер чудовищную энергию и смертельное излучение. Однако применение такой бомбы не сказывается на радиационном фоне, в отличие от боеприпаса с ядерной начинкой. Если сравнивать мощность двух типов ядерного оружия, то термоядерная (водородная) бомба даёт намного большую выходную энергию, чем ядерная (атомная). В отличие от атомной бомбы, при взрыве которой энергия выделяется в результате деления атомного ядра, в водородной бомбе идет термоядерная реакция, подобная той, которая происходит на Солнце. Сущностное отличие ядерной и термоядерной бомб. Ядерной (атомной) бомбой принято называть такое устройство взрывного типа, где основная доля высвобождаемой энергии при взрыве выделяется за счёт ядерной реакции деления, а водородной (термоядерной).