1. Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Информационный объём звукового файла зависит от: частоты дискретизации тактовой. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки причем для каждого такого участка устанавливается определенная величина амплитуды.
У вас большие запросы!
- Непрерывная зависимость
- Что включает в себя процесс оцифровки звука?
- Архив блога
- Отличия аналогового звука от цифрового / Хабр
- Что препятствует распространению звука? Распространение звука в среде
- Ответы : кто может помогите
Что включает в себя процесс оцифровки звука?
Волны является когерентными, если разность их фаз постоянна во времени, а при сложении получается волна той же частоты. Непрерывная звуковая волна разбивается на на отдельные маленькие участки, и для каждого такого участка устанавливается своя амплитуда. Содержание: Преобразование непрерывной звуковой волны в последовательность звуковых импульсов различной амплитуды производится с помощью аналого – цифрового преобразователя, размещенного на звуковой плате. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина интенсивности звука. Непрерывная звуковая волна разбивается на отдельные маленькие.". это непрерывная волна с меняющейся амплитудой и частотой.
Акустическая волна в разных средах
- ИнформБюро: Кодирование звука. Практическая работа. Дискретизация звуковой информации
- Кодирование звуковой информации
- Презентация на тему Кодирование и обработка звуковой информации
- Звуковая информация
- Кодирование звуковой информации.
- Дифракция и дисперсия света. Не путать!
Что препятствует распространению звука? Распространение звука в среде
Данная модель впервые совершила полет в 1953 году. Создавались и пассажирские сверхзвуковые самолеты, которые выполняли регулярные рейсы. Но их было всего 2: советский Ту-144 и англо-французский Concorde. Сверхзвуковой пассажирский самолет Ту-144 Преимущество таких самолетов — это преодоление больших расстояний за короткий промежуток времени. Также сверхзвуковой самолет перемещается на большей высоте по сравнению с обычными. Соответственно, воздушное пространство не загружено. Но от их использования вскоре отказались из-за нескольких недостатков: ударная волна; сложность эксплуатации; шум над аэродромом. Громкий хлопок — это резкий скачок давления перед самолетом, образующийся в момент, когда самолет начинает двигаться со сверхзвуковой скоростью преодолевает звуковой барьер. Ударная волна, возникающая перед самолетом, распространяется конусообразно. Человек, наблюдающий за полетом самолета, слышит хлопок, когда эта волна достигает его, и только после этого можно услышать работу двигателя.
Ударная волна постоянно сопровождает самолет на сверхзвуковой скорости. Однако хлопки будет слышно лишь во время прохождения самолета в определенной точке — поблизости с наблюдателем. Поделиться с друзьями Вадим Хромов Эксперт и постоянный автор научно-популярного журнала: «Как и Почему». Издание «Как и Почему» kipmu. Оцените автора 12 оценок, среднее 3.
В таком случае количество уровней сигнала будет равно 65536. При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть от частоты дискретизации. Чем больше количество измерений производится за 1 секунду чем больше частота дискретизации , тем точнее процедура двоичного кодирования. Количество измерений в секунду может лежать в диапазоне от 8000 до 48000, то есть частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц - качество звучания аудио-CD.
Блог Артищевой Оксаны Леонидовны, учителя информатики, г. Лекция по теме Кодирование звука. Для человека звук тем громче, чем больше амплитуда сигнала, и тем выше тон, чем больше частота сигнала. Оцифровку звука выполняет специальное устройство на звуковой плате. Называется оно аналого-цифровой преобразователь АЦП.
Пример практического использования — гитара, балалайка, виолончель, пианино и прочие струнные инструменты. В них есть струна, которая колеблется с определённой частотой, и корпус — который служит резонатором. Резонатор — устройство усиливающее звуковые колебания. Поскольку звуковые волны передают энергию колебаний — эту энергию можно преобразовать обратно в те же самые колебания. Лабораторный пример: есть два камертона. Ударим по одному из них. Он начнёт издавать звук. Если поставить рядом такой же камертон — он будет улавливать звуковые волны, и поскольку он настроен на такую же частоту — второй камертон также начнёт колебаться с такой же частотой и звучать.
Задание МЭШ
Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Для самолёта ударная волна создаёт громкий и грохочущий звуковой удар. При разложении непрерывной звуковой волны на гармоники получается спектр колебаний, который определяет тональный состав звука. Для этого звуковая волна разбивается на отдельные временные участки.
На границе звукового барьера: что вы об этом знаете?
Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определённая величина интенсивности звука. Фазовое разложение является одним из важных процессов в изучении и анализе звуковой волны. Когда же скорость самолета высокая, то есть превышает скорость звука, звуковые волны не успевают удаляться. Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определённая величина интенсивности звука. В статье мы расскажем, что препятствует распространению звука, но прежде разберемся, что собой представляет звуковая волна.
На границе звукового барьера: что вы об этом знаете?
Но постепенно повреждения накапливаются, и, в конце концов, система теряет работоспособность. Указы и положения. Запах герани — слух. Что такое информация Восприятие информации Свойства информации. Иногда запахи усиливают восприятие окружающего мира. Информационные процессы в технике. Hardware, — "твёрдые изделия".
Единство информационных процессов.
Использование спектрограмм позволяет наглядно представить разделение звуковых волн и проанализировать их изменения со временем. Все эти принципы взаимодействуют друг с другом и помогают разделить непрерывную звуковую волну на ее основные компоненты. Использование высокочастотной дискретизации, фурье-преобразования, фильтров, анализа амплитуды и фазы, а также спектрограмм позволяет более точно анализировать и обрабатывать звуковые данные и применять их в различных областях, таких как музыка, речь, речь и др. Дисперсия и резонанс Дисперсия представляет собой явление, при котором различные частоты звуковой волны распространяются с различной скоростью. Это обусловлено различными свойствами среды, через которую проходит волна. Например, в среде с изменчивым показателем преломления, различные частоты могут преломляться под разными углами и, следовательно, иметь различные скорости распространения.
Дисперсия может приводить к искажению формы и фазовой структуры звуковой волны. Резонанс, с другой стороны, возникает при совпадении частоты внешнего воздействия со собственной частотой колебаний некоторой системы.
Это представление состоит в проектировании сигнала на данный базис. Что такое разрядность кодирования звука на что она влияет? Разрядность — это количество бит цифровой информации для кодирования каждого сэмпла. Проще говоря, разрядность определяет «точность» измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. Как определить глубину кодирования? Чем определяется частота дискретизации звука? Частота дискретизации или частота семплирования, англ.
Измеряется в герцах. Чем определяется частота дискретизации? Дискретизация по времени означает, что сигнал представляется рядом отсчетов сэмплов , взятых через равные промежутки времени. Например, когда мы говорим, что частота дискретизации 44,1 кГц, то это значит, что сигнал измеряется 44 100 раз в течение одной секунды. Что представляет собой Гц герц применительно к Аудиофайлам? Частота, с которой захватываются или воспроизводятся сэмплы, измеряемая в Герцах Гц или количестве сэмплов в секунду. Обычный звуковой компакт-диск записывается с частотой дискретизации 44100 Гц, чаще обозначаемой как 44 кГц для краткости. Чем ниже частота дискретизации тем? Частота дискретизации Чем она выше, тем меньше данных опускается. Например, частота дискретизации аудио на компакт-дисках составляет 44,1 кГц, т.
Какое устройство преобразует цифровые сигналы в аналоговые и наоборот?
При этом производится дискретизация сигнала по времени. Непрерывная звуковая волна разбивается на на отдельные маленькие участки, и для каждого такого участка устанавливается своя амплитуда. Дискретизация — это преобразование аналоговой информации непрерывнго звука в набор дискретных значений, каждому из которых присваивается значение его кода.
Презентация на тему Кодирование и обработка звуковой информации
Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки режим «моно». Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек режим «стерео». Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука 16 битов, 24 000 измерений в секунду. Последнее изменение: Tuesday, 11 November 2014, 12:57 Как это влияет на изображение? Конечно, повторяющиеся и регулярные структуры линий достаточно редко можно встретить на снимках различных природных объектов — их присутствие часто ограничивается снимками разнообразных искусственных сооружений, таких как здания и прочее.
Однако в любом случае глубина дискретизации может быть внушительной, поэтому этого эффекта всегда стоит избегать, занимаясь съемкой любых объектов. При этом стоит отметить тот факт, что качество изображений может быть абсолютно разным даже в том случае, если они имеют одинаковое количество пикселей. Ведь, помимо всего прочего, разница между снимками может заключаться также в том, каким именно образом они были получены. К примеру, в одном случае снимок может быть несколько смягчен путем пропуска его через низкочастотный фильтр для получения промежуточных значений пикселей перед тем, как уменьшить размер, в то время как другое изображение может просто уменьшаться в размере, не внося в него при этом никаких дополнительных изменений и не получая промежуточных значений на границах объектов, где наблюдаются слишком резкие изменения яркости. Используется в гибридных вычислительных системах и цифровых устройствах при импульсно-кодовой модуляции сигналов в системах передачи данных. При передаче изображения используют для преобразования непрерывного аналогового сигнала в дискретный или дискретно-непрерывный сигнал. Обратный процесс называется восстановлением.
При дискретизации только по времени, непрерывный аналоговый сигнал заменяется последовательностью отсчётов, величина которых может быть равна значению сигнала в данный момент времени. Согласно теореме Котельникова: где Алгоритмы передискретизации Наиболее просты алгоритмы изменения частоты дискретизации в целое число раз. При уменьшении частоты дискретизации в N раз частота Найквиста половина частоты дискретизации становится в N раз ниже, то есть частотный диапазон сужается. Поэтому для предотвращения наложения спектра алиасинга применяют НЧ-фильтр, подавляющий все частотные составляющие выше будущей частоты Найквиста.
С помощью трех независимых цветов можно, смешивая их в однозначно определенной пропорции, выразить любой цвет. При непрерывном изменении пропорции, в которой взяты компоненты цветовой смеси, получаемый цвет также меняется непрерывно. Из биологии вы знаете, что рецепторы человеческого глаза делятся на две группы: палочки и колбочки. Палочки более чувствительны к интенсивности поступаемого света, а колбочки — к длине волны. Если посмотреть, как распределяется количество колбочек по тому, на какую длину волны они «настроены», то количество колбочек «настроенных» на синий, красный и зеленый цвета окажется больше.
Поэтому такие цвета были взяты основными для построения цветовой модели, которая получила название RGB Red, Green, Blue. То есть задавая количество любого из этих трех цветов, можно получить любой другой. Для кодирования каждого цвета было выделено 8 бит режим True-Color. Таким образом, количество каждого цвета может изменяться от 0 до 255, часто это количество выражается в шестнадцатеричной системе счисления от 0 до FF. Так как описание цвета происходит определением трех величин, то это наводит на мысль считать их координатами точки в пространстве. Получается, что координаты цветов заполняют куб.
В случае если спектр дискретен то есть, на графике спектра присутствуют явно выраженные пики , то звук воспринимается как тон, если имеет место один пик, или как созвучие, в случае присутствия нескольких явно выраженных пиков. Если же звук имеет сплошной спектр, то есть амплитуды частотных составляющих спектра примерно равны, то на слух такой звук воспринимается как шум. Для демонстрации наглядного примера можно попытаться экспериментально «изготовить» различные музыкальные тона и созвучия. Для этого необходимо к громкоговорителю через сумматор подключить несколько генераторов чистых тонов осцилляторов. Причем, сделать это таким образом, чтобы была возможность регулировки амплитуды и частоты каждого генерируемого чистого тона. В результате проделанной работы будет получена возможность смешивать сигналы от всех осцилляторов в желаемой пропорции, и тем самым создавать совершенно различные звуки. Поученный прибор явит собой простейший синтезатор звука. Очень важной характеристикой слуховой системы человека является способность различать два тона с разными частотами. Опытные проверки показали, что в полосе от 0 до 16 кГц человеческий слух способен различать до 620 градаций частот в зависимости от интенсивности звука , при этом примерно 140 градаций находятся в промежутке от 0 до 500 Гц. На восприятии высоты звука для чистых тонов сказываются также интенсивность и длительность звучания. В частности, низкий чистый тон покажется еще более низким, если увеличить интенсивность его звучания. Обратная ситуация наблюдается с высокочастотным чистым тоном — увеличение интенсивности звучания сделает субъективно воспринимаемую высоту тона еще более высокой. Длительность звучания сказывается на воспринимаемой высоте тона критическим образом. Так, очень кратковременное звучание менее 15 мс любой частоты покажется на слух просто резким щелчком — слух будет неспособен различить высоту тона для такого сигнала. Высота тона начинает восприниматься лишь спустя 15 мс для частот в полосе 1000 — 2000 Гц и лишь спустя 60 мс — для частот ниже 500 Гц. Это явление называется инерционностью слуха. Инерционность слуха связана с устройством базилярной мембраны. Кратковременные звуковые всплески не способны заставить мембрану резонировать на нужной частоте, а значит мозг не получает информацию о высоте тона очень коротких звуков. Минимальное время, требуемое для распознавания высоты тона, зависит от частоты звукового сигнала, а, точнее, от длины волны. Чем выше частота звука, тем меньше длина звуковой волны, а значит тем быстрее «устанавливаются» колебания базилярной мембраны. В природе мы почти не сталкиваемся с чистыми тонами. Звучание любого музыкального инструмента является сложным и состоит из множества частотных составляющих. Тем не менее, даже при одинаковой высоте звучания, звук, например, скрипки отличается на слух от звука рояля. Это связано с тем, что помимо высоты звучания слух способен оценить также общий характер, окрас звучания, его тембр. Тембром звука называется такое качество восприятия звука, которое, в не зависимости от частоты и амплитуды, позволяет отличить одно звучание от другого. Тембр звука зависит от общего спектрального состава звучания и интенсивности спектральных составляющих, то есть от общего вида звуковой волны, и фактически не зависит от высоты основного тона. Немалое влияние на тембр звучания оказывает явление инерционности слуховой системы. Это выражается, например, в том, что на распознавание тембра слуху требуется около 200 мс. Громкость звука — это одно из тех понятий, которые мы употребляем ежедневно, не задумываясь при этом над тем, какой физический смысл оно несет. Громкость звука — это психологическая характеристика восприятия звука, определяющая ощущение силы звука. Громкость звука, хотя и жестко связана с интенсивностью, но нарастает непропорционально увеличению интенсивности звукового сигнала. На громкость влияет частота и длительность звукового сигнала. Чтобы правильно судить о связи ощущения звука его громкости с раздражением уровнем силы звука , нужно учитывать, что изменение чувствительности слухового аппарата человека не точно подчиняется логарифмическому закону. Существуют несколько единиц измерения громкости звука. Первая единица — «фон» в англ. Говорят, «уровень громкости звука составляет n фон», если средний слушатель оценивает сигнал как равный по громкости тону с частотой 1000 Гц и уровнем давления в n дБ. Фон, как и децибел , по сути не является единицей измерения, а представляет собой относительную субъективную характеристику интенсивности звука. Каждая кривая на графике показывает уровень равной громкости с начальной точкой отсчета на частоте 1000 Гц. Иначе говоря, каждая линия соответствует некоторому значению громкости, измеренной в фонах. Например, линия «10 фон» показывает уровни сигнала в дБ на разных частотах, воспринимаемых слушателем как равные по громкости сигналу с частотой 1000 Гц и уровнем 10 дБ. Важно заметить, что приведенные кривые не являются эталонными, а приведены в качестве примера. Современные исследования ясно свидетельствуют, что вид кривых в достаточной степени зависит от условий проведения измерений, акустических характеристик помещения, а также от типа источников звука громкоговорители, наушники. Таким образом, эталонного графика кривых равных громкостей не существует. Важной деталью восприятия звука слуховым аппаратом человека является так называемый порог слышимости - минимальная интенсивность звука, с которой начинается восприятие сигнала. Как мы видели, уровни равной громкости звука для человека не остаются постоянным с изменением частоты. Иными словами, чувствительность слуховой системы сильно зависит как от громкости звука, так и от его частоты. В частности, и порог слышимости также не одинаков на разных частотах. Например, порог слышимости сигнала на частоте около 3 кГц составляет чуть менее 0 дБ, а на частоте 200 Гц — около 15 дБ. Напротив, болевой порог слышимости мало зависит от частоты и колеблется в пределах 100 — 130 дБ. График порога слышимости представлен на рис. Обратим внимание, что поскольку, острота слуха с возрастом меняется, график порога слышимости в верхней полосе частот различен для разных возрастов. Частотные составляющие с амплитудой ниже порога слышимости то есть находящиеся под графиком порога слышимости оказываются незаметными на слух. Интересным и исключительно важным является тот факт, что порог слышимости слуховой системы, также как и кривые равных громкостей, является непостоянным в разных условиях. Представленные выше графики порога слышимости справедливы для тишины. В случае проведения опытов по измерению порога слышимости не в полной тишине, а, например, в зашумленной комнате или при наличии какого-то постоянного фонового звука, графики окажутся другими. Это, в общем, совсем не удивительно. Ведь идя по улице и разговаривая с собеседником, мы вынуждены прерывать свою беседу, когда мимо нас проезжает какой-нибудь грузовик, поскольку шум грузовика не дает нам слышать собеседника. Этот эффект называется частотной маскировкой. Причиной появления эффекта частотной маскировки является схема восприятия звука слуховой системой. Мощный по амплитуде сигнал некоторой частоты f m вызывает сильные возмущения базилярной мембраны на некотором ее отрезке. Близкий по частоте, но более слабый по амплитуде сигнал с частотой f уже не способен повлиять на колебания мембраны, и поэтому остается «незамеченным» нервными окончаниями и мозгом. Эффект частотной маскировки справедлив для частотных составляющих, присутствующих в спектре сигнала в одно и то же время. Однако в виду инерционности слуха, эффект маскировки может распространяться и во времени. Так некоторая частотная составляющая может маскировать другую частотную составляющую даже тогда, когда они появляются в спектре не одновременно, а с некоторой задержкой во времени. Этот эффект называется временной маскировкой. В случае, когда маскирующий тон появляется по времени раньше маскируемого, эффект называют пост-маскировкой. В случае же, когда маскирующий тон появляется позже маскируемого возможен и такой случай , эффект называет пре-маскировкой. Пространственное звучание.
Так, на грампластинке пропечатывается непрерывная канавка, изгибы которой повторяют амплитуду и частоту звука, а на магнитной ленте параметры звука сохраняются в виде намагниченности рабочей поверхности, а степень намагниченности непрерывно изменяется, повторяя параметры звука. В компьютерах применяется исключительно цифровая форма записи звука. При цифровой записи звук необходимо подвергнуть временной дискретизации и квантованию. Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука. Такой процесс называется оцифровкой звука. Таким образом, непрерывная зависимость громкости звука от времени A t заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек". Временная дискретизация звука Качество полученного звука зависит от количества измерений уровня громкости звука в единицу времени, т. Чем большее количество измерений производится за 1 секунду, тем выше качество записанного звука. Частота дискретизации звука — это количество измерений громкости звука за одну секунду. Одно измерение в секунду соответствует частоте 1Гц, 1000 измерений в секунду — 1 кГц. Частота дискретизации звука может лежать в диапазоне от 8000 до 48000 измерений громкости звука за одну секунду. Глубина кодирования звука.