Новости искусственный интеллект дзен

К 2024 г. искусственный интеллект сократил время медицинских скрининговых исследований на 60% и в 50 раз ускорил реакцию медицинской сестры на тревожные события.

Искусственный интеллект и инклюзивное будущее. Сергей Переслегин

Теперь все это вместо пользователя сможет делать ИИ. Столь серьезное изменение в раскладке является первым с 1994 года. Преимущество их разработки в том, что она не требует имплантации электродов в живой организм. Достаточно надеть специальную шапочку для снятия… 0 Технологии Нейросеть Pigeon научилась определять геолокацию места по фотографии Трое инициативных студентов из Университета Стэнфорда разработали нейросеть PIGEON, способную с удивительной точностью определять местоположение, где были сделаны фотографии. Эта модель получила название «life2vec», ее задача в составлении последовательности событий, из которых состоит человеческая жизнь.

Конечный… 0 Роботы ИИ научился жульничать для обхода физических ограничений в заданиях Разработчики системы искусственного интеллекта CyberRunner собираются в ближайшее время выложить ее исходный код в открытый доступ. Это позволит кратно увеличить объем упражнений и сеансов обучения ИИ новым возможностям по реализации задач в физическом мире. Какими они будут, зависит от самих людей. По умолчанию… 5 Технологии Виртуальные ведущие новостей на основе ИИ заменят живых людей в студии Сервис Channel 1 обещает с 2024 года запустить полную версию своего выпуска новостей с виртуальными телеведущими.

Контент подлинный, он позаимствован на новостных порталах, перепакован и представлен на экране фотореалистичным аватаром под управлением ИИ. Данная услуга планируется как промежуточная версия на пути… 0 Интернет В Бразилии принят законопроект, который в тайне от всех был разработан при помощи ChatGPT Член городского совета бразильского Порту-Алегри Рамиро Росарио после принятия предложенного им законопроекта признался, что всех обманул. Он не составлял данный документ, а поручил эту работу сервису ChatGPT. Политик не внес ни единой правки в законопроект и сознательно умолчал о его происхождении.

Основные печали — возможность демократий, мошенничество, безработица. Прошлогодним ноябрем США, Великобритания, поддержанные дюжиной стран, обнародовали международное соглашение относительно противостояния использования ИИ мошенниками, призвав разработчиков создавать структуры, изначально безопасные. Европа, отмечают аналитики, опережает США. Ведь текущий месяц ознаменовался там формированием предварительного соглашения о надзоре за технологией. Администрация Байдена тоже потребовала от законодателей регулирования ИИ, но Конгресс движется подобно улитке.

Наряду с Phi компания также создала модель Orca-Math, которая ориентирована на решение математических задач. Конкуренты Microsoft занимаются разработкой небольших ИИ-моделей, многие из которых нацелены на решение более простых задач, таких как обобщение документов или помощь в написании программного кода. По словам Бойда, разработчики обучали Phi-3 по «учебному плану». Они вдохновлялись тем, как дети учатся на сказках, читаемых перед сном. Это книги с более простыми словами и структурами предложений, но в то же время зачастую в них поднимаются важные темы. Поскольку существующей литературы для детей при тренировке Phi-3 не хватало, разработчики взяли список из более чем 3000 тем и попросили большие языковые модели написать дополнительные «детские книги» специально для обучения Phi-3. Бойд добавил, что Phi-3 просто развивает дальше то, чему обучились предыдущие итерации ИИ-модели. Если Phi-1 была ориентирована на кодирование, а Phi-2 начала учиться рассуждать, то Phi-3 ещё лучше справляется с кодированием и рассуждениями. Расследование Reuters показывает, что санкционная продукция Nvidia продолжает поставляться в Китай. Источник изображения: Nvidia Агентство использовало для получения подобных выводов общедоступную конкурсную документацию, в которой отображались состоявшиеся закупки серверного оборудования, в составе которого содержались запрещённые к экспорту в Китай компоненты Nvidia. По словам представителей Reuters, уже после вступления новых ограничений в середине ноября прошлого года не менее 10 китайских учреждений смогли получить серверное оборудование, содержащее «запрещённые» ускорители Nvidia. В выборку попали конкурсные процедуры, которые проводились в период с 20 ноября прошлого года по 28 февраля текущего. Среди 11 поставщиков, выигравших конкурсные процедуры на поставку «запрещённой» вычислительной техники в Китай, все были малоизвестными торговыми компаниями из КНР, как поясняет Reuters. Поставляли ли они оборудование из запасов, сформированных до вступления в силу осенних изменений к правилам экспортного контроля, определить не удалось. Представители Nvidia заявили, что даже если указанные поставки и осуществлялись в обход санкций США, они составляют лишь малую часть оборота мирового рынка, и никак не дискредитируют ни саму компанию, ни её партнёров. Получателями оборудования по рассматриваемым конкурсам выступали государственные ВУЗы КНР и правительственные организации, а также пара исследовательских центров, работающих в аэрокосмической отрасли. Представители Super Micro заверили, что собственные требования компании к соблюдению правил экспортного контроля с запасом превосходят по строгости государственные, а поставленное в Китай оборудование относилось к прошлому поколению, которое под санкции США ранее не попадало. Китайские поставщики, которые участвовали в конкурсе, клиентами Super Micro не являлись. Dell разбирается в ситуации, но на момент подготовки материала к печати заявила, что не располагает доказательствами поставки запрещённого к экспорту в Китай оборудования в адрес упоминаемых агентством Reuters китайских организаций и компаний. Gigabyte Technology просто заявила, что соблюдает международные правила торговли и законы Тайваня. Источник изображения: unsplash. Аналитики компании считают, что «поставки и внедрение ноутбуков с генеративным ИИ ускорятся в 2025—2026 годах вместе с появлением новых функций и вариантов использования генеративного ИИ, поддерживаемых новыми процессорными платформами производителей чипов». Источник изображения: Counterpoint Research Рейтинг пяти крупнейших брендов не изменился по сравнению с прошлым годом, при этом самыми успешными по росту поставок производителями остались Lenovo и Acer. Некоторые делают это публично, другие в закрытых презентациях, и последний из каналов позволяет нам узнать, что Microsoft к концу текущего года хочет утроить количество эксплуатируемых ускорителей до 1,8 млн штук. Источник изображения: Microsoft О наличии таких планов у Microsoft со ссылкой на служебную документацию корпорации сообщил на прошлой неделе ресурс Business Insider. В документе сообщается, что Microsoft рассчитывает увеличить закупки ускорителей вычислений на основе GPU в три раза по сравнению с прошлым годом, и к декабрю располагать примерно 1,8 млн соответствующих ускорителей, преимущественно поставленных компанией Nvidia. В отдельном документе ранее сообщалось, что уже во второй половине прошлого года Microsoft достигла рекордного количества эксплуатируемых ускорителей на базе GPU, хотя точное значение и не называлось. Близкие к Microsoft источники смогли подтвердить Business Insider, что эта сумма близка к реальной. Поскольку в планы компании входит утроение закупок ускорителей, и продукцией только Nvidia она ограничиваться не собирается, легко предположить, что затраты текущего года будут измеряться в десятках миллиардов долларов США. Получается, что Microsoft замахивается на количество ускорителей, измеряемое как минимум одним миллионом штук. По его словам, компания пытается значительную часть вычислений поручить локальным компонентам пользовательских устройств.

Поскольку это наиболее простой — а потому наиболее предпочтительный — метод ликвидации: жилой дом разбомбить проще. Примечателен также тот факт, что человек и ИИ здесь как бы поменялись ролями. Если обычно предполагается, что человек ставит задачу управляемому ИИ роботу — а тот затем делает то, что велено, то здесь всё наоборот. ИИ определяет объект бомбардировки, а живые пилоты уже выполняют его приказы.

На пути к цифровому кодексу РФ: искусственный интеллект требует особого внимания

это журнал, который посвящен искусственному интеллекту (AI), его развитию, применению и будущим перспективам.У нас можно найти статьи, обзоры и в области AI, а также новости и. Искусственный интеллект на скоростях проверяет информацию о потенциальном клиенте, выясняет размер его доходов, кредитную историю, высчитывает риски для банка и дает свое заключение: давать деньги или нет. Искусственный интеллект подразумевает собой искуственно созданную машину, умеющую решать задачи с возможностью дальнейшего самообучения. — Так каким будет искусственный интеллект будущего, если он будет базироваться на описываемых вами децентрализованных спайковых нейросетях? Гонка за искусственным интеллектом, которому сегодня приписывают мыслимые и немыслимые возможности процветания, переходит в ажиотаж.

Яндекс-Дзен как пример ограниченности искусственного интеллекта

Один человек, которого наняли в OpenAI, рассказал BI, что принял предложение компании отчасти из-за финансового пакета — повышение зарплаты примерно на 100 тысяч долларов в год и акционерный капитал, который, как ожидается, превратит этого человека в миллионера через несколько лет. Руководители компаний руководствуются ощущением, что прямо сейчас есть «окно возможностей», и действуют агрессивно, используя все преимущества, которые у них есть, чтобы привлечь сотрудников и выстроить успешный бизнес, говорит генеральный директор Tribe AI Жаклин Райс Нельсон. По ее словам, нередко можно увидеть пакеты заработной платы, «которые легко превышают один миллион долларов». Многие фирмы также предлагает гибкий или гибридный график работы и вкладывают значительные средства в программы обучения и развития.

С помощью системы распознавания жестов же можно взмахом руки попросить переключить музыку или изменить громкость трека. Так, Google внедрила ее в мобильные устройства и умные колонки, а Huawei — в свой флагманский смартфон. Такие инструменты повышают безопасность и уровень сервиса, ведь человеку не приходится вводить дополнительные данные для проверки или нажимать на кнопки для управления оборудованием. Например, российский сервис Directum RX помогает классифицировать входящие электронные письма и документы по типам, чтобы снизить время их обработки, а другая отечественная RPA Sherpa проверяет контрагентов перед заключением договора. Прогнозные модели Такие инструменты могут применяться в абсолютно разных сферах: от ритейла чтобы предсказывать продажи в супермаркетах, как это делает X5 Retail Group для каждого из своих 16 000 магазинов до логистики, чтобы планировать поставки. Благодаря использованию таких технологий можно прогнозировать спрос на ресурсы, сырье, рабочую силу, а также создавать более эффективные стратегии развития бизнеса, корректировать маркетинг и финансовые операции и улучшать пользовательский опыт.

Генеративные модели Компании активно внедряют алгоритмы AI для генерации изображений, текста и видео в свои сервисы для улучшения пользовательского опыта. Так, Duolingo анонсировала новые функции в приложении на основе GPT-4: в одной из них пользователь может практиковать иностранный язык в диалоге с персонажами сервиса, а в другой — узнать больше о своем ответе на уроке, чтобы понять, например, почему человек совершает одну и ту же ошибку. А в современных архитектурных бюро же используют сервисы для генеративного дизайна, которые помогают оптимизировать придуманные решения, например, заменяют узел из нескольких деталей в чертеже на такой же с одним компонентом. Перспективы развития ИИ По мнению американской исследовательской компании Gartner, практически все прорывные цифровые технологии, которые планируют выпустить в ближайшие 6-8 лет, связаны с искусственным интеллектом, поэтому необходимость использования таких технологий будет возрастать. В своем исследовании она обозначила три главных технологических тренда: 1. Самообучающиеся алгоритмы, которые позволяют использовать большие массивы данных без их предварительной подготовки т. Такой подход наиболее актуален для задач, связанных с компьютерным зрением, например, когда нужно верифицировать ручные подписи или определить расстояние до объекта на видео, и задач обработки естественного языка, при которых на вход моделям подаются текстовые документы и далее с помощью ИИ могут прогнозироваться следующие предложения или автоматически определяться «токсичные» фразы. Нейроморфные вычисления позволят точнее моделировать работу человеческого мозга с помощью создания большего числа искусственных нейронов в одной сети. Например, уже сейчас в рамках проекта OpenWorm разработали копию нервной системы круглого червя Caenorhabditis elegans, состоящей из 302 нейронов.

Без учителя Данный вид процесса обучения предполагает только ввод данных. В таком случае алгоритм изменяется, чтобы значимые и обладающие весом коэффициенты корректировались, а нейронная сеть могла по определенным параметрам схожих данных на «выходе» дать результат, который обнаруживает связи. Также во время этой операции выявляются определенные соответствия между данными. Так в ходе обучения выделяют параметры, которые свойственны моделям материала обучения, впоследствии этим модели по схожим признакам объединяют в группы. Когда учитель полностью отсутствует, то НС выстраивает целую цепочку, которая состоит из логических решений, также образует определенное понимание, основанное на вводных данных. Такое устройство машинного обучения без учителя применимо в отношении статистических моделей. Базовый язык нейросети— это язык, на котором система будет осуществлять взаимодействие с человеком. Библиотека языков программирования — это набор операторов языка, которые будут использоваться для обработки данных, поступающих от ИИ. Способность к обучению у нейронных сетей Способность и технология обучения нейронных сетей имеет свои особенности.

Так, одним из наиболее распространенных методов считается Backpropagation, в основе которого заложен алгоритм вычисления градиентного спуска. Если говорить проще, то во время движения по градиенту происходит расчет минимального и максимального значения функции. Для осознания такого способа функцию переводят в график. Образуется кривая, на которой определяют точки с наименьшим и наибольшим показателем. В это же время графически отображают все веса, и для каждого из них рассчитывают глобальный минимум. Также обучение может происходить по другому направлению — Resilientpropagation. Альтернатива предыдущей технологии. Если результат нужен здесь и сейчас, то данный способ считается не самым эффективным и удобным. Но в ряде случаев обучение происходит именно по Rprop.

Он основан на принципах epoch, то есть только знаки производного случая применяют с целью корректировки значимых коэффициентов. Другой распространенный метод — генетический алгоритм. По своей сути он напоминает процессы, которые происходят в окружающей среде. Простыми словами — эволюционные изменения. Это целая наука. Если говорить проще, то осуществляется естественный отбор, в котором конечный результат — продукт с самыми лучшими свойствами. Если по какому-либо свойству он не устраивает, отбор вновь повторяется, и так происходит до тех пор, пока свойства не будут соответствовать заданным параметрам.

Пользователю не надо напрягаться, думать за него будет компьютер. Искусственный интеллект, конечно, может и ошибаться. Но люди также ошибаются, и можно допустить, что средний человек сделает больше ошибок, чем «обученная» система. Проблема доверия к искусственному интеллекту состоит не в возможности ошибки как таковой, а в неприменимости к компьютерным системам понятия ответственности. Действия человека всегда связаны с последствиями для него лично. Если он ошибётся, ему это каким-либо образом аукнется. Мы осознаём, что всякая ошибка имеет свою цену, а если что-то прошло мимо сознания, подключается подсознание — человеку просто не хочется что-то делать, как говорится, «душа не лежит». Или наоборот: значимость последствий работает как стимулятор. Человек мобилизуется, включает внимание, уделяет задаче больше времени, тратит больше сил и энергии. Так или иначе, риск ошибки отражается на нашей деятельности, и в итоге получается, что чем больше риск, тем менее вероятна ошибка. У искусственного интеллекта нет шкуры, на которой он мог бы почувствовать последствия своих решений. Компьютерная система — не субъект. Программисты пытаются создать эмуляцию сознания, закладывая в систему аналоги потребностей, чувств, интуиции и обучая компьютер уходить от жёсткой детерминированности. Но всё это, в сущности, — не более чем имитация. Искусственный интеллект способен симулировать личность, но никогда ею не будет, поскольку осознание себя не является результатом вычисления. А это значит, что фактор риска компьютерная система будет обрабатывать иначе, чем человек. Не обладая сознанием опасности, программный комплекс способен учитывать лишь те риски, которые уже распознаны и определены. Между тем, в реальной жизни каждая новая ситуация может иметь новые, не встречавшиеся прежде последствия. Эта область неизвестного в программных расчётах не учитывается, и потому любой программный комплекс, каким бы надежным он ни казался, работая в области определённого знания, по определению уязвим: достаточно возникновения неожиданных обстоятельств относящихся к новому, не встречавшемуся ранее классу , и система ошибётся. Возникновение таких ошибок не зависит от степени угрозы: система равновероятно пропустит и «копеечный» укол и разрушительный удар, если они последуют из «слепой» зоны. Когда ответственность лежит на человеке, это означает, что он стремится обеспечить результат, невзирая на обстоятельства. Иными словами, предполагается, что человек управляет результатом своих действий. Он может ставить цели, добиваться их достижения или менять их, если цена их достижения покажется ему слишком высокой.

Google тестирует специализированный ИИ, способный писать новости

Гонка за искусственным интеллектом, которому сегодня приписывают мыслимые и немыслимые возможности процветания, переходит в ажиотаж. Сегодня искусственный интеллект применяют 35% компаний, еще 42% — планируют внедрять его в будущем. Эксперт в области искусственного интеллекта, CEO компании One Green Monkey Отари Меликишвили считает, что большие языковые модели "Яндекса" и Сбера сравнимы по уровню, но будущее не за общими генеративными нейросетями. Искусственный интеллект — Каналы К 2024 г. искусственный интеллект сократил время медицинских скрининговых исследований на 60% и в 50 раз ускорил реакцию медицинской сестры на тревожные события. До тех пор, пока искусственный интеллект не обладает волей и собственным целеполаганием, это инструменты в наших руках.

Искусственный интеллект и будущее нейросетей: взгляд эксперта из «Яндекса»

Искусственный интеллект Snapchat опубликовал историю, а затем удалил её 1. В этом посте я рассказал вам о том, как формируется лента персональных рекомендаций в ре, и почему Дзен – это не очередная «лента новостей», а результат работы серьезных технологий. Наработки из области искусственного интеллекта уже сейчас. С тех пор, как представители Дзена сообщили о внедрении нового алгоритма, новостей о появлении какого-то еще искусственного интеллекта от компании не было.

Искусственный интеллект и инклюзивное будущее. Сергей Переслегин

Должность вице-президента VK по искусственному интеллекту (ИИ), контентным и рекомендательным сервисам занял руководитель "Дзена" Антон Фролов — он будет |. Случаи, когда искусственный интеллект все сделал не так, но этим самым немыслимым образом выполнил задание, стали классикой. Искусственный интеллект (ИИ) является одной из самых быстроразвивающихся областей науки и техники.

Искусственный интеллект увеличил надежность сети билайна

Затем полученные данные опроса перегнали через нейросеть, которую обучили сопоставлять личностные данные и зависимость старения от вида досуга. В итоге получилось вывести алгоритм, который может вычислить наиболее подходящее хобби для конкретного человека, чтобы отодвинуть его старение. Для этого лишь нужно забить в программу данные о себе.

Дзен для этого использует знания Яндекса о посещаемых людьми сайтах. Благодаря этим знаниям многие новые пользователи Дзена смогут сразу увидеть ленту персональных рекомендаций без необходимости что-то настраивать. Но иногда их недостаточно. Можно было бы попробовать решить эту проблему с помощью ленты, ориентированной на среднестатистического человека. Но мы же знаем, что такого человека в реальности не существует что хорошо было показано на примере американских военно-воздушных сил.

Поэтому пошли другим путем и предложили людям самостоятельно ограничить круг своих интересов. У этих настроек нет своего названия, но внутри мы называем их «Онбордингом». Важно понимать, что Онбординг — это не обязательный этап начальных настроек, а лишь резервный вариант для тех, кому точно нечего предложить. Лента рекомендаций сразу после прохождения Онбординга может достаточно сильно отличаться от подборок, формируемых через несколько недель активного использования Дзена. Эти настройки уже доступны пользователям Яндекс. Браузера для Android и iPhone. Для Windows станут доступны в ближайшее время а пока можно воспользоваться временным решением.

Знания об интересах человека — это лишь половина необходимой информации. Для того чтобы что-то рекомендовать, нужно для начала это что-то найти. Обычно рекомендательные сервисы решают эту задачу примитивным способом — формируют ограниченный каталог RSS-лент по интересам. В случае с Дзеном таких ограничений нет. Поисковые роботы ищут любые материалы. Это могут быть как авторские публикации с популярных блогов, так и качественные истории с форумов или ролики с YouTube. Это то, что мы называем «диким вебом».

Главное, чтобы сайт не был заброшен и на странице содержалось достаточное количество полезного контента. Итак, с одной стороны у нас знания о любимых публикациях миллионов пользователей, с другой — вся мощь глобального поискового индекса Яндекса. Осталось самое «простое». Научить машину строить рекомендации. Виды рекомендательных систем В истории рекомендательных технологий хорошо известны два их основных вида: фильтрация по содержимому и коллаборативная фильтрация. Начнем с первого, который основан на сравнении содержимого рекомендуемых объектов. Для примера предлагаю рассмотреть фильмы.

Если два фильма относятся к одному и тому же жанру, и пользователь уже высоко оценил один из них, то с определенной вероятностью можно посоветовать ему и второй. И здесь интересно вспомнить онлайн-кинотеатр Netflix, который увеличил количество жанров с нескольких сотен до десятков тысяч , среди которых можно найти даже «Культовые ужастики со злыми детьми». Большая часть из этих жанров скрыта от глаз зрителей и используется только для построения рекомендаций. В нашем случае никаких жанров нет. Чтобы сделать вывод о соответствии веб-страницы интересам человека, нужно сравнить ее контент с известными образцами. Причем заниматься этим должен компьютер, которому нужно не просто прочитать материал, но и понять его смысл. И единственный способ решить эту задачу достаточно точно, это использовать опыт Яндекса в области искусственного интеллекта.

В разных специальностях есть несколько научных школ, которые могут конкурировать друг с другом. На примере электрокардиограммы приведу пример, когда в России активно используются три школы: советская, российская и американская. Они во многом отличаются. Если для человека разница между ними незначительна, то для машины она критическая. Когда наши врачи видят американскую электрокардиограмму перед собой, они даже не знают, как ее трактовать и как категорировать. Для этого существуют инструменты аннотирования, которые позволяют, во-первых, сделать так, чтобы несколько врачей регистрировали одну и ту же единицу исследований, а специалисты, которые работают с данными компании, могли проанализировать и измерить такой параметр, как коэффициент согласия, позволяющий на примере трех и более экспертов верифицировать единицу данных, а уже после производить исследования", - сказал Андрей Бурсов. Он упомянул, что ИИ в медицине начал активно внедряться в 2019 г.

Операционный директор ООО "Первый электронный рецепт" Григорий Милешкин сообщил, что региональные врачи за все время выписали более 5 млн электронных рецептов, а в 2024 г.

It contains videos up to 1 minute long created by Zen bloggers. In 2019, Zen paid more than 1 billion rubles to authors for placing advertisements in articles. The general principle of getting money from such widgets is that bloggers get paid for clicking from the widgets posted. History[ edit ] In 1997, Yandex began research into natural language processing , machine learning and recommendation systems.

Искусственный интеллект и инклюзивное будущее. Сергей Переслегин

Искусственный интеллект должен быть искусственным. Реальный интеллект должен отражать реальные представления человечества о мироздании. это инновационный инструмент, который наряду с технологиями хранения информации в облаке, становится одной из основ глобальной информационной безопасности. Искусственный интеллект (ИИ) является одной из самых быстроразвивающихся областей науки и техники. сегодня – это основанная на искусственном интеллекте система управления опытом сотрудников и лидерством в режиме реального времени.

Похожие новости:

Оцените статью
Добавить комментарий