Новости пластик для 3д принтера

На рынке материалов для FDM печати представлено несколько видов пластиков, каждый из которых обладает своими преимуществами и недостатками, используется для печати определенных моделей и требует отличных настроек принтера перед печатью. Выводы: Из всего вышесказанного стоит отметить, что SBS пластик от FDplast – очень удачное решение для 3д печати. Ниже вы можете увидеть напечатанный на 3D-принтере образец модели из PMMA.

Пластики для 3D печати, всё что нужно знать о материалах

Ниже вы можете увидеть напечатанный на 3D-принтере образец модели из PMMA. Использованные капсулы из-под кофе могут стать сырьем для производства пластика для 3D-принтеров. Рынок пластиков (филаментов) для 3Д печати не стоит на месте.

Могут ли 3D-принтеры печатать переработанным пластиком?

Например для ABS или Нейлона. Температура экструдера — 230-260 градусов. Температура стола — 80-100 градусов. Желательно наличие закрытой камеры у 3D принтера. Плюсы: Меньшая усадка чем у ABS. Простота механической обработки. Матовая поверхность очень выигрышно смотрится на декоративных изделиях. Разрешен контакт с пищевыми продуктами но стоит обязательно уточнить наличие сертификатов у конкретного производителя Минусы: Для печати нужен принтер с подогреваемым столом и закрытой камерой.

Более гибкий и менее прочный чем ABS. Из-за этого не получится изготавливать функциональные изделия. Маленькая палитра цветов. Он отлично хоть и не очень быстро растворяется в лимонеле. Иногда HIPS используют в качестве самостоятельного материала. Изделия из него получаются не очень прочные, но этот пластик любят за лёгкую постобработку. HIPS можно использовать для моделей которые впоследствии будут контактировать с пищевыми продуктами не горячими.

Температура экструдера — 190-210. Подогрев стола не требуется. PVA очень гигроскопичен и растворяется обычной водой. Поэтому он используется только в качестве поддержки для PLA или других пластиков имеющих близкую температуру печати к PVA.

К тому же ABS один из самых недорогих материалов, что, несомненно, способствует поддержанию его популярности. ABS не лишен недостатков, и их немало. Первый следует из его химического происхождения: при нагреве выделяется неприятно пахнущий газ, далеко не полезный для здоровья окружающих. Такое свойство уже накладывает пожелание оборудовать рабочее место вытяжной вентиляцией, что не так уж просто для бытовых условий. Некоторые адепты ABS-секты говорят синеющими губами, что нет в этом ничего страшного, но не все верят им, глядя в их честные, но впалые и пожелтевшие глаза. Кроме того, ABS довольно капризный материал, большая усадка ломает и коробит изделия в процессе печати при малейшей неравномерности остывания. Любой сквознячок вызовет расслоение детали, отрыв от стола и скорее всего приведет к браку. А это накладывает на рабочее место еще одно недешёвое пожелание: закрытый бокс, желательно с подогревом внутреннего объема. Особенно это актуально при печати объемных изделий и при изготовлении детали с точными размерами. Следует заранее делать масштабную поправку в модели или в слайсере. ABS плохо переносит солнечный свет и воздействие других источников УФ-излучения, но этот недостаток можно частично решить окраской изделия, благо красится он хорошо.

Хорошо подходит для печати в домашних условиях. Так же часто используется в учебных заведениях. Плюсы: Практически не имеет усадку, то есть результаты печати максимально точные.. Можно печатать на принтере без стола с подогревом, но должна быть специальная лента или пленка для 3д печати.

При печати декоративных объектов, устанавливаемых на столах или полке, используйте деревянный филамент. Примеры включают чаши, статуэтки и награды. Одним из действительно креативных применений дерева в качестве нити для 3D-принтера, является создание масштабных моделей, используемых в архитектуре. Металлические пластики Что такое металлический пластик? Если вы ищете другой тип эстетики для своих 3D-моделей - что-то более объемное и блестящее, то для этого вы можете использовать металл. Как и деревянная нить для 3D-принтера, металлическая нить на самом деле не металлическая. Но это не мешает результатам и позволяет создавать прототипы, которые имеют внешний вид металла. Даже вес подобен изделиям из металла, поскольку композитные материалы, как правило, в несколько раз плотнее, чем чистый PLA или ABS. Дополнительная информация Бронза, латунь, медь, алюминий и нержавеющая сталь - это лишь некоторые из разновидностей металлическго филамента для 3D-принтера, которые имеются в продаже. Если вас интересует особый внешний вид, не бойтесь полировать, выдерживать при различных погодных условиях или искусственно состаривать изделия после печати. Возможно, вам придется заменить сопла для 3D принтера немного раньше обычного в результате печати металлическими пластиками, поскольку их компоненты немного абразивны, что приводит к повышенному износу. Когда я должен использовать металлические пластики? Металлическая нить может использоваться для печати сувениров и функциональной продукции. Статуэтки, модели, игрушки и жетоны прекрасно смотрятся с металлическим принтом. До тех пор, пока им не придется сталкиваться с чрезмерными нагрузками, можно не стесняться использовать металлосодержащие пластики для 3D-принтера, чтобы печатать детали с определенной целью, например, инструменты, решетки или декоративные элементы. Биоразлагаемые пластики bioFila Что такое биоразлагаемая нить?

PLA-пластик: характеристики, настройки печати, советы

LAYCeramic печатается с помощью полимера, связывающего керамические частицы внутри, а затем проходит специальную печь, где полимер дезактивируется. В итоге получается элемент с легким, но твердым отпечатком, готовым к последующей обработке керамики, включая остекление. Такие материалы на основе глины и керамики часто используются для создания ручной работы и керамических изделий. Использование 3D-печати позволяет даже сделать эти изделия более точными и повторяемыми, что делает их еще более привлекательными для покупателей. Профессиональные пластиковые нити для 3D принтеров Мы выделили следующие типы нитей для 3D-принтеров как «профессиональные» по двум причинам. Во-первых, они встречаются реже в настольной 3D-печати, более популярны среди экстремальных любителей и чаще используются в промышленных и коммерческих сферах. Во-вторых, многие из них обеспечивают функциональность, отличную от простого печатного материала, такую как структурная опора или очистка экструдера. Тем не менее, это не означает, что они запрещены для обычного использования. Большинство из них могут быть использованы, как и другие нити, о которых было упомянуто выше, но при этом требуют более внимательной настройки печати или специальных требований, которые могут быть адаптированы для использования на стандартном настольном 3D-принтере например, необходимо специальное оборудование для очистки экструдера при использовании водорастворимых нитей.

Армированные пластики: Угленаполненный и стеклонаполненный пластик для 3D принтеров карбон, ударопрочный, carbon fiber, glass fiber Нить из углеродного волокна — это тип нити для 3D-принтеров, который состоит из углеродных волокон, армированных с другим материалом, таким как ABS, PETG или нейлон. Получаемый материал является крайне прочным и жестким, при этом имеет небольшой вес. Такие соединения обычно применяются для создания конструкций, которые должны выдерживать экстремальные условия в процессе конечного использования. Преимущества при использовании экзотической нити из углеродного волокна состоит в повышенном износе сопла вашего 3D-принтера, особенно если оно сделано из мягкого металла, такого как латунь. Использование даже небольшого количества этой нити, например 500 граммов, может значительно увеличить диаметр латунного сопла, что приведет к необходимости частой замены сопла. Если вы не хотите сталкиваться с этой проблемой, рекомендуется использовать сопло из более прочного или покрытого материалом. Углеродное волокно характеризуется высокой структурной прочностью и низкой плотностью, что делает его отличным выбором для создания механических компонентов. Если вам нужно заменить деталь в вашей модели автомобиля или самолета, попробуйте использовать эту нить для 3D-принтера.

Коэффициент линейного теплового расширения обычно уменьшается в 2-3 раза при использовании углеродного волокна. Этот материал объединяет лучшие качества обоих материалов: высокую прочность и термостойкость поликарбоната и гибкость АБС. Он также является одним из наиболее популярных материалов для индустриальной 3D-печати благодаря своей прочности и устойчивости к воздействию окружающей среды. Этот материал обычно используется для создания функциональных прототипов, инструментов и мелкосерийных деталей, которые должны выдерживать механическое напряжение. Обязательно обратите внимание на требования температуры печати и выпекания, а также на свойства деформации при работе с этим материалом. Это обычно прочный и устойчивый к ударам материал, который широко используется в автомобильной промышленности для создания деталей, таких как панели и облицовки, а также в производстве бытовой техники. Он также может иметь более высокую устойчивость к износу и сдвигу, что делает его привлекательным для использования в функциональных прототипах и деталях машин. HIPS пластик для 3D принтеров Действительно, в мире 3D-печати HIPS является достаточно популярным материалом для использования в качестве вспомогательного материала, особенно при использовании двойных экструдеров в 3D-принтерах.

В совокупности с ABS он может использоваться для создания поддерживающих структур рассола при печати сложных моделей. Также HIPS может использоваться в качестве основного материала для 3D-печатной модели, однако, поскольку он несколько менее износостойкий, чем ABS и PLA, такая печать может оказаться менее прочной в долгосрочной перспективе. Однако его достоинства как вспомогательного материала делают его полезным дополнением к ассортименту печатных материалов. Кроме того, он легко приклеивается к другим материалам, таким как PLA или ABS, что делает его удобным для создания двухцветных или многоматериальных моделей. Кроме того, HIPS легко окрашивается и шлифуется, что дает возможность получать гладкую и красивую поверхность детали. Однако при использовании HIPS как основного материала для печати могут возникать проблемы с искривлением, так как он имеет высокий коэффициент термического расширения. Поэтому часто рекомендуется использовать подогреваемую печать или другие методы преодоления этой проблемы. Таким образом, HIPS — это достаточно универсальный материал для 3D-печати, который может быть использован как в качестве вспомогательного материала, так и как основного для создания прочных и деталей с высокими характеристиками.

HIPS также отлично подходит для использования в качестве отделочного материала, так как он легко окрашивается и приклеивается, а также легко шлифуется для достижения гладкой и красивой поверхности. Таким образом, HIPS — это достаточно универсальный материал для 3D-печати, который может использоваться в различных проектах, требующих высоких характеристик прочности и износостойкости, а также для создания эстетически привлекательных деталей. PVA пластик для 3D принтеров Поливиниловый спирт PVA также широко используется в 3D-печати в качестве вспомогательного материала для создания поддержек или деталей с выступами, которые требуют опор для печати. В качестве вспомогательного материала PVA легко растворяется в воде, что позволяет легко удалять опоры и достигать более сложной формы при печати. Введение PVA в процесс печати с помощью 3D-принтера обычно происходит с использованием двух экструдеров: один экструдер печатает основной материал например, PLA , а другой экструдер печатает поддержки или опоры из PVA. После печати деталь можно поместить в воду, где PVA растворится, оставляя только итоговую модель. Однако стоит отметить, что в качестве основного материала для печати PVA плохо подходит, так как он обладает низкой прочностью и деформируется при высоких температурах, что может привести к проблемам с печатью.

С другой стороны, несмотря на то, что ПВХ широко перерабатывается в Европе , в Северной Америке он встречается гораздо реже. Можно ли перерабатывать нить для 3D принтера? В соответствии с Международными идентификационными кодами смол ASTM обе относятся к типу 7 или «другому», который обычно не обрабатывается муниципальными программами. Так что, к сожалению, вы не можете просто выбросить неудачные отпечатки в мусорную корзину. Фактически, PETG является надоедливым загрязнителем при переработке PET, потому что их химическое сходство затрудняет их различение и разделение. Объединение PETG с обычным потоком переработки PET даст смешанному материалу более низкую температуру плавления и термостабильность, не соответствующую спецификации, что в конечном итоге означает, что смесь будет выброшена в кучу для сжигания. Полипропиленовая ПП нить обычно не используется для 3D-печати, поскольку ее полукристаллическая природа приводит к ее значительной деформации при охлаждении. Для немногих смельчаков, которые печатают из полипропилена, в некоторых муниципалитетах он перерабатывается. Обратитесь в местный центр утилизации, чтобы узнать, принимают они его или нет. Почти все другие типы нитей для принтеров включая нейлон и поликарбонат также классифицируются как тип 7, поэтому они также обычно не перерабатываются на обычных заводах по переработке пластика. Немуниципальные центры переработки Несмотря на то, что большинство местных программ по переработке не превратят ваши неудачные 3D-отпечатки в переработанный пластик, существует множество независимых компаний по переработке и переработке пластика, которые перерабатывают материалы, которые не перерабатываются местной службой вывоза. Попробуйте позвонить в местные компании по переработке и спросить, перерабатывают ли они выбранный вами пластик. Возможно, вам придется попробовать несколько мест, потому что даже если компания перерабатывает пластиковый тип, используемый в 3D-печати, многие компании могут колебаться, принимая пластиковые отходы из непроверенного источника. Если, однако, они готовы принять ваши отходы, попробуйте накапливать большие партии отходов пластика, которые вы можете периодически сдавать. Если вы являетесь участником Makerspace или FabLab , вы также можете сделать большой общий мусорный бак для неудачных отпечатков и забрать его, когда он наполнится. Просто следите за тем, чтобы разные типы пластика были разделены, а типы пластика были четко обозначены! Компостирование ПЛА Одной из уникальных особенностей PLA является то, что это биоразлагаемый пластик, а это означает, что он может со временем разрушаться микроорганизмами, подобными тем, которые встречаются при промышленном компостировании. Этот органический процесс может стать для нас отличным способом справиться с пластиковыми отходами, не отправляя их на свалку. Компостирование PLA расщепляет пластик на более мелкие безвредные молекулы, такие как углекислый газ и вода. Время, в течение которого происходит этот процесс, сильно зависит как от условий окружающей среды, так и от самого материала. Промышленные установки для компостирования могут эффективно разрушать PLA, потому что они обеспечивают идеальные условия для процветания этих жевательных микроорганизмов. Это включает в себя высокие температуры, высокую влажность и много еды.

С помощью данной технологии возможно создавать сложные трехмерные объекты, которые могут быть использованы как прототипы или в качестве функциональных частей. Учитывая его гибкость и прочность, нейлон является незаменимым материалоам для широкого спектра областей применения: от инженерии до искусства. Детали из нейлона полиамида имеют шероховатую поверхность, которую можно полировать до гладкого состояния.

Изделие очень быстро затвердевает при использовании вентилятора для охлаждения. ПЛА минимально деформируется при изменении температуры, в том числе при остывании после печати АБС может сильно деформироваться при неравномерном остывании. АБС пластик пригоден для нанесения гальванического покрытия и даже металлизации некоторые марки , а также для пайки контактов. АБС-пластик рекомендуется для точного литья. Имеет высокую размерную стабильность. Необходима сушка АБС-пластика в течение от 0,5 до 2 часов при температуре 70-80 градусов в зависимости от сушилки. Более экологичен и безопасен, чем другие материалы, поскольку для его синтеза используются ежегодно возобновляемые природные ресурсы например, кукурузный крахмал. Прочный и крепкий пластик, используемый при производстве таких изделий, как автомобильные бампера, кубики конструктора Lego и т.

ABS - ПЛАСТИК

  • Диаметр нити для 3D принтера
  • Применения PEEK пластика
  • Пластик для 3d печати: какой ПРАВИЛЬНО выбрать и НЕ ПЕРЕПЛАТИТЬ?
  • Пластики для 3D печати, всё что нужно знать о материалах
  • Все, что вам нужно знать о PETG-пластике для 3D-печати

Первая печать филаментом от компании Greg. Пластик для 3д принтера.

Плюсы: Позволяет получать легкие и прочные изделия. Не требует высокого заполнения. Очень абразивный, требуются сопла из нержавеющей стали или с рубиновым наконечником. Сложность печати зависит от материала-основы. Стоимость между обычными бытовыми и высокотемпературными инженерными пластиками. Может использоваться для печати прототипов и полнофункциональных образцов. Для облегчения печати используется его смесь с ABS.

Не требует высокого заполнения. Очень абразивный, требуются сопла из нержавеющей стали или с рубиновым наконечником. Сложность печати зависит от материала-основы. Стоимость между обычными бытовыми и высокотемпературными инженерными пластиками. Может использоваться для печати прототипов и полнофункциональных образцов. Для облегчения печати используется его смесь с ABS.

Весь секрет — в постобработке. И есть несколько действенных методов вернуть нужную пропускную способность: 1. Обработка сольвентом или аналогами. Даже небольшое количество состава позволяет сгладить неровности и вернуть прозрачность, визуально приблизив изделие к стеклянному. Использование сопла с большим диаметром для печати в один слой. Могут использоваться сопла до 0,8 мм, благодаря чему светопропускная способность остается на нужном уровне. Комбинация двух методов, позволяющая дополнительно экспериментировать, применять разные техники обработки и создавать предметы, визуально походящие на стекло, но эластичные и устойчивые к механическому воздействию.

Это ускорит время их заживления и позволит сократить время пребывания пациентов в стационаре», — подчеркнул травматолог-ортопед 1 квалификационной категории, хирург Владимир Беседин, контролировавший операцию в ГВКГ им. Как отметил директор Института биомедицинской инженерии НИТУ МИСИС Фёдор Сенатов, в скором будущем мы можем ожидать более масштабного внедрения в клиническую практику технологии биопечати in situ непосредственно в рану. Эти структуры обладают прочностью в 3-5 раз выше, чем у макроскопических аналогов. Открытие, опубликованное в журнале Nano Letters, открывает новые перспективы для разработки наносенсоров, теплообменников и других нанотехнологических устройств. Источник изображений: Caltech Ведущий автор исследования Вэньсинь Чжан Wenxin Zhang отмечает: «На атомарном уровне эти наноматериалы имеют очень сложную микроструктуру». В макроскопическом масштабе такая неупорядоченность атомов привела бы к существенным дефектам, делая материалы слабыми и низкокачественными. Однако на наноуровне этот беспорядок оборачивается преимуществом, увеличивая прочность материала. Но в присутствии внутренних пор распространение быстро прекращается на поверхности поры, а не продолжается через весь столбик. Как правило, инициировать носитель деформации сложнее, чем позволить ему распространяться, что объясняет, почему данные столбики могут быть прочнее своих аналогов», — объясняет Чжан. Это свойство делает наноструктуры неожиданно прочными. Технология создания наноматериалов включает в себя работу с фоточувствительной смесью, содержащей гидрогель, которую затем затвердевают лазером, создавая 3D-каркас в форме желаемых металлических объектов. В этом исследовании объектами были серии микростолбиков и нанорешёток. Затем гидрогелевые детали пропитывают водным раствором, содержащим ионы никеля. Наноразмерная решётка, полученная по новой методике, разработанной в лаборатории Джулии Р. Грир Julia R. Greer После насыщения металлическими ионами детали обжигают до полного выгорания гидрогеля, оставляя части в той же форме, что и оригинальные, но уменьшенные и состоящие полностью из металлических ионов, теперь окисленных связанных с атомами кислорода. На последнем этапе атомы кислорода химически удаляют из деталей, превращая металлический оксид обратно в металлическую форму. Вы видите дефекты, такие как поры и нерегулярности в атомной структуре, которые обычно считаются дефектами, уменьшающими прочность. Если бы вы строили что-то из стали, например блок двигателя, вы бы не хотели видеть такую микроструктуру, потому что она значительно ослабила бы материал», — рассказывает Джулия Р. Greer , профессор материаловедения, механики и медицинской инженерии Caltech и руководитель лаборатории, где проводилось исследование. Однако в данном случае эти дефекты, напротив, увеличивают прочность материала на наноуровне. Нерегулярная внутренняя структура никелевого микростолбика Процесс 3D-печати металлических структур на наноуровне, по словам Грир, может найти применение в создании множества полезных компонентов, включая катализаторы для водорода, электроды для хранения аммиака и других химикатов без углерода, а также важные части устройств, таких как сенсоры, микророботы и теплообменники. Аспирантка факультета машиностроения Вэньсинь Чжан Wenxin Zhang работает в лаборатории нанотехнологий Это открытие подчёркивает необычные свойства материи на наноуровне и предвещает революцию в создании нанотехнологических устройств. Это напоминает о том, что наука и технологии неустанно движутся вперёд, открывая новые возможности для применения наноматериалов в различных сферах, от медицины до космических исследований. Разработчики университета восполнили этот пробел, который поможет лечить обширные повреждения тканей без дорогостоящего оборудования. Технология проверена на животных и доказала свою эффективность. Источник изображений: НИТУ «МИСИС» Традиционно ткани для пересадки на обширные повреждённые участки кожи выращиваются «в пробирке» — на чашках Петри с последующей адаптацией, что требует громоздкого и дорогостоящего оборудования. В мире пока нет коммерческих биопринтеров, которые могли бы наносить тканевый материал прямо на раны, что значительно ускорило бы восстановление пациентов с попутным снижением затрат на подготовку к лечению и само лечение. Учёные университета решили этот вопрос оригинальным образом — они приспособили для этого рядовой роботизированный манипулятор, вооружив его системой подачи тканевых «чернил» и датчиками навигации. Программно-аппаратный комплекс биопринтера сканирует дефект, создает его трёхмерную модель, а затем заполняет участок гидрогелевой композицией с живыми клетками. Датчики на основе лазеров учитывают не только рельеф раны, но также движение тела пациента, например, в процессе дыхания, подстраивая необходимым образом печатающую головку. Пользовательский интерфейс с возможностью 3D-отображения траекторий написан на языке Python с использованием открытых библиотек Pyqt5 и OpenGL и открыт для всех желающих, кто готов совершенствовать проект. Судя по фотографиям, за основу биопринтера был взят один из манипуляторов белорусской компании Rozum Robotics. Программно-аппаратный комплекс платформы учёным помогали разрабатывать специалисты компании 3D Bioprinting solutions. Герцена и готов к дальнейшим этапам исследований. Проведённый через некоторое время анализ ран показал, что процесс заживления прошёл со значительным ускорением. По мнению специалистов, данная технология биопечати in situ, то есть непосредственно в дефект, в будущем может стать прогрессивным терапевтическим методом лечения ожогов, язв и обширных повреждений мягких тканей. В отличие от варианта с обработкой метала резанием, такой подход позволяет сократить время на изготовление детали и уменьшить расход материала. Источник изображения: Apple Как поясняет знакомый с планами Apple источник, если подход с изготовлением корпусов для умных часов при помощи трёхмерных принтеров себя оправдает, со временем компания расширит применение таких методов производства на другие категории продуктов. Первоначальную заготовку получают методом ковки, а потом из приближённого по размерам к готовому корпусу куска металла станок с числовым программным управлением вырезает изделие необходимой конфигурации. Альтернативная технология позволяет создавать более близкую по форме и размерам к конечным очертаниям корпуса металлическую заготовку из порошкового сырья, которая затем подвергается спеканию при высоких температуре и давлении для достижения необходимых прочностных характеристик. Обработка заготовки резанием предусмотрена на конечном этапе, но в отличие от традиционного техпроцесса, она занимает меньше времени и оставляет меньше отходов. Как отмечается, Apple и её партнёры работают над этой технологией производства на протяжении примерно трёх лет. В качестве эксперимента на протяжении последних нескольких месяцев они пробовали изготовить с помощью новой технологии стальные корпуса часов семейства Watch Series 9, которые должны дебютировать в середине сентября. Пока нет уверенности в том, что товарные экземпляры этих часов будут снабжаться корпусами, изготовленными новым методом. К 2024 году Apple рассчитывает применить новый метод производства с использованием титана для часов серии Ultra. Первоначальные затраты на перевооружение производства под новую технологию будут высокими, но со временем они позволят добиться экономии сырья. Сейчас себестоимость изготовления корпусов по обеим технологиям сопоставима. Основная часть выпускаемых компанией часов оснащается алюминиевыми корпусами, для их производства использовать трёхмерные принтеры пока не планируется. Отладив новый метод на мелкосерийных изделиях, Apple сможет масштабировать его на более массовые в производстве продукты, включая и смартфоны.

PLA VS PLA+. В чем разница?

Все виды пластика я разбирать не собираюсь из-за их огромного количества. Разберу только основные, можно сказать, базовые виды пластика, так как в первую очередь статья направлена на новичков, что ещё не успели освоиться в 3D - печати и не знают, какой филамент лучше подойдёт для той или иной задачи, я отвечу на этот вопрос и отмечу основные моменты, на которые стоит обратить внимание при покупке пластика для печати. ABS - пластик Относительно старый материал для FDM принтеров имеющий большое количество поклонников на сегодняшний день.

С другой стороны, печать TPE не всегда проста, так как могут возникать затруднения при экструзии. Он также чуть более долговечен и может лучше сохранять свою эластичность на морозе. Если ваша 3D-печатная деталь будет сгибаться, растягиваться или сжиматься, этот материал для 3D-печати готов к выполнению такой задачи. Примеры: гибкие детали и уплотнители, игрушки, чехлы для телефонов или носимые аксессуары например, браслеты. TPC может использоваться для аналогичных применений, но особенно хорошо работает в более жестких условиях, например, на открытом воздухе. Во-первых, по сравнению с уже описанными выше, эти филаменты реже встречаются в настольной 3D-печати, более популярны среди узкоспециализированных специалистов и чаще появляются в промышленных и коммерческих производственных процессах. Во-вторых, многие из следующих нитей обеспечивают функцию, отличную от простого печатного материала, такую как поддержка основного материала или очистка экструдера. Нельзя сказать, что они исключены для любительского использования.

Большинство печатаются во многом так же, как и нити, упомянутые в предыдущем разделе, хотя при этом больше внимания уделяется настройкам печати или особым требованиям, которых непросто добиться на стандартном настольном 3D-принтере например, более высокой температуры экструдера. Также он — прозрачный, что объясняет его использование в коммерческих предметах, таких как пуленепробиваемое стекло, маски для подводного плавания и электронные дисплеи. В отличие от этих двух материалов, PC является умеренно гибким хотя и не таким, как нейлон , что позволяет ему изгибаться вплоть до деформации, не лопаясь. Нить для 3D-принтера PC гигроскопична, способна впитывать воду из воздуха, поэтому не забывайте хранить ее в сухом прохладном месте, чтобы обеспечить лучшее качество отпечатков. Благодаря своим физическим свойствам, PC является идеальным филаментом для печати деталей, которые должны сохранять свою прочность, ударную вязкость и форму в условиях высокой температуры, таких как электрические, механические или автомобильные компоненты. Вы также можете использовать его оптическую чистоту для проектов освещения, экранов и других изделий, которые требуют прозрачности. Нейлон или полиамид , популярное семейство синтетических полимеров, используемых во многих промышленных применениях, является чемпионом в мире профессиональной 3D-печати. По сравнению с большинством других типов нитей для 3D-принтеров он занимает первое место в конкурсе на прочность, гибкость и долговечность. Есть у нейлона и недостаток — он, как и PETG, гигроскопичен, сильно впитывает влагу. Не забывайте хранить оба материала в прохладном, сухом месте, держите такие нити в идеальном состоянии, и это обеспечит лучшее качество отпечатков.

А еще лучше — просушите его перед печатью. В целом, существует много сортов нейлона, но среди самых распространенных для использования в качестве нити для 3D-принтера - 618 и 645. Используя преимущества нейлона — гибкость и долговечность, — этот филамент можно использовать для создания инструментов, функциональных прототипов или механических деталей таких как петли, пряжки или долговечные шестерни , модельной оснастки. РЕЗЮМЕ Плюсы: высокая прочность, высокая гибкость, долговечность, самосмазывающийся материал Минусы: как правило, дорогой, чувствительный к влаге, требует высокой температуры сопла и стола Значительно улучшить эксплуатационные характеристики напечатанных из нейлона объектов можно применением нейлоновой нити, изготовленной с дополнительными наполнителями: стекловолокном или углеволокном. PA-GF стеклонаполненный нейлон Нейлон, армированный стекловолокном. По сравнению с чистыми нейлоновыми нитями, механическая прочность, жесткость, термостойкость и усталостная прочность у стеклонаполненного нейлона значительно улучшены, а усадка при 3D-печати — снижена. Более того, снижена гигроскопичность. Победить этот эффект помогает наполнение нити углеволокном. Легкая печать без запаха, матовый эффект. Высокая твердость, высокая жесткость, хорошая прочность, износостойкий материал, подходит для печати промышленных деталей.

По сравнению с нейлоном имеет более низкую усадку и искажения. Уровень огнестойкости: UL94-V2. Полученный положительный опыт применения угленаполненного нейлона привел основных производителей филаментов к логичному решению о выпуске прочих сортов нитей термопластов, улучшенных за счет содержания углеволокна. Обзору различных предлагаемых вариантов таких композитных нитей посвящен следующий параграф настоящего Руководства. Такие соединения особенно выигрышны в структурных применениях, которые должны выдерживать самые разнообразные варианты конечного использования. Всего лишь 500 граммов этой экзотической нити для 3D-принтера заметно увеличат диаметр латунного сопла, поэтому, если вам не нравится частая замена сопла, рассмотрите возможность использования сопел из более прочного материала — стали или даже рубина. Благодаря своей структурной прочности и низкой плотности углеродное волокно является оптимальным вариантом для механических компонентов. Хотите заменить деталь в вашей модели автомобиля или самолета? Попробуйте этот филамент. РЕЗЮМЕ Плюсы: прочный и легкий материал, идеально подходит для функциональных применений Минусы: вызывает ускоренный износ сопла 3D-принтера 8 — HIPS ударопрочный полистирол В коммерческом производстве ударопрочный полистирол HIPS - сополимер, который сочетает в себе твердость полистирола и эластичность резины - обычно встречается в защитной упаковке и контейнерах, таких как футляры для компакт-дисков.

Выступающие элементы требуют некоторой структуры поддержки, и именно здесь HIPS действительно превосходен. Напечатайте этим материалам структуры поддержки, где они необходимы, а потом аккуратно выломайте их пинцетом или иным подходящим инструментом.

Вам понравится с ним работать, даже если вы только что купили свой первый 3D принтер! Но в каждой бочке мёда есть ложка дёгтя! Модели, напечатанные из PLA-пластика, не отличаются особой прочностью. При растяжении пластик часто ломается и крошится. Изготовить из него что-то более или менее долговечное вряд ли получится. Материал хорошо подходит только для декоративных и презентационных изделий, которые не планируется подвергать нагрузке.

Совершенные технологии дают все возможности для достижения идеального результата. Как проходит процесс изготовления продукции? Наша компания готова изготовить продукцию на 3D-принтере. Последовательность работ и настройки зависят от материала, но в целом процесс делится на следующие этапы: Формирование электронной модели. Выполняется с готовой конструкции или с ее созданием силами специалистов. Используются специальные программы, требуются навыки и знания. Экспортирование модели на ПК в подходящем формате. Каждый имеет определенное количество информации. Подготовка к печати. Применяется специализированное ПО — слайсер. Он формирует слои и координаты для движения, а также меняются параметры плотности, положения, масштаба, толщины и т. Экспортирование готового файла на принтер. Выполняется оптимальным способом для снижения рисков. Подготовка принтера. Проверка всех узлов, калибровка и так далее. Выполняется автоматически, послойно. Выполняется только по мере необходимости, позволяет получить высококачественную продукцию.

Чем печатать на FDM-принтере новичку?

Интернет магазин филамента для 3D принтера. Устройство 3D-принтеров для печати этим материалом предполагает наличие закрытых корпусов, а также возможность регулирования температурного режима рабочей камеры. Пластик очень неприхотлив в печати и подойдет для любого FDM принтера. Рынок пластиков (филаментов) для 3Д печати не стоит на месте. Для вас хорошая новость: на складе Bestfilament в городе Челябинск большое поступление комплектующих для 3d-принтера. SBS пластик – термопластичный материал для 3D-печати.

3D рекомендатор: филаменты и расходники

принтеру и настройки, лёгок в печати, и очень просто обрабатывается. FDM-печать ABS-пластик PLA-пластик (полилактид) PETG-пластик (полиэтилентерефталат-гликоль) SLA-печать Стандартная фотополимерная смола Заключение. Выбор пластиков для 3D-печати на рынке огромен. Филамент Creality Ender PLA+ — это усовершенствованный PLA пластик от известного производителя 3D принтеров Creality 3D. Ряд пластиков находится в постоянном контакте с пищевыми продуктами. Выводы: Из всего вышесказанного стоит отметить, что SBS пластик от FDplast – очень удачное решение для 3д печати.

Особенности различных материалов, используемых для 3D-печати

Современное производство филаментов для 3D печати. Пищевой пластик для 3Д принтера PET-G представляет собой полиэтилентерефталат гликоль, то есть это всем знакомый PET, модифицированный гликолем. К основным характеристикам пластика для 3D-принтера можно отнести влагостойкость, высокую устойчивость к механическим ударам, кислотам и щелочам.

Пластик для 3d принтера

Но перед тем как перейдем к выбору пластика, нужно понимать базовые вещи про 3D печать. Самое важное: 3D печать - это не литье, потому что детали формируются не из однородной массы пластика, которая имеет равномерные характеристики по всему своему объему и во всех направлениях, а выкладываются из слоев, состоящих из дорожек; дорожки в монолит не сливаются даже на самых топовых филаментах и при самых правильных настройках. Поэтому нельзя сказать, что если материал А прочнее материала Б в литье, то он столько же прочнее в печати. Таким образом, характеристики пластика надо смотреть именно для FDM. Также производители, маркируя филамент, пишут только про его основу, а на характеристики влияют еще и добавки, которые могут отличаться от марки производителя. В данной статье мы расскажем именно о тех видах филаментов, которыми мы печатали сами, наш опыт и ощущения от печати данными пластиками.

PLA сам по себе имеет хорошие прочностные показатели и хорошую спекаемость, в результате получаются прочные детали. Это один из самых крепких материалов для FDM 3D печати. При этом PLA жесткий и износостойкий, что хорошо для технической 3D печати, но не ударостойкий, и температура эксплуатации у него всего до 50 градусов. PLA не токсичен и практически не пахнет что важно для домашней печати. Это один из самых неприхотливых филаментов.

Сушить его надо достаточно редко, только если при 3D печати идут пузыри и «паутина». Усадка практически нулевая, поэтому получить нужную геометрию с первого раза просто. PLA хорошо липнет на любые адгезивные покрытия, используемые в 3D печати.

При отделении готовой модели можно даже вырвать куски стекла. В таких случаях тонкий слой клея поверх столика будет служить разделительным слоем, удерживающим адгезию на оптимальном уровне. Попробуйте клеи Bubble glue или Picaso , они созданы как раз с этой целью. Физико-механические свойства 3D-печатные изделия из ПЭТГ отличаются высокой прочностью, проистекающей как из свойств самого материала, так и отличной когезии слоев. Из ПЭТГ вполне можно делать механические детали, например шестерни, а также крепления, защитные кожухи и тому подобное.

Слои в моделях из ПЛА схватываются не так прочно, да и сам полимер относительно хрупок, а потому полилактид подходит в основном для изготовления игрушек, сувениров, украшений и прочих изделий, не подверженных высоким механическим и тепловым нагрузкам. Помните упомянутую выше паутину? Ее появление связано с высокой вязкостью ПЭТГ, а это, в свою очередь, говорит о высокой ударной стойкости и сопротивлении необратимым деформациям. ПЭТГ также намного лучше подходит для эксплуатации на открытом воздухе. Переработка Отдельно необходимо упомянуть про экологичность, раз эта тема так часто всплывает последнее время. Да, ПЛА производится из растительного сырья, однако слухи про его недолговечность сильно преувеличены. ПЛА действительно биоразлагаем, но в обычных условиях с легкостью может эксплуатироваться годами, особенно в помещениях. Даже на открытом воздухе полилактид может провести несколько лет до того, как станут заметны следы деградации.

Во многом это зависит от климата — чем он прохладнее и суше, тем дольше продержится ПЛА.

Оно имеет идеальную консистенцию для беспрепятственного прохождения через сопло экструдера. Тесто позволит создать необычный трехмерный объект или 2D-изделие со сложным рисунком. При этом изделие после печати будет полностью готово к употреблению, благодаря антипригарной, хорошо разогретой рабочей поверхности. Плюсы: из теста можно напечатать любые по сложности картинки; можно использовать любое по составу полужидкое тесто; блюдо из теста, напечатанное на 3D-принтере, не требует дополнительной доработки — оно полностью готово к употреблению. Минусы: тесто должно быть идеально однородным без комочков, так как сопло может забиться. Другие материалы Наиболее часто используемые и известные материалы уже рассмотрены. Поэтому ознакомимся с пятью наиболее необычными и интересными филаментами для печати на 3D-принтере: TPE — это термопластический эластомер, при помощи которого распечатываются очень хорошо растягивающиеся изделия.

Однако, когда речь заходит именно о PEEK, стоимость 3d-принтера и самого пластика являются условно привлекательными — машины для работы с этим материалом, как правило, обходятся в несколько миллионов рублей, а килограммовая катушка PEEK пластика стоит в районе 50 000 — 70 000 рублей.

В линейке производителя представлен 3d-принтер Fortus 450mc , предназначенный для работы с высокотемпературными полимерами. К недостаткам можно отнести высокую стоимость аппарата и комплектующих, а также привязку к оригинальным расходным материалам производителя. Европейским аналогом Fortus 450mc выступает высокотемпературный 3d- принтер итальянского производителя 3ntr — Spectral 30. В сравнении с американским конкурентом аппарат обладает более низкой стоимостью и открытой архитектурой, что позволяет использовать пластики любых производителей. Уникальной особенностью принтера является наличие четырёх блоков печати экструдеров и такого же количества встроенных сушильных модулей, чему нет аналогов в мире. Его стоимость чуть меньше одного миллиона рублей, благодаря чему аппарат доступен для представителей малого и среднего бизнеса. Это обеспечивает прямой отжиг PEEK пластика, что необходимо для достижения оптимальных механических свойств. SLS лазерное спекание пластикового порошка SLS технология 3d-печати обеспечивает высокую производительность при производстве малых и средних партий изделий. Это происходит из-за того, что камера SLS принтера заполняется не только по периметру рабочей платформы, как в случае с FDM технологией, но и в высоту.

Таким образом, использование технологии целесообразно в случае большой планируемой загрузки оборудования. S320HT может поставляться в комплектации с закрытой станцией для постобработки изделий, просеивания неотработанного порошка и его смешения с новым материалом. С принтером станция соединена специальными каналами, по которым подается готовый к работе порошок. Это решениепозволяет избежать высокой степени загрязнения рабочего помещения, характерного для SLS печати. Jetcom-3D - профессиональный поставщик систем аддитивного производства Для получения дополнительной консультации об оборудовании для 3d-печати тугоплавкими пластиками, пожалуйста, обращайтесь за консультацией к нашим специалистам. Мы также рады пригласить Вас в наш демонстрационный зал , где у Вас будет возможность лично увидеть 3D-принтеры для печати PEEK и другими пластиками.

Пластики для 3D печати, всё что нужно знать о материалах

Однажды, заказывая пластик для принтера, я увидел что в продаже появились и пробники по 100г и не смог пройти мимо. Пластик для 3D-принтеров. Профессиональные принтеры позволяют выполнять высококлассную печать из резины и пластика на выбор заказчика. Нить ТПУ имеет свойство впитывать влагу из воздуха, поэтому перед началом печати tpu пластик для 3D-принтера рекомендуется высушить. 1954 предложения - низкие цены, быстрая доставка от 1-2 часов, возможность оплаты в рассрочку для части товаров, кешбэк Яндекс Плюс - Яндекс Маркет.

Похожие новости:

Оцените статью
Добавить комментарий