Новости коэффициент джини показывает

В России по итогам 2023 года вырос показатель доходного неравенства среди граждан, так называемый "коэффициент Джини". Коэффициент Джини — это статистический показатель, характеризующий степень неравномерности распределения доходов между разными социальными группами. Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения. Коэффициент Джини, из которого проистекает индекс Джини, используемый для оценки равномерности распределения доходов в экономики, частично базируется на другом методе оценки неравенства в распределении доходов – кривой Лоуренса.

Среди населения России растет доходное неравенство: почему ускорился этот процесс?

Экономическое неравенство, что же еще! В 1912 году итальянский статистик и демограф Коррадо Джини предложил в своем труде «Вариативность и изменчивость признака» новую модель определения степени расслоения общества страны или региона по какому-либо признаку. Модель стала важнейшим инструментом оценки экономического неравенства в мире и получила имя в честь своего создателя — коэффициент Джини.

Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели.

Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0.

Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Мы подошли к самому, пожалуй, интересному моменту — алгебраическому представлению коэффициента Джини. Как рассчитать эту метрику?

Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего. Даже в зарубежных книгах и научных статьях.

Модель стала важнейшим инструментом оценки экономического неравенства в мире и получила имя в честь своего создателя — коэффициент Джини. Источник: Getty Images В 2015 году Греция, Таиланд, Израиль и Великобритания оказались неравны в равной степени, то есть все четыре страны имели одинаковый коэффициент Джини — общий показатель неравенства доходов. Коэффициент Джини, равный 1 единице , означает, что в обществе наблюдается абсолютное неравенство, в то время как 0 ноль означает полное равенство.

Сегодня за этой чертой живут примерно 700 миллионов человек.

Когда бедность определяется через установленную денежную величину дохода или потребления черта бедности , говорят об абсолютной бедности. Другой подход заключается в привязке к постоянно меняющимся стандартам уровня жизни. В этом случае говорят об относительной бедности: уровень бедности зависит от характеристик распределения доходов во всём обществе и на первый план выходит неравенство. Использование понятия относительной бедности связано с тем, что, начиная с определённого уровня развития экономики, помимо материальных лишений питание, одежда, условия жилья и т. В исследованиях и мониторингах также часто используется субъективная бедность, под которой понимается мнение самих респондентов о границах бедности и собственном благосостоянии. Понятие «прожиточный минимум» определяется в Федеральном законе «О прожиточном минимуме в Российской Федерации» от 24.

Силуанов допустил рост экономики по итогам 2023 года выше 2,5%

  • Коэффициент Джини по странам и в России. Кривая Лоренца. Пример по годам
  • С 1 декабря 2014 года
  • Все продукты Банки.ру
  • Новости по теме
  • Машинное обучение

Что бы сделал Робин Гуд?

Четвёртый характерен для стран с неразвитой демократией и пассивным гражданским обществом. В таких странах правящая элита перераспределяет общественные блага в свою пользу. В реальной жизни трудно назвать страну, в которой мы смогли бы четко отследить действие какого-либо одного из вышеназванных принципов. Обычно они по-разному сочетаются в том или ином виде. Однако, какой бы система распределения ни была, в любом обществе неизбежно неравенство доходов. Проблема неравенства доходов в обществе Рыночная система экономики, существующая на сегодняшний день лишь за малым исключением во всех странах мира, представляет собой механизм, который вознаграждает людей лишь по конечному результату эффективности их деятельности, то есть объективно задает существование неравенства в обществе. И ведь действительно, все люди очень отличаются друг от друга: трудолюбием, активностью, способностями, образованием, владением собственностью, склонностью к накоплению или, напротив, к потреблению. А это значит, что они не могут одинаково работать, значит, не могут одинаково зарабатывать и одинаково жить. Что и является причинами неравенства доходов. И что же тогда? Оставлять за чертой бедности немалую часть населения?

По принципу «пусть выживают, как могут»? Полезно ли ЭТО для общества? Очевидно, что нет.

Мне кажется, что в ней проще запутаться, а получается ровно то же самое. Чтобы проверить себя, решите задачу. Ответ и решение под спойлерами: Задача Предположим, что в некоторой стране N проживают три группы населения: бедные, средний класс и богатые. Группы равны по численности жителей, но различаются по уровню дохода: средний класс зарабатывает в два раза больше, чем бедные, а богатые зарабатывают в два раза больше, чем средний класс.

Внутри групп доходы распределены равномерно. Нарисуйте график кривой Лоренца и рассчитайте коэффициент Джини.

Федор Титарчук Гуру 4164 , закрыт 16 лет назад Maryana Мастер 1280 16 лет назад Коэффициент Джини индекс Джини — статистический показатель, свидетельствующий о степени расслоения общества данной страны или региона по отношению к какому-либо изучаемому признаку к примеру, по уровню годового дохода — наиболее частое применение, особенно при современных экономических расчётах. Индекс Джини это процентный аналог коэффициента Джини.

Богатые, по сравнению с бедными, тратят больше в 5 раз на питание, в 12 раз — на одежду, 20 раз — на медицину. Возможно ли из бедного превратится в богатого Если исходить из статистики, то можно заметить некоторые неутешительные тенденции. Бедные становятся еще беднее, им труднее зарабатывать и приумножать свой капитал, чем богатым. Между тем количество миллиардеров растет и это тоже факт.

У богатых денег больше, соответственно, и возможностей больше. Они увеличивают свое состояние быстрее. Поэтому даже при равных условиях в более выгодном положении остается тот, у кого средств оказалось больше. Но, как говорится, нет ничего не возможного. Если абстрагироваться от размера капитала, и исходить из реальности, то оптимальной позицией будет следующая. Самостоятельность в действиях, анализ доходов и трат, четкий план действий, а также грамотное распределение денег, накопление, откладывание, инвестиции — необходимый минимум на пути к благосостоянию. Подытоживая, следует заметить, что, безусловно, есть много людей, которые считают, что со временем ситуация ухудшится и число бедных будет только расти. Но если все время придерживаться этой позиции и ничего совсем не делать, то лучше от этого точно не станет.

Все в руках человека. Преимущества коэффициента Джини Gini coefficient позволяет: Провести сопоставления по распределению исследуемого признака в совокупностях, разных по числу единиц, и между разными совокупностями. К примеру, в регионах с различной численностью либо между странами. Скорректировать данные по ВВП и среднедушевому доходу.

В России вырос уровень доходного неравенства

Индекс Джини представляет собой число от 0 до 1, измеряемое в соответствии с отношением между площадью, заключенной между кривой Лоренца и линией 45 градусов, и площадью всего треугольника того, который находится ниже линии 45 градусов и площадь которого составляет 0,5. Нулевой коэффициент означает полное равенство, то есть у всех одинаковый доход; Тогда как коэффициент 1 означает абсолютное неравенство, означающее, что у одного человека есть весь доход, а у остальных вообще нет дохода. Джини — это мера статистической дисперсии, и как таковая она может измерять любой ряд числовых данных, а не только доход, богатство или политический риск. Это индекс, который на самом деле пытается объяснить распространение неопределенности, а оценка риска — это на самом деле неопределенность, которую мы пытаемся уменьшить. Когда мы проверяем результаты моделей оценки риска, мы стремимся к как можно более высокому индексу Джини, то есть неравенству, которое будет максимально отражать предсказание только политики высокого риска. В примере мы построили две модели оценки риска страховых полисов в данном случае транспортных средств и оценили риск группы полисов. Прогноз каждой модели — это значение утверждения каждой политики.

Недостатки коэффициента Джини В разделе не хватает ссылок на источники см. Так, чем на большее количество групп поделена одна и та же совокупность больше квантилей , тем выше для неё значение коэффициента Джини. Коэффициент Джини не учитывает источник дохода, то есть для определённой географической единицы страны, региона и т. Метод кривой Лоренца и коэффициента Джини в деле исследования неравномерности распределения доходов среди населения имеет дело только с денежными доходами, меж тем некоторым работникам заработную плату выдают в виде продуктов питания и т. Различия в методах сбора статистических данных для вычисления коэффициента Джини приводят к затруднениям или даже невозможности в сопоставлении полученных коэффициентов. Коэффициент Джини отчасти неадекватен для плановых экономик, где распределение ресурсов зависит не только от доходов, но и от лояльности к государству партии.

В этом случае говорят об относительной бедности: уровень бедности зависит от характеристик распределения доходов во всём обществе и на первый план выходит неравенство. Использование понятия относительной бедности связано с тем, что, начиная с определённого уровня развития экономики, помимо материальных лишений питание, одежда, условия жилья и т. В исследованиях и мониторингах также часто используется субъективная бедность, под которой понимается мнение самих респондентов о границах бедности и собственном благосостоянии. Понятие «прожиточный минимум» определяется в Федеральном законе «О прожиточном минимуме в Российской Федерации» от 24. В первую очередь это чисто техническая величина, с помощью которой государство оценивает, с одной стороны, величину своих социальных обязательств, с другой — уровень жизни в стране и состояние экономики. Определяется она так: стоимостная оценка потребительской корзины, то есть «необходимые для сохранения здоровья человека и обеспечения его жизнедеятельности минимальный набор продуктов питания, а также непродовольственные товары и услуги…» , а также обязательные платежи и сборы, к которым относятся коммунальные платежи. Конечно, имеется в виду количество рублей в месяц.

Независимость от масштаба экономики: коэффициент Джини не учитывает размер экономики. Независимость от размера населения: не имеет значения, насколько велико население страны. Независимость от шкалы доходов. Мера неравенства является инвариантной к равномерным пропорциональным изменениям: если доход каждого человека изменяется в той же пропорции как, например, происходит при смене валютной единицы , то неравенство не должно меняться[4]. Преимущества применения Коэффициента Джини[6]: Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной. Его можно использовать для сравнения распределения доходов по разным секторам населения, а также по странам, однако следует учитывать, что значение коэффициента Джини для городских районов отличается от значения коэффициента Джини для сельских районов во многих странах. Коэффициент Джини обладает достаточной простотой, чтобы его можно было сравнивать между странами и легко интерпретировать. Статистика ВВП часто подвергается критике, поскольку она не отражает изменений для всего населения, коэффициент Джини же показывает, как изменился доход бедных и богатых слоев населения. Если наблюдается одновременный рост коэффициента Джини и ВВП, уровень бедности может не изменяться в положительную сторону для большинства населения. Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство. Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться. Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини. В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки. Со временем значение коэффициента Джини уменьшается, поскольку данные становятся менее точными.

Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства

Коэффициент Джини равен площади под линией совершенного равенства (0,5 по определению) минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше. Значение коэффициента Джини для этих стран стабильно удерживается в диапазоне 0,25-0,3. «Коэффициент Джини – это показатель степени неравенства в доходах, который принимает значения от 0 до 1, где 0 – абсолютное равенство и 1 – абсолютное неравенство». Коэффициент Джини показывает, насколько «кривая Лоренца» отклоняется от «линии равенства», сравнивая площади A и B на картинке.

В России вырос уровень доходного неравенства

Там, где высокий уровень неравенства, мы можем ожидать большой разрыв Однако, если измерять этот показатель в абсолютном выражении, он также будет зависеть от богатства населения в целом. Если даже самые обеспеченные представители населения имеют низкий доход, то абсолютный разрыв между доходами людей будет маленьким. Для простоты представим, что всё население состоит из тех двух человек, встретившихся на улице. Все доходы принадлежат одному человеку, а остальные вовсе не имеют дохода — коэффициент Джини равен 1 Наименьшее возможное значение среднего разрыва, то есть 0 — ситуация абсолютного равенства. Доходы всех людей равны — коэффициент Джини равен 0 Метод 2: Разрыв между «кривой Лоренца» и «линией идеального равенства» Слева указана доля дохода, получаемая каждой пятой частью гипотетического населения. Справа — суммарные доходы всех групп населения. Это показано на графике как «линия равенства» Но среди населения, представленного на нашей диаграмме, доходы распределяются неравномерно.

Площадь A, как и коэффициент Джини, будет равна 0. Если один человек получает все доходы, а остальные не имеют никакого, «кривая Лоренца» совпадает с осью X — общие доходы будут сконцентрированы в конце графика.

Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле: Указанная формула приведена в статье «The Meaning and Use of the Area under a Receiver Operating Characteristic ROC Curve». Кратко поясню смысл приведенной формулы. Второй блок — это вероятность того, что два случайно выбранных аномальных класса будут оцениваться выше, чем случайно выбранный нормальный класс. Третий блок — вероятность того, что один случайно выбранный аномальный класс будет оценен выше, чем два случайно выбранных нормальных класса. Для наглядности визуализирую блоки на графике.

Обозначим ее через M. Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент.

При абсолютном равенстве он достигает нуля.

Предположим, есть три деревни, в каждой из которых проживает 10 жителей. В каждой деревне суммарный годовой доход населения 100 рублей. В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца.

Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов. Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл.

Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла.

Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически.

У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей.

Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение.

В России вырос уровень доходного неравенства

Коэффициент итальянского экономиста, статиста и демографа Коррадо Джини (более известный как индекс Джини) позволяет более точно, количественно измерить степень неравномерности распределения доходов населения. Насколько равномерно происходил рост богатства швейцарцев показывает так называемый «коэффициент Джини» (Gini-Koeffizienten). Коэффициент Джини – статистический показатель, который используется для характеристики уровня экономического неравенства в стране.

РБК: Росстат зафиксировал рост концентрации доходов в 2023 году

Коэффициент Джини (индекс концентрации доходов). Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%).

Все новости

  • Чем опасен разрыв между бедными и богатыми и насколько он большой
  • Индекс Джини и неравенство доходов | Conomy
  • Машинное обучение
  • Как рассчитать коэффициент Джини в Excel (с примером)
  • Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения

Доверительный интервал коэффициента Джини. Что это?

В 2023 году в России коэффициент Джини, характеризующий степень неравенства в распределении доходов внутри групп населения, вырос до 0,403 против 0,395 годом ранее, следует из доклада Росстата о социально-экономическом положении .pdf). В 2023 году коэффициент Джини (индекс концентрации доходов) составил 0,403, сообщил Росстат. Коэффициент концентрации доходов, или индекс Джини, может быть рассчитан и с помощью других методик. Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий. В 2023 году в России коэффициент Джини, характеризующий степень неравенства в распределении доходов внутри групп населения, вырос до 0,403 против 0,395 годом ранее, следует из доклада Росстата о социально-экономическом положении .pdf).

Похожие новости:

Оцените статью
Добавить комментарий